首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The Late Proterozoic Bakoye 3 Formation is a predominantly aeolian unit deposited in the glacially influenced cratonic Taoudeni Basin of western Africa. The Bakoye 3 can be divided into five distal units, two proximal units, and a local upper massive sandstone. The basal Unit 1 shows a complex interfingering of aeolian and subaqueous structures, and is interpreted as the precursor of the overlying erg sequences. Unit 2 consists of compound, trough cosets of aeolian cross-strata dominated by grain-flow strata. The unit is interpreted to represent draas with superimposed, small, crescentic dunes. A super bounding surface marks the termination and planation of the erg. Unit 3 is distinguished from the underlying Unit 2 by its larger, overall simple sets of trough cross-strata, interpreted to represent simple, large, crescentic dunes. Unit 4 occurs only locally in laterally discontinuous, large troughs. In one case the trough is filled by small sets of tabular cross-strata dominated by grain-flow deposits. At another section, wedges of coarse-grained wind-ripple strata fill the trough. Unit 4 may represent remnants of ergs or, more likely, local deposition in depressions. The depressions, in the latter scenario, formed with the development of a second super surface that truncates Unit 3. Unit 5 consists of very large sets of wind-ripple cross-strata with less common sets of grain-flow deposits. These deposits are believed to represent enormous dunes with large plinths and subordinate slip face development. A third super surface separates Unit 5 from overlying marine deposits. Together, Units 1–5 represent the core of the ergs in a distal position relative to adjacent upland source areas. Proximally, aeolian deposits are simple, smaller, trough sets interpreted as moderate sized crescentic dunes. Coarse-grained braided stream deposits are prominent. Locally, the top of the Bakoye 3 is marked by channelized mass-flow deposits containing aeolian blocks, and is believed to have resulted from iceberg grounding. An overall environment for the Bakoye 3 is one of uplands marked by ice sheets, with outwash plains extending distally to aeolian ergs. Super surfaces, all marked by polygonal fractures and coarsegrained sediment, represent periods of erg termination that may be linked to glacial-fluvial-aeolian cycles.  相似文献   

3.
The existence of a mid‐Cretaceous erg system along the western Tethyan margin (Iberian Basin, Spain) was recently demonstrated based on the occurrence of wind‐blown desert sands in coeval shallow marine deposits. Here, the first direct evidence of this mid‐Cretaceous erg in Europe is presented and the palaeoclimate and palaeoceanographic implications are discussed. The aeolian sand sea extended over an area of 4600 km2. Compound crescentic dunes, linear draa and complex aeolian dunes, sand sheets, wet, dry and evaporitic interdunes, sabkha deposits and coeval extradune lagoonal deposits form the main architectural elements of this desert system that was located in a sub‐tropical arid belt along the western Tethyan margin. Sub‐critically climbing translatent strata, grain flow and grain fall deposits, pin‐stripe lamination, lee side dune wind ripples, soft‐sediment deformations, vertebrate tracks, biogenic traces, tubes and wood fragments are some of the small‐scale structures and components observed in the aeolian dune sandstones. At the boundary between the aeolian sand sea and the marine realm, intertonguing of aeolian deposits and marine facies occurs. Massive sandstone units were laid down by mass flow events that reworked aeolian dune sands during flooding events. The cyclic occurrence of soft sediment deformation is ascribed to intermittent (marine) flooding of aeolian dunes and associated rise in the water table. The aeolian erg system developed in an active extensional tectonic setting that favoured its preservation. Because of the close proximity of the marine realm, the water table was high and contributed to the preservation of the aeolian facies. A sand‐drift surface marks the onset of aeolian dune construction and accumulation, whereby aeolian deposits cover an earlier succession of coastal coal deposits formed in a more humid period. A prominent aeolian super‐surface forms an angular unconformity that divides the aeolian succession into two erg sequences. This super‐surface formed in response to a major tectonic reactivation in the basin, and also marks the change in style of aeolian sedimentation from compound climbing crescentic dunes to aeolian draas. The location of the mid‐Cretaceous palaeoerg fits well to both the global distribution of other known Cretaceous erg systems and with current palaeoclimate data that suggest a global cooling period and a sea‐level lowstand during early mid‐Cretaceous times. The occurrence of a sub‐tropical coastal erg in the mid‐Cretaceous of Spain correlates with the exposure of carbonate platforms on the Arabian platform during much of the Late Aptian to Middle Albian, and is related to this eustatic sea‐level lowstand.  相似文献   

