首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Since the March–April 1982 eruption of El Chichòn volcano, intense hydrothermal activity has characterised the 1-km-wide summit crater. This mainly consists of mud and boiling pools, fumaroles, which are mainly located in the northwestern bank of the crater lake. During the period 1998–2000, hot springs and fumaroles discharging inside the crater and from the southeastern outer flank (Agua Caliente) were collected for chemical analyses. The observed chemical fluctuations suggest that the physico-chemical boundary conditions regulating the thermodynamic equilibria of the deep rock/fluid interactions have changed with time. The chemical composition of the lake water, characterised in the period 1983–1997 by high Na+, Cl, Ca2+ and SO42− contents, experienced a dramatic change in 1998–1999, turning from a Na+–Cl- to a Ca2+–SO42−-rich composition. In June 2000, a relatively sharp increase in Na+ and Cl contents was observed. At the same time, SO2/H2S ratios and H2 and CO contents in most gas discharges increased with respect to the previous two years of observations, suggesting either a new input of deep-seated fluids or local variations of the more surficial hydrothermal system. Migration of gas manifestations, enhanced number of emission spots and variations in both gas discharge flux and outlet temperatures of the main fluid manifestations were also recorded. The magmatic-hydrothermal system of El Chichòn is probably related to interaction processes between a deep magmatic source and a surficial cold aquifer; an important role may also be played by the interaction of the deep fluids with the volcanic rocks and the sedimentary (limestone and evaporites) basement. The chemical and physical changes recorded in 1998–2000 were possibly due to variations in the permeability of the conduit system feeding the fluid discharges at surface, as testified by the migration of gas and water emanations. Two different scenarios can be put forward for the volcanic evolution of El Chichòn: (1) build-up of an infra-crater dome that may imply a future eruption in terms of tens to hundreds of years; (2) minor phreatic–phreatomagmatic events whose prediction and timing is more difficult to constrain. This suggests that, unlike the diminished volcanic activity at El Chichòn after the 1982 paroxistic event, the volcano-hydrothermal fluid discharges need to be more constantly monitored with regular and more frequent geochemical sampling and, at the same time, a permanent network of seismic stations should be installed.  相似文献   

2.
Volcanoes of the Trans-Mexican Volcanic Belt (TMVB) have yielded numerous sector and flank collapses during Pleistocene and Holocene times. Sector collapses associated with magmatic activity have yielded debris avalanches with generally limited runout extent (e.g. Popocatépetl, Jocotitlán, and Colima volcanoes). In contrast, flank collapses (smaller failures not involving the volcano summit), both associated and unassociated with magmatic activity and correlating with intense hydrothermal alteration in ice-capped volcanoes, commonly have yielded highly mobile cohesive debris flows (e.g. Pico de Orizaba and Nevado de Toluca volcanoes). Collapse orientation in the TMVB is preferentially to the south and northeast, probably reflecting the tectonic regime of active E–W and NNW faults. The differing mobilities of the flows transformed from collapses have important implications for hazard assessment. Both sector and flank collapse can yield highly mobile debris flows, but this transformation is more common in the cases of the smaller failures. High mobility is related to factors such as water content and clay content of the failed material, the paleotopography, and the extent of entrainment of sediment during flow (bulking). The ratio of fall height to runout distance commonly used for hazard zonation of debris avalanches is not valid for debris flows, which are more effectively modeled with the relation inundated area to failure or flow volume coupled with the topography of the inundated area.  相似文献   

3.
Airborne and ground-based (correlation spectrometer, cascade impactor, and photoelectric counter together with intake filter probes) measurements are described for the volcanic emissions from Popocatépetl volcano (Mexico) from December 23, 1994 to January 28, 1995. Measurements of SO2 restarted 48 h after the eruption onset of December 21, 1994. Maximum sulfur dioxide (4560 t d−1) plus 3.8×104 t d−1 of particulate matter were ejected on December 24, 1994. The maximum rate of ejection occurred coincidentally with the maximum amplitude of harmonic tremor and the maximum number of seismic type B events. Sulfur dioxide emission rates ranged from 1790 to 2070 t d−1 (December 23–24, 1994). Afterwards, sulfur dioxide emission rates clearly indicated a consistent decline. However, frequent gas and ash emission puffs exhibited SO2 fluxes reaching values as high as 3060 t d−1. The emission SO2 baseline for the period of study (February 1994–January 1995) was about 1000 t d−1. Ejection velocity of particulate matter was approximately 270 m s−1 reaching a height of about 2.5 km over the summit. The immediate aerosol dispersion area was estimated at 6.0×104 km2 maximum. The microscopic structure of particles (aerosol and tephra) showed a fragile material, probably coming from weathered crustal layers. X-ray fluorescence and neutron-activation analysis from the impactor samples found the following elements: Si, Al, Ca, S, P, Cl, K, Ni, Fe, Ti, Sc, Cu, Zn, Mn, Sr, Cr, Co, Y, Br, Se, Ga, Rb, Hg and Pb. Morphological analysis shows that ash samples might be from pulverized basaltic rock indicating that the Popocatépetl eruption of December 21, 1994 was at low temperature. The microscopic structure of puff material showed substance aggregates consisted of fragile rock, water and adsorbed SO2. These aggregates were observed within water droplets of approximately 1 mm and even larger. Sulfur transformations in the droplets occurred intensively. Volcanic ash contained 5–6% of sulfur during the first expulsion hours. Elemental relative concentrations with respect to Al show that both Si and S have relative concentrations >1, i.e., 13.73 and 2.17, respectively in agreement with the photoelectric counter and COSPEC measurements.  相似文献   

