首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 186 毫秒
1.
陈习伦 《贵州气象》2003,27(3):33-33
观测雪压要用体积量雪器或称雪器,但是在没有这两种仪器的时怎么办呢?在2003年1月6日的雪压观测中笔者采用雨量简代替称雪器进行雪压观测,从理论上和操作上看均是可行的。具体操作是将雨量筒(器口)垂直向下插入雪中直到地面截取雪  相似文献   

2.
在地面气象观测中雪压的观测相对来说比较特殊,也比较繁琐。观测员必须反复操作测量工具和读数,有一个比较长的观测过程,它只在冬季降雪达到观测标准时才读数,观测次数少,特别是河曲周围晋西北一带,冬季降雪较少,有的年份甚至一次也达不到雪压观测标准。正因为它的观测次数如此  相似文献   

3.
自动气象观测与人工观测气温差异分析   总被引:2,自引:2,他引:0  
利用陕西省96个气象站2004--2007年自动与人工平行观测的气温资料,分析陕西全省和不同自然区人工与自动观测气温的差异及引起差异的原因。结果表明:自动观测比人工观测的日平均气温平均偏高0.03℃,标准差为0.26℃。78.6%的样本月平均气温对比差值在0.2℃之内,在不同自然区自动与人工观测气温对比差值在0.2。c之间的百分率基本相同。气温对比差值的日、月变化规律明显,自动与人工观测时间不同步对定时值有一定影响。但对气候分析没有影响,自动观测仪器性能不稳定会造成较大的数据偏差。  相似文献   

4.
近年来许多台站存在地温观测数据不稳定现象,部分观测数据变化甚至超过1℃,远大于国家观测规范规定变化幅度≤0.3℃的要求。本文根据地温观测原理,分析造成地温观测数据不稳定的原因,并提出解决方案。  相似文献   

5.
地面温度测定的是地表与空气交界面的温度,冬季有积雪时测定的是雪面与空气交界面的温度。在观测工作中,发现冬季地温场有积雪时,14时观测地温有时会出现0cm温度表读数与地面最高温度表读数差值较大的现象。经反复观测,发现是由于地面温度表经过太阳直射,感应部分的积雪融化,与地面脱离,造成0 cm温度表与地面最高温度表读数均迅速上升。观测前30分钟巡视仪器时,因发现温度表下陷雪内,便重新埋放,使0cm温度表感应部分与雪面重新接触,温度迅速下降,而地面最高温度表则不会下降,这就造成了上述情况。 建议在冬季有积…  相似文献   

6.
利用四川135个站自动与人工第2年平行观测气温资料,就自动与人工观测的气温的差异、引起差异的原因进行了分析。结果表明:气温各项目的自动观测比人工观测平均偏高,平均差值基本在0.2℃以内;气温、日最高、日最低的自动与人工观测比较,差值在±0.2℃之间的分别占58.71%、51.58%、62.68%,自动与人工观测值一致的分别占15.07%、12.16%、14.78%;自动与人工观测气温之间的对比差值存在明显的日变化,无明显的季节性和地域性差异;两种观测体制在观测时间上、观测方式上、测温传感器安装位置上,以及感应元件和测温原理的不同、仪器误差、热滞效应,都会造成观测结果出现差异。  相似文献   

7.
2007年7月的盛夏时节,在地面观测工作中发现每次读取地面最高温度时人工观测与自动观测数据差值多数都达到1.0℃以上。为揭开数据差值背后的秘密,我们对兴安盟索伦观测场2007年7月自动站与人工站地面最高温度数据进行了分析。在正常天气背景下,土壤表面的日最高温度一般出现在1  相似文献   

8.
下列情况应测量雪压: ①每月逢5、10、15、20、25和月末最后一天08时雪深≥5 cm时,应在雪深观测后测雪压; ②在规定的日子里08时无积雪,而在08时以后形成雪深≥5 cm的积雪,在14时或20时补测雪深后测雪压; ③在规定的日子里未达到测雪压标准,而在随后的其它日子(指两次规定日子之间的日子),08时测得的雪深≥5 cm时,应在雪深观测后补测雪压; ④在规定的日子里未达到测雪压标准,在随后的日子里08时也无积雪,而在该日08时以后降雪,且雪深≥5 cm,应在该日14时或20时补测雪深后补测雪压;  相似文献   

9.
孙晓辉 《浙江气象》2007,28(4):17-19
叙述了降雪的性质与云状栏的记录对应关系;大雪引起积雪对雪深、雪压的观测、补测、发报的一些规定理解;因纯大雪引起使能见度<0.5 km时,对大雪的发报与能见度的对应关系;对降雪、积雪时的仪器维护及是否正常运转判断的一些方法。  相似文献   

10.
在第一版国际南大洋地图集(the International Bathymetric Chart of the Southern Ocean Version 1.0,IBCSO V1)的基础上,利用现场水文观测中的水深数据重构了普里兹湾及其周围海域的海底地形,建立了更准确的高分辨率数字水深模型。从多套现场水文观测数据中提取了水深观测结果,去除重复剖线后,比较了水文观测中的水深数据与IBCSO V1在500 m×500 m网格上的差异。在保留IBCSO V1中原始多波束、单波束回声测深数据和其他水深观测数据的前提下,使用插值技术修正了无观测数据海域地形。基于大量的海豹观测数据在较大程度上订正了IBCSO V1海床深度。与IBCSO V1海床深度相比,从戴维斯站以东至82°E的南极大陆沿岸、埃默里冰架前缘西部以及西冰架前缘附近区域的海床深度被低估的可能性最大。优化的南极普里兹湾海域水深数字地图改进了对普里兹湾海底地形结构特征的认识。更加准确的地形数据有利于理解海底地形对普里兹湾海洋环流的影响和建立更加可靠的数值模型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号