4.
Aeolian processes and ephemeral water influx from the Variscan Iberian Massif to the mid‐Cretaceous outer back‐erg margin system in eastern Iberia led to deposition and erosion of aeolian dunes and the formation of desert pavements. Remains of aeolian dunes encased in ephemeral fluvial deposits (aeolian pods) demonstrate intense erosion of windblown deposits by sudden water fluxes. The alternating activity of wind and water led to a variety of facies associations such as deflation lags, desert pavements, aeolian dunes, pebbles scattered throughout dune strata, aeolian sandsheets, aeolian deposits with bimodal grain‐size distributions, mud playa, ephemeral floodplain, pebble‐sand and cobble‐sand bedload stream, pebble–cobble‐sand sheet flood, sand bedload stream, debris flow and hyperconcentrated flow deposits. Sediment in this desert system underwent transport by wind and water and reworking in a variety of sub‐environments. The nearby Variscan Iberian Massif supplied quartzite pebbles as part of mass flows. Pebbles and cobbles were concentrated in deflation lags, eroded and polished by wind‐driven sands (facets and ventifacts) and incorporated by rolling into the toesets of aeolian dunes. The back‐erg depositional system comprises an outer back‐erg close to the Variscan highlands, and an inner back‐erg close to the central‐erg area. The inner back‐erg developed on a structural high and is characterized by mud playa deposits interbedded with aeolian and ephemeral channel deposits. In the inner back‐erg area ephemeral wadis, desiccated after occasional floods, were mud cracked and overrun episodically by aeolian dunes. Subsequent floods eroded the aeolian dunes and mud‐cracked surfaces, resulting in largely structureless sandstones with boulder‐size mudstone intraclasts. Floods spread over the margins of ephemeral channels and eroded surrounding aeolian dunes. The remaining dunes were colonized occasionally by plants and their roots penetrated into the flooded aeolian sands. Upon desiccation, deflation resulted in lags of coarser‐grained sediments. A renewed windblown supply led to aeolian sandsheet accumulation in topographic wadi depressions. Synsedimentary tectonics caused the outer back‐erg system to experience enhanced generation of accommodation space allowing the accumulation of aeolian dune sands. Ephemeral water flow to the outer back‐erg area supplied pebbles, eroded aeolian dunes, and produced hyperconcentrated flow deposits. Fluidization and liquefaction generated gravel pockets and recumbent folds. Dune damming after sporadic rains (the case of the Namib Desert), monsoonal water discharge (Thar Desert) and meltwater fluxes from glaciated mountains (Taklamakan Desert) are three potential, non‐exclusive analogues for the ephemeral water influx and the generation of hyperconcentrated flows in the Cretaceous desert margin system. An increase in relief driven by the Aptian anti‐clockwise rotation of Iberia, led to an altitude sufficient for the development of orographic rains and snowfall which fed (melt)water fluxes to the desert margin system. Quartzite conglomerates and sands, dominantly consisting of quartz and well‐preserved feldspar grains which are also observed in older Cretaceous strata, indicate an arid climate and the mechanical weathering of Precambrian and Palaeozoic metamorphic sediments and felsic igneous rocks. Unroofing of much of the cover of sedimentary rocks in the Variscan Iberian Massif must therefore have taken place in pre‐Cretaceous times.  相似文献   