4.
Water chemistry of crater lakes, maars and water reservoirs linked to some Mexican volcanoes within and outside the Mexican Volcanic Belt has been determined for several years and examined regarding environmental and volcanic factors. All the analyzed lakes are relatively small with a maximum depth of 65 m, and are located in regions with different climates, from semi-arid to very humid, with altitudes ranging from 100 to more than 4000 m a.s.l. Crater lakes in active volcanoes (El Chichón, Popocatépetl) have very low pH, moderate to high temperatures and major ion concentrations varying with the level of volcanic unrest. Lakes in sub-arid and temperate-arid regions (like maars in Puebla and Guanajuato states) show high alkalinity and pH, with bicarbonate/carbonate, chloride, sodium and magnesium as predominant ions. Lakes located in humid climates (Central Michoacán and Veracruz state) have low mineralization and near-neutral pH values. In general, conservative dissolved ions and conductivity appear to be mostly controlled by precipitation/evaporation and by the ionic concentration of groundwater inputs. Calcium, magnesium, sulfate concentrations and pH are strongly influenced by volcanic-rock or volcanic gas interactions with water. The influence of low-level volcanic activity on crater lakes may be obscured by water–rock interactions, and climatic factors. One of the aims of this paper is to define the relative influence of these factors searching for a reference frame to recognize the early volcanic precursors in volcano-related lakes.  相似文献   

5.
Leachates from ash samples of the Popocatépetl eruptions of April 30, 1996, May 12, 1997, and October 17, 1998 settled at different distances from the crater were analyzed for anions (SO42−, Cl, F) and some metals. This study is aimed at determining the causes of the compositional variations of the leachates, to assist the assessment of water, soil and crop contamination due to ash deposits. Different behavior was observed in the ion concentrations with distance for the three eruptions. On April 30, 1996, SO42− and F concentrations increased with distance, and Cl remained almost constant. On May 12, 1997, concentrations of the three anions decreased with distance. On October 17, 1998, F, Cl and SO42− increased more than three-fold with distance. Tephra size distributions were also different for the three eruptions. The observed trends of the leachates’ anion concentrations may have different causes: the type and intensity of the eruptions, the distribution of the tephra sizes, the degree of interaction of the tephras with volcanic gases, humidity, static charge, the original characteristics of the solid material, the transport time from the crater to the site of settling, and the relative angle between the wind direction and the sampling line. Enrichment factors and concentration trends for metals with distance suggest that Co, Ni, Cu and Pb in the leachates resulted mostly from volcanic gas adsorption.  相似文献   

6.
The probabilistic analysis of volcanic eruption time series is an essential step for the assessment of volcanic hazard and risk. Such series describe complex processes involving different types of eruptions over different time scales. A statistical method linking geological and historical eruption time series is proposed for calculating the probabilities of future eruptions. The first step of the analysis is to characterize the eruptions by their magnitudes. As is the case in most natural phenomena, lower magnitude events are more frequent, and the behavior of the eruption series may be biased by such events. On the other hand, eruptive series are commonly studied using conventional statistics and treated as homogeneous Poisson processes. However, time-dependent series, or sequences including rare or extreme events, represented by very few data of large eruptions require special methods of analysis, such as the extreme-value theory applied to non-homogeneous Poisson processes. Here we propose a general methodology for analyzing such processes attempting to obtain better estimates of the volcanic hazard. This is done in three steps: Firstly, the historical eruptive series is complemented with the available geological eruption data. The linking of these series is done assuming an inverse relationship between the eruption magnitudes and the occurrence rate of each magnitude class. Secondly, we perform a Weibull analysis of the distribution of repose time between successive eruptions. Thirdly, the linked eruption series are analyzed as a non-homogeneous Poisson process with a generalized Pareto distribution as intensity function. As an application, the method is tested on the eruption series of five active polygenetic Mexican volcanoes: Colima, Citlaltépetl, Nevado de Toluca, Popocatépetl and El Chichón, to obtain hazard estimates.  相似文献   