5.
M. L. PORTER 《Sedimentology》1987,34(4):661-680
The Lower Jurassic Aztec Sandstone is an aeolian-deposited quartzose sandstone that represents the western margin of the southerly-migrating Navajo-Nugget sand sea (or erg). Vertical and lateral facies relations suggest that the erg margin encroached upon volcanic highlands, alluvial fan, wadi and sabkha environments. In southern Nevada, 700 m thick facies successions record the arrival of the Aztec sand sea. Initial erg sedimentation in the Valley of Fire consists of lenticular or tongue-shaped aeolian sand bodies interstratified with fluvially-deposited coarse sandstone and mudstone. Above, evaporite-rich fine sandstone and mudstone are overlain by thick, cross-stratified aeolian sandstone that shows an upsection increase in set thickness. The lithofacies succession represents aeolian sand sheets and small dunes that migrated over a siliciclastic sabkha traversed by ephemeral wadis. These deposits were ultimately buried by large dunes and draas of the erg. In the Spring Mountains, a similar facies succession also contains thin, lenticular volcaniclastic conglomerate and sandstone. These sediments represent the distal margin of an alluvial fan complex sourced from the west. Thin aeolian sequences are interbedded with volcanic flow rocks, ash-flow tuffs, debris flows, and fluvial deposits in the Mojave Desert of southern California. These aeolian strata represent erg migration up the eastern flanks of a magmatic arc. The westward diminution of aeolian-deposited units may reflect incomplete erg migration, thin accumulation of aeolian sediment succeptible to erosion, and stratigraphic dilution by arc-derived sediment. A two-part division of the Aztec erg is suggested by lithofacies associations, the size and geometry of aeolian cross-strata, and sediment dispersal data. The leading or downwind margin of the erg, here termed the fore-erg, is represented by a 10–100 m thick succession of isolated pods, lenses, and tongues of aeolian-deposited sediment encased in fluvial and sabkha deposits. Continued sand-sea migration brought large dunes and draas of the erg interior into the study area; these 150–500 m thick central-erg sediments buried the fore-erg deposits. The trailing, upwind margin of the erg is represented by back-erg deposits in northern Utah and Wyoming.  相似文献   

6.
Due to difficulties in correlating aeolian deposits with coeval marine facies, sequence stratigraphic interpretations for arid coastal successions are debated and lack a unifying model. The Pennsylvanian record of northern Wyoming, USA, consisting of mixed siliciclastic–carbonate sequences deposited in arid, subtropical conditions, provides an ideal opportunity to study linkages between such environments. Detailed facies models and sequence stratigraphic frameworks were developed for the Ranchester Limestone Member (Amsden Formation) and Tensleep Formation by integrating data from 16 measured sections across the eastern side of the Bighorn Basin with new conodont biostratigraphic data. The basal Ranchester Limestone Member consists of dolomite interbedded with thin shale layers, interpreted to represent alternating deposition in shallow marine (fossiliferous dolomite) and supratidal (cherty dolomite) settings, interspersed with periods of exposure (pedogenically modified dolomites and shales). The upper Ranchester Limestone Member consists of purple shales, siltstones, dolomicrites and bimodally cross‐bedded sandstones in the northern part of the basin, interpreted as deposits of mixed siliciclastic–carbonate tidal flats. The Tensleep Formation is characterized by thick (3 to 15 m) aeolian sandstones interbedded with peritidal heteroliths and marine dolomites, indicating cycles of erg accumulation, preservation and flooding. Marine carbonates are unconformably overlain by peritidal deposits and/or aeolian sandstones interpreted as lowstand systems tract deposits. Marine transgression was often accompanied by the generation of sharp supersurfaces. Lags and peritidal heteroliths were deposited during early stages of transgression. Late transgressive systems tract fossiliferous carbonates overlie supersurfaces. Highstand systems tract deposits are lacking, either due to non‐deposition or post‐depositional erosion. The magnitude of inferred relative sea‐level fluctuations (>19 m), estimated by comparison with analogous modern settings, is similar to estimates from coeval palaeotropical records. This study demonstrates that sequence stratigraphic terminology can be extended to coastal ergs interacting with marine environments, and offers insights into the dynamics of subtropical environments.  相似文献   

7.
The stratigraphy and landscape evolution of the Lodbjerg coastal dune system record the interplay of environmental and cultural changes since the Late Neolithic. The modern dunefield forms part of a 40 km long belt of dunes and aeolian sand‐plains that stretches along the west coast of Thy, NW Jutland. The dunefield, which is now stabilized, forms the upper part of a 15–30 m thick aeolian succession. The aeolian deposits drape a glacial landscape or Middle Holocene lake sediments. The aeolian deposits were studied in coastal cliff exposures and their large‐scale stratigraphy was examined by ground‐penetrating radar mapping. The contact between the aeolian and underlying sediments is a well‐developed peaty palaeosol, the top of which yields dates between 2300 BC and 600 BC . Four main aeolian units are distinguished, but there is some lateral stratigraphic variation in relation to underlying topography. The three lower aeolian units are separated by peaty palaeosols and primarily developed as 1–4 m thick sand‐plain deposits; these are interpreted as trailing edge deposits of parabolic dunes that moved inland episodically. Local occurrence of large‐scale cross‐stratification may record the head section of a migrating parabolic dune. The upper unit is dominated by large‐scale cross‐stratification of various types and records cliff‐top dune deposition. The nature of the aeolian succession indicates that the aeolian landscape was characterized by alternating phases of activity and stabilization. Most sand transported inland was apparently preserved. Combined evidence from luminescence dating of aeolian sand and radiocarbon dating of palaeosols indicates that phases of aeolian sand movement were initiated at about 2200 BC , 700 BC and AD 1100. Episodes of inland sand movement were apparently initiated during marked climate shifts towards cooler, wetter and more stormy conditions; these episodes are thought to record increased coastal erosion and strong‐wind reworking of beach and foredune sediments. The intensity, duration and areal importance of these sand‐drift events increased with time, probably reflecting the increasing anthropogenic pressure on the landscape. The formation of the cliff‐top dunes after AD 1800 records the modern retreat of the coastal cliffs.  相似文献   

8.
Based on a detailed sedimentological analysis of Lower Triassic continental deposits in the western Germanic sag Basin (i.e. the eastern part of the present‐day Paris Basin: the ‘Conglomérat basal’, ‘Grès vosgien’ and ‘Conglomérat principal’ Formations), three main depositional environments were identified: (i) braided rivers in an arid alluvial plain with some preserved aeolian dunes and very few floodplain deposits; (ii) marginal erg (i.e. braided rivers, aeolian dunes and aeolian sand‐sheets); and (iii) playa lake (an ephemeral lake environment with fluvial and aeolian sediments). Most of the time, aeolian deposits in arid environments that are dominated by fluvial systems are poorly preserved and particular attention should be paid to any sedimentological marker of aridity, such as wind‐worn pebbles (ventifacts), sand‐drift surfaces and aeolian sand‐sheets. In such arid continental environments, stratigraphic surfaces of allocyclic origin correspond to bounding surfaces of regional extension. Elementary stratigraphic cycles, i.e. the genetic units, have been identified for the three main continental environments: the fluvial type, fluvial–aeolian type and fluvial/playa lake type. At the time scale of tens to hundreds of thousands of years, these high‐frequency cycles of climatic origin are controlled either by the groundwater level in the basin or by the fluvial siliciclastic sediment input supplied from the highland. Lower Triassic deposits from the Germanic Basin are preserved mostly in endoreic basins. The central part of the basin is arid but the rivers are supplied with water by precipitation falling on the remnants of the Hercynian (Variscan)–Appalachian Mountains. Consequently, a detailed study of alluvial plain facies provides indications of local climatic conditions in the place of deposition, whereas fluvial systems only reflect climatic conditions of the upstream erosional catchments.  相似文献   

9.
The upper portion of the Pedra Pintada Alloformation includes about 100 m of mostly eolian deposits. This paper emphasizes the vertical succession and lateral association of sedimentary facies, based on analysis of outcrop data and aerial photographs, as well as the hierarchy and origin of bounding surfaces. It aims to propose a high-resolution stratigraphic and depositional model that may be useful to exploitation of eolian reservoirs. The succession has been preserved due to basin subsidence, and is described in terms of four facies associations that constitute three dominantly eolian units. These units are sharply bounded by major flooding surfaces (super surfaces) that, in turn, are overlain by 1 to 2 m thick, dominantly water-laid facies (lacustrine, fluvial, deltaic and eolian). Both their internal organization and boundaries were controlled by changes in the base level rise rate. The basal Eolian Unit is composed of crescentic eolian dunes and damp interdune deposits ascribed to a wet eolian system. On the other hand, eolian units II and III, also characterized by crescentic eolian dunes (simple and compound) deposits, were related to dry eolian systems, since they comprise dry (eventually wet) interdune facies. Eolian Unit III is truncated by basinwide unconformity, which is then overlain by the ephemeral fluvial deposits (Varzinha Alloformation). This second type of super surface is related to climate-induced wind erosion (deflation) down to the water table level (regional Stokes surface) followed by fluvial incision linked to tectonic activity.  相似文献   

10.
Dunes that are morphologically of linear type, many of which are probably of longitudinal type in a morphodynamic sense, are common in modern deserts, but their deposits are rarely identified in aeolian sandstones. One reason for non-recognition of such dunes is that they can migrate laterally when they are not exactly parallel to the long-term sand-transport direction, thereby depositing cross-strata that have unimodal cross-bed dip directions and consequently resemble deposits of transverse dunes. Dune-parallel components of sand transport can be recognized in ancient aeolian sands by examining compound cross-bedding formed by small dunes that migrated across the lee slopes of large dunes and documenting that the small dunes migrated with a component in a preferred along-crest direction over the large dunes.  相似文献   