7.
El Chichón volcano (Chiapas, Mexico) erupted violently in March–April 1982, breaching through the former volcano–hydrothermal system. Since then, the 1982 crater has hosted a shallow (1–3.3 m, acidic (pH ∼ 2.2) and warm (∼ 30 °C) crater lake with a strongly varying chemistry (Cl/SO4 = 0–79 molar ratio). The changes in crater lake chemistry and volume are not systematically related to the seasonal variation of rainfall, but rather to the activity of near-neutral geyser-like springs in the crater (Soap Pool). These Soap Pool springs are the only sources of Cl for the lake. Their geyser-like behaviour with a long-term (months to years) periodicity is due to a specific geometry of the shallow boiling aquifer beneath the lake, which is the remnant of the 1983 Cl-rich (24,000 mg/l) crater lake water. The Soap Pool springs decreased in Cl content over time. The zero-time extrapolation (1982, year of the eruption) approaches the Cl content in the initial crater lake, meanwhile the extrapolation towards the future indicates a zero-Cl content by 2009 ± 1. This particular situation offers the opportunity to calculate mass balance and Cl budget to quantify the lake–spring system in the El Chichón crater. These calculations show that the water balance without the input of SP springs is negative, implying that the lake should disappear during the dry season. The isotopic composition of lake waters (δD and δ18O) coincide with this crater lake-SP dynamics, reflecting evaporation processes and mixing with SP geyser and meteoric water. Future dome growth, not observed yet in the post-1982 El Chichón crater, may be anticipated by changes in lake chemistry and dynamics.  相似文献   

8.
El Chichón volcano is an andesite stratovolcano in southern México. It erupted in March 1982, after about 550 years of quiescence. The 1982 eruption of El Chichón has not been followed by the growth of a lava dome within the newly formed crater. This is rather anomalous since the construction of a new dome after the destruction of an old one is a common process during the eruptions at andesite and dacite volcanoes. To discuss this anomalous aspect of the El Chichón eruption, some regularity in the process of re-awakening of dormant (here defined as a period of quiescence of more than 100 years) andesite and dacite volcanoes are studied based on the seismic activity recorded at the volcanoes Bezymianny, Mount St. Helens, El Chichón, Unzen, Pinatubo and Soufrière Hills. Three stages were identified in the re-awakening activity of these volcanoes: (1) preliminary seismic activity, leading up to the first phreatic explosion; (2) activity between the first and the largest explosions; (3) post-explosion dome-building process. The eruptions were divided into two groups: low-VEI (Volcanic Explosivity Index) and the long duration stage-1 events (Unzen, 1991 and Soufrière Hills volcano, 1995) and high-VEI and the short duration stage-1 events (Bezymianny, 1956; Mount St. Helens, 1980; El Chichón, 1982 and Pinatubo, 1992). The comparative analysis of the seismo-eruptive activity of two eruptions of the second group, the 1980 of Mt. St. Helens and the 1982 of El Chichón, produced an explanation the absence of new dome building during the 1982 eruption of El Chichón volcano. It may be explained in terms of the unusually rapid emission of gas and water from the magmatic and hydrothermal system beneath the volcano during a relatively short sequence of large explosions that could have sharply increased the viscosity of the magma making impossible its exit to the surface.  相似文献   

9.
It has been shown that due to the small surface of crater lakes, temperature surveillance is a problem using meteorological satellites. This is particularly true for El Chichón surface lake because it's about one tenth of an AVHRR pixel at nadir. In order to guarantee at least one unmixed pixel in AVHRR data, it is necessary to use only AVHRR data from NOAA satellite passes as close as possible to the nadir for the period 1996–2006, therefore AVHRR data of El Chichón's crater lake were only used it they were cloudless and had scan angles close to nadir. The analysis of the time series data shows that lake surface temperature had annual maximum values (> 35 °C) during 1996 and 1997 then surface temperature decay with a negative exponential trend reaching a steady state of about 30 °C in the last years (2004–2006). A seasonal temperature variation between the dry (December to May) and the wet (June to November) seasons is also observed. Differences between nocturnal and midday temperatures indicate the influence of lake energy emission (including reflectance) at midday under a strong short-wave solar radiation. Water surface radiative flux under these conditions reaches an average of 77.8 W m− 2 and a maximum of 187.1 W m− 2. Whereas nocturnal heat output from El Chichón crater lake has an average surface radiative flux of 20.4 W m− 2 and a maximum of 74.3 W m− 2.  相似文献   