11.
The Lower Jurassic erg (aeolian sand sea) deposits of the Wingate Sandstone on the Colorado Plateau are beautifully exposed near Many Farms, Arizona. These 3-D outcrops allow a detailed study of structures and sequenses in the erg body. The erg sequence comprises chiefly oblique dune deposits. The dune facies are in most cases characterized by a well-developed tripartite upbuilding. Each dune coset contains unusually thick and intricate bottomsets, medial low-angle dipping toesets, and upper steeply dipping foresets. The foresets reveal significant across-crest transport of sand and dip within a narrow range of directions towards the ESE. The bottomset beds are composed of compound cross-bedding that documents strong along-crest transport towards the SSW, whereas the toeset beds reveal upslope, downslope, and along-crest transport of sand. The ancient dunes apparently formed in a directionally varying wind flow with prevailing winds (early summer) from the NW and periodic strong winds (late summer) from the SW. The dunes were oblique not only to seasonal transport directions, but also to the resultant annual transport direction and dune migration direction. This was caused by the interaction of the dune system with the primary winds which resulted in secondary airflow and significant along-crest transport of sand. The erg deposits at Many Farms are separated by a number of super bounding surfaces suggesting several episodes of erg formation and destruction. The initial erg system was dominated by transverse dunes, but overlying ergs only contained oblique dunes. All erg systems were bounded to the SW by wide regions of erg margin environments in which aeolian sand sheet, fluvial, and lacustrine facies were deposited. Even though fluvial deposits are absent from the main part of the sequence at the study area, the effects of this system are reflected within the erg deposits at Many Farms.  相似文献   

12.
Aeolian limestones are widespread in the Quaternary record and have been identified in outcrops and cores of late Palaeozoic strata. These rocks have been interpreted as a low latitude signal of glacio-eustatic sea level fluctuations and have not been previously reported from the Mesozoic or from other episodes of earth history generally believed to have been non-glacial. Numerous lenticular bodies of cross-stratified oolite lie near the contact between the lower and upper members of the mudstone-dominated lower Sundance Formation (Middle and Upper Jurassic) in the Bighorn Basin of north-central Wyoming, USA. The lenses, up to 12 m thick, contain sedimentary structures diagnostic of aeolian deposition. Inversely graded laminae within thick sets of cross-strata were deposited by climbing wind ripples. Adhesion structures and evenly dispersed lag granules are present in flat-bedded strata at the bases of several of the oolite bodies. Thin sections reveal abundant intergranular micrite of vadose origin. The lenses appear to represent virtually intact, isolated aeolian bedforms that migrated across a nearly sand-free deflation surface. When the Sundance Sea transgressed the dunes, a thin (<1 m thick), wave-rippled, oolite veneer formed on the upper surface of the aeolianite. Previous workers, primarily on the basis of sedimentary structures in the veneer, interpreted the oolite lenses as tidal sand bodies. The dunes provide clear evidence of widespread subaerial exposure on the crest and north flank of the Sheridan Arch. This structural high was delineated by previous workers who demonstrated thinning of pre-upper-Sundance Formation strata and localized development of ooid shoals. Ooids that formed in shoals on the windward (southern) side of the palaeohigh were exposed and deflated during lowstand. Thin, scour-filling ooid grainstone lenses that crop out in the southern part of the study area represent remnants of the marine beds that sourced the aeolianites. Farther north (down-wind), oolitic dunes prograded over thinly laminated lagoonal silts. When relative sea level began to rise, the uncemented dunes were buried under fine-grained marine sediment as the lee side of a low-relief island was inundated.  相似文献   

13.
The Hornby Bay Group is a Middle Proterozoic 2.5 km-thick succession of terrestrial siliciclastics overlain by marine siliciclastics and carbonates. A sequence of conglomeratic and arenaceous rocks at the base of the group contains more than 500 m of mature hematitic quartz arenite interpreted to have been deposited by migrating aeolian bedforms. Bedforms and facies patterns of modern aeolian deposits provided a basis for recognizing two sequences of aeolian arenite. Both sequences interfinger with alluvial—wadi fan conglomerates and arenites deposited by braided streams. Depositional processes, facies patterns and paleotopographic position of the arenites are consistent with modern sand sea dynamics.Distal aeolian facies in both sequences are composed of trough crossbed megasets deposited by climbing, sinuous-crested, transverse dunes. Megasets comprise a gradational assemblage of tabular to wedge-planar cosets formed by deflation/reactivation of dune lee slopes and migration of smaller superposed aeolian bedforms (small dunes and wind ripples). Megasets in the proximal facies are thinner, display composite internal stratification and have a tabular-planar geometry which suggests that they were formed by smaller, straight-crested transverse dunes. Most stratification within the crossbeds is inferred to have formed by the downwind climbing of aeolian ripples across the lee slopes of dunes.Remarkably few Precambrian aeolian deposits have been reported previously. This seems anomalous, because most Precambrian fluvial sediments appear to have been deposited by low sinuosity (braided) streams, the emergent parts of which are prime areas for aeolian deflation. Frequent floods and rapid lateral migration of Precambrian humid climate fluvial systems probably restricted aeolianite deposition to arid paleoclimates. Thus the apparent anomaly may reflect non-recognition and/or non-preservation of aeolianites and/or variations in some aspect of sand sea formation and migration unique to the Precambrian. Reconstruction of the Hornby Bay Group aeolianites using recently developed criteria for their recognition suggests that the latter reason did not exert a strong influence.  相似文献   

14.
The Upper Jurassic Guará Formation comprises an 80–200 m thick continental succession exposed in the western portion of the Rio Grande do Sul State (Brazil). It comprises four distinct facies associations: (i) simple to locally composite crescentic aeolian dune sets, (ii) aeolian sand sheets, (iii) distal floodflows, and (iv) fluvial channels. The vertical stacking of the facies associations defines several 5–14 m thick wetting-upward cycles. Each cycle starts with aeolian dune sets followed by aeolian sand sheets deposits and culminating in either fluvial channels or distal flood strata. Within some cycles, aeolian sand sheets are absent and fluvial deposits rest directly above aeolian dune facies. The transitions from one facies association to another are abrupt and marked by erosive surfaces that delineate distinct episodes of sediment accumulation. The origin of both the wetting-upward cycles and the erosive surfaces was controlled by the ground-water table level, dry sand availability and aeolian and fluvial sediment transport capacity variations, related to climatic fluctuations between relatively arid and humid conditions. Preservation of the fluvial–aeolian deposits reflects an overall relative water table rise driven by subsidence.  相似文献   

15.
风成砂沉积和古气候研究   总被引:1,自引:0,他引:1       下载免费PDF全文
作为一类常见的陆相沉积岩类型,风成砂岩产出于太古代到新生代的岩石记录中。风成砂沉积的形成与古气候、古环境密切相关,因而地质历史中的风成砂沉积是研究古气候和古地理环境的重要窗口。本文回顾了国内外风成砂沉积的研究进展,着重讨论了气候因素控制下风成砂沉积的成因及其形成过程。当前,国际研究注重风成沙丘形成过程的推理和模拟以及风成砂的沉积成岩过程,在风成沙丘形成过程、计算模拟、沉积保存的四维时空模型、风成相等方面取得了许多新认识。鉴于国际研究动态,国内需要在地层记录中鉴别和剖析风成砂的宏观和微观形态特征基础上,加强风成砂沉积动力学过程研究,增强对风成砂沉积(微)环境的理解和认识。  相似文献   