10.
Popocatépetl volcano in central Mexico has been erupting explosively and effusively for almost 4 years. SO2 emission rates from this volcano have been the largest ever measured using a COSPEC. Pre-eruptive average SO2 emission rates (2–3 kt/d) were similar to the emission rates measured during the first part of the eruption (up to August 1995) in contrast with the effusive–explosive periods (March 1996–January 1998) during which SO2 emission rates were higher by a factor of four (9–13 kt/d). Based on a chronology of the eruption and the average SO2 emission rates per period, the total SO2 emissions (up to 1 January 1998) are estimated to be about 9 Mt, roughly half as much as the SO2 emissions from Mount Pinatubo in a shorter period. Popocatépetl volcano is thus considered as a high-emission rate, passively degassing eruptive volcano. SO2 emission rates and SO2 emissions are used here to make a mass balance of the erupted magma and related gases. Identified excess SO2 is explained in terms of continuous degassing of unerupted magma and magma mixing. Fluctuations in SO2 emission rate may be a result of convection and crystallization in the chamber or the conduits, cleaning and sealing of the plumbing system, and/or SO2 scrubbing by the hydrothermal system.  相似文献   

11.
El Chichón volcano consists of a 2-km wide Somma crater compound cone 0.2 Ma old with peripheral domes with a central crater reactivated several times during the Holocene. The most recent eruption at El Chichón occurred from March 28 to April 4, 1982, resulting in the worst volcanic disaster during historical times in Mexico, killing more than 2000 people and destroying nine towns and small communities. The volcanic hazard map of El Chichón is based on detailed field work that documented twelve eruptions during the last 8000 years, and computer simulations. To validate the results, computer simulations were first performed over pre-1982 topography mimicking the extent of the actual deposits produced and afterwards run over post-1982 topography. These eruptions have produced pyroclastic fall, surge, flow and lahar deposits. Pyroclastic flows have different volumes and Heim coefficients varying from 0.2 (pumice flows), to 0.15 (block-and-ash flows) and 0.10 (ash flows). Simulations using FLOW3D and TITAN2D indicate that pumice flows and block-and-ash flows can fill the moat area and follow main ravines up to distances of ca. 3 km from the crater, with no effect on populations around the volcano. On the other hand, more mobile ash flows related to column-collapse events can reach up to 4 km from the vent, but will always follow the same paths and still not affect surrounding populations. The energy-cone model was used to simulate the outflow of pyroclastic surges based on the 1982 event (H/L = 0.1 and 0.2), and shows that surges may reach some towns around the volcano.  相似文献   

12.
Sulfur isotope effects during the SO2 disproportionation reaction to form elemental sulfur (3SO2+3H2O→2HSO4+S+2H+) at 200–330°C and saturated water vapor pressures were experimentally determined. Initially, a large kinetic isotopic fractionation takes place between HSO4 and S, followed by a slow approach to equilibrium. The equilibrium fractionation factors, estimated from the longest run results, are expressed by 1000 ln αHSO4S=6.21×106/T2+3.62. The rates at which the initial kinetic fractionation factors approach the equilibrium ones were evaluated at the experimental conditions.δ34S values of HSO4 and elemental sulfur were examined for active crater lakes including Noboribetsu and Niseko, (Hokkaido, Japan), Khloridnoe, Bannoe and Maly Semiachik (Kamchatka), Poás (Costa Rica), Ruapehu (New Zealand) and Kawah Ijen and Keli Mutu (Indonesia). ΔHSO4S values are 28‰ for Keli Mutu, 26‰ for Kawah Ijen, 24‰ for Ruapehu, 23‰ for Poás, 22‰ for Maly Semiachik, 21‰ for Yugama, 13‰ for Bannoe, 9‰ for Niseko, 4‰ for Khloridonoe, and 0‰ for Noboribetsu, in the decreasing order. The SO2 disproportionation reaction in the magmatic hydrothermal system below crater lakes where magmatic gases condense is responsible for high ΔHSO4S values, whereas contribution of HSO4 produced through bacterial oxidation of reduced sulfur becomes progressively dominant for lakes with lower ΔHSO4S values. Currently, Noboribetsu crater lake contains no HSO4 of magmatic origin. A 40-year period observation of δ34SHSO4 and δ34SS values at Yugama indicated that the isotopic variations reflect changes in the supply rate of SO2 to the magmatic hydrothermal system. This implies a possibility of volcano monitoring by continuous observation of δ34SHSO4 values. The δ18O values of HSO4 and lake water from the studied lakes covary, indicating oxygen isotopic equilibration between them. The covariance gives strong evidence that lake water circulates through the sublimnic zone at temperatures of 140±30°C.  相似文献   