16.
The Pennsylvanian to Permian lower Cutler beds comprise a 200 m thick mixed continental and shallow marine succession that forms part of the Paradox foreland basin fill exposed in and around the Canyonlands region of south‐east Utah. Aeolian facies comprise: (i) sets and compound cosets of trough cross‐bedded dune sandstone dominated by grain flow and translatent wind‐ripple strata; (ii) interdune strata characterized by sandstone, siltstone and mudstone interbeds with wind‐ripple, wavy and horizontal planar‐laminated strata resulting from accumulation on a range of dry, damp or wet substrate‐types in the flats and hollows between migrating dunes; and (iii) extensive, near‐flat lying wind‐rippled sandsheet strata. Fluvial facies comprise channel‐fill sandstones, lag conglomerates and finer‐grained overbank sheet‐flood deposits. Shallow marine facies comprise carbonate ramp limestones, tidal sand ridges and bioturbated marine mudstones. During episodes of sand sea construction and accumulation, compound transverse dunes migrated primarily to the south and south‐east, whereas south‐westerly flowing fluvial systems periodically punctuated the dune fields from the north‐east. Several vertically stacked aeolian sequences are each truncated at their top by regionally extensive surfaces that are associated with abundant calcified rhizoliths and bleaching of the underlying beds. These surfaces record the periodic shutdown and deflation of the dune fields to the level of the palaeo‐water‐table. During episodes of aeolian quiescence, fluvial systems became more widespread, forming unconfined braid‐plains that fed sediment to a coastline that lay to the south‐west and which ran approximately north‐west to south‐east for at least 200 km. Shallow marine systems repeatedly transgressed across the broad, low‐relief coastal plain on at least 10 separate occasions, resulting in the systematic preservation of units of marine limestone and calcarenite between units of non‐marine aeolian and fluvial strata, to form a series of depositional cycles. The top of the lower Cutler beds is defined by a prominent and laterally extensive marine limestone that represents the last major north‐eastward directed marine transgression into the basin prior to the onset of exclusively non‐marine sedimentation of the overlying Cedar Mesa Sandstone. Styles of interaction between aeolian, fluvial and marine facies associations occur on two distinct scales and represent the preserved expression of both small‐scale autocyclic behaviour of competing, coeval depositional systems and larger‐scale allocyclic changes that record system response to longer‐term interdependent variations in climatic and eustatic controlling mechanisms. The architectural relationships and system interactions observed in the lower Cutler beds demonstrate that the succession was generated by several cyclical changes in both climate and relative sea‐level, and that these two external controls probably underwent cyclical change in harmony with each other in the Paradox Basin during late Pennsylvanian and Permian times. This observation supports the hypothesis that both climate and eustasy were interdependent at this time and were probably responding to a glacio‐eustatic driving mechanism.  相似文献   

17.
A nabkha is a vegetated sand mound, which is typical of the aeolian landforms found in the Hotan River basin in Xinjiang, China. This paper compares the results of a series of wind tunnel experiments with an on-site field survey of nabkhas in the Hotan River basin of Xinjiang. Wind tunnel experiments were conducted on semi-spherical and conical sand mounds without vegetation or shadow dunes. Field mounds were 40 times as large as the size of the wind tunnel models. In the wind tunnel experiments, five different velocities from 6 to 14 m/s were selected and used to model the wind flow pattern over individual sand mound using clean air without additional sand. Changes in the flow pattern at different wind speeds resulted in changes to the characteristic structure of the nabkha surface. The results of the experiments for the semi-spherical sand mound at all wind velocities show the formation of a vortex at the bottom of the upwind side of the mound that resulted in scouring and deposition of a crescentic dune upwind of the main mound. The top part of the sand mound is strongly eroded. In the field, these dunes exhibited the same scouring and crescentic dune formation and the eroded upper surface was often topped by a layer of peat within the mound suggesting destroyed vegetation due to river channel migration or by possible anthropogenic forces such as fuel gathering, etc. Experiments for the conical mounds exhibit only a small increase in velocity on the upwind side of the mound and no formation of a vortex at the bottom of the upwind side. Instead, a vortex formed on the leeward side of the mound and overall, no change occurred in the shape of the conical mound. In the field, conical mounds have no crescentic dunes on the upwind side and no erosion at the top exposed below peat beds. Therefore, the field and laboratory experiments show that semi-spherical and conical sand mounds respond differently to similar wind conditions with different surface configuration and development of crescent-shaped upwind deposits when using air devoid of additional sediment. __________ Translated from Journal of Desert Research, 2007, 27(1): 9–14 [译自:中国沙漠]  相似文献   

18.
The Orapa A/K1 Diamond Mine, Botswana, exposes the crater facies of a bilobate kimberlite pipe of Upper Cretaceous age. The South Crater consists of layered volcaniclastic deposits which unconformably cross‐cut massive volcaniclastic kimberlite of diatreme facies in the North Pipe. Based on the depositional structure, grain‐size, sorting and composition of kimberlite in the South Crater, six units are distinguished in the ~70 m thick stratiform crater‐fill sequence and talus slope deposits close to the crater wall, which represents a multistage infill of the volcanic crater. Monolithic basalt breccias (Unit 1) near the base of the crater‐fill are interpreted as rock‐fall avalanche deposits, generated by the sector collapse of the crater walls. These deposits are overlain by a basal imbricated lithic breccia and upper massive sub‐unit (Unit 2), interpreted as the deposits of a pyroclastic flow that entered the South Crater from another source. Vertical degassing structures within the massive sub‐unit show evidence for elutriation of fines and probably were formed after emplacement by fluidization due to air entrainment. Units 3 and 5 are thinly stratified deposits, characterized by diffuse bedding, reverse and normal grading, coarse lenticular beds, mudstone beds, small‐scale scour channels and load casts. These units are attributed to rapidly emplaced sheet floods on the crater floor. Units 3 and 5 are directly overlain by poorly sorted volcaniclastic kimberlite (Units 4 and 6) rich in basalt boulders, attributed to debris flows formed by the collapse of crater walls. Unit 7 comprises medium sandstones to cobble conglomerates representing talus fans, which were active throughout the deposition of Units 1 to 6. The study demonstrates that much of the material infilling the South Crater is derived externally after eruption, including primary pyroclastic flow deposits probably from another kimberlite pipe. These findings have important implications for predicting diamond grade. Results may also aid the interpretation of crater sequences of ultra‐basic, basaltic and intermediate volcanoes, together with the deposits of topographic basins in sub‐aerial settings.  相似文献   

19.
Fluvial-aeolian interactions: Part I, modern systems   总被引:4,自引:0,他引:4  
R. P. LANGFORD 《Sedimentology》1989,36(6):1023-1035
Two modern fluvial-aeolian depositional systems (Great Sand Dunes National Monument, Colorado and the Mojave River Wash, California) are remarkably similar in spite of different climates, sizes, fluvial sediment textures, and relative directions of aeolian and fluvial transport. Dune growth and migration, and deflation of blowouts create 8–10 m of local relief in unflooded aeolian landscapes. There are six prominent fluvial-aeolian interactions. (1) Fluvial flow extends into the aeolian system until it is dammed by aeolian landforms; (2) interdune areas (overbank-interdunes) upstream of aeolian dams, and alongside channels are flooded; (3) water erodes dunes alongside channels and interdunes; (4) flood waters deposit sediment in interdune areas; (5) fluvially derived groundwater floods interdunes (interdune-playas); (6) wind erodes fluvial sediment and redeposits it in the aeolian system. Unique and characteristic sediments are deposited in overbank-interdunes and in interdune-playas, reflecting alternate fluvial and aeolian processes and rapidly changing flow and salinity conditions. These fluvial-aeolian interdune deposits are characterized by irregular, concave-up bases and flat upper surfaces containing mudcracks or evaporite cement. Characteristic low-relief surfaces form in aeolian systems as an effect of flooding. Fluvial deposits are resistant to aeolian deflation. Aeolian sand is preserved when flood sediments are deposited around the bases of the dunes. Thus repetitive fluvial and aeolian aggradation tends to be ‘stepwise’ as interdune floors are suddenly raised during floods. The effects of flooding should be easy to recognize in ancient aeolianites, even beyond the area covered with overbank muds.  相似文献   

20.
Zazo  C.  Dabrio  C.J.  Borja  F.  Goy  J.L.  Lezine  A.M.  Lario  J.  Polo  M.D.  Hoyos  M.  Boersma  J.R. 《Geologie en Mijnbouw》1998,77(3-4):209-224
The stratigraphic relationships, genesis and chronology, including radiocarbon dating, of the Quaternary sandy deposits forming the El Asperillo cliffs (Huelva) were studied with special emphasis on the influence of neotectonic activity, sea-level changes and climate upon the evolution of the coastal zone. The E-W trending normal fault of Torre del Loro separates two tectonic blocks. The oldest deposits occur in the upthrown block. They are Early to Middle Pleistocene fluviatile deposits, probably Late Pleistocene shallow-marine deposits along an E-W trending shoreline, and Late Pleistocene and Holocene aeolian sands deposited under prevailing southerly winds. Three Pleistocene and Holocene aeolian units accumulated in the downthrown block. Of these, Unit 1, is separated from the overlying Unit 2 by a supersurface that represents the end of the Last Interglacial. Accumulation of Unit 2 took place during the Last Glacial under more arid conditions than Unit 1. The supersurface separating Units 2 and 3 was formed between the Last Glacial maximum at 18 000 14C yr BP and ca. 14 000 14C yr BP, the latter age corresponding to an acceleration of the rise of sea level. Unit 3 records wet conditions. The supersurface separating Units 3 and 4 fossilised the fault and the two fault blocks. Units 4 (deposited before the 4th millennium BC), 5 (> 2700 14C yr BP to 16th century) and 6 (16th century to present) record relatively arid conditions. Prevailing wind directions changed with time from W (Units 2–4) to WSW (Unit 5) and SW (Unit 6).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号