13.
LaCe ages are reported for two sets of Finnish pegmatites, Lövböle and Mustikkamäki, and for an Amiˆtsoq gneiss, Greenland. When λβ138La value (2.29 × 10−12 yr−1) obtained by radioactivity measurement [1] is used for the chronological calculation, the LaCe ages (2129, 2325, 3271 Myr) evaluated for these rocks are 18–35% older than the SmNd ages for the same samples. To make the LaCe age fit to the SmNd age for the same sample, a new value of (2.77 ± 0.21) × 10−12 yr−1 is evaluated for λβ138La. In this calculation, the LaCe and SmNd ages reported for a Bushveld gabbro [2] have been also taken into account together with those for the Lövböle pegmatite and the Mustikkamäki pegmatite, while the Amiˆtsoq gneiss (GGU110999) has been omitted because of the complicated thermal history of this sample.  相似文献   

14.
About 4,300 years ago, 10 km3 of the upper cone of ancestral Volcán Colima collapsed to the southwest leaving a horseshoe-shaped caldera 4 km in diameter. The collapse produced a massive volcanic debris avalanche deposit covering over 1550 km2 on the southern flanks of the volcano and extending at least 70 km from the former summit. The avalanche followed a steep topographic gradient unobstructed by barriers, resulting in an unusually high area/volume ratio for the Colima deposit. The apparent coefficient of friction (fall height/distance traveled) for the Colima avalanche is 0.06, a low value similar to those of other large-volume deposits. The debris avalanche deposit contains 40–75% angular volcanic clasts from the ancestral cone, a small proportion of vesicular blocks that may be juvenile, and in distal exposures, rare carbonate clasts plucked from the underlying surface by the moving avalanche. Clasts range in size to over 20 m in diameter and are brecciated to different degrees, pulverized, and surrounded by a rock-flour matrix. The upper surface of the deposit shows prominent hummocky topography with closed depressions and surface boulders. A thick, coarse-grained, compositionally zoned scoria-fall layer on the upper northeastern slope of the volcano may have erupted at the time of collapse. A fine-grained surge layer is present beneath the avalanche deposit at one locality, apparently representing an initial blast event. Most of the missing volume of the ancestral volcano has since been restored at an average rate of 0.002 km3/yr through repeated eruptions from the post-caldera cone. As a result, the southern slope of Volcán Colima may again be susceptible to collapse. Over 200,000 people are now living on primary or secondary deposits of the debris avalanche, and a repetition of this event would constitute a volcanic disaster of great magnitude.Ancestral Volcán Colima grew on the southern, trenchward flank of the earlier and larger volcano Nevado de Colima. Trenchward collapse was favored by the buttressing effect of Nevado, the rapid elevation drop to the south, and the intrusion of magma into the southern flank of the ancestral volcano. Other such trenchward-younging, paired volcanoes are known from Mexico, Guatemala, El Salvador, Chile, and Japan. The trenchward slopes of the younger cones are common sites for cone collapse to form avalanche deposits, as occurred at Colima and Popocatepetl in Mexico and at San Pedro Volcano in Chile.  相似文献   

15.
Monthly collections of phytoplankton were supported by physical–chemical data and measures of chlorophyll a concentrations in the search for particular environmental factors that could explain the constant presence of desmids in a Mexican tropical lake, a characteristic not common among the phytoplanktic communities of Mexican lakes. Samplings were taken from the water column in the deepest part of the lake (40 m) and intensified in the metalimnetic zone, whose establishment was monitored by observations of temperature and oxygen profiles. The general behavior of Lake Zirahuén was typical of warm monomictic tropical lakes at high elevation: a short mixing phase during the hemispheric winter. The depth of ZMIX and Zeu revealed a well-illuminated epilimnion, suggesting that phytoplankton communities are not likely to be light-limited. The oligotrophic nature of the lake is indicated by discrete concentrations of inorganic nutrients, PTOT in the interval of 0.01–0.03 mg l−1 and chlorophyll a between 0.23 and 3.98 μg l−1. These characteristics together with a low concentration of calcium, define a lacustrine environment different from other Mexican lakes, and one that could be suitable for desmids communities.  相似文献   

16.
Monitoring of crater lake chemistry during the recent decline and disappearance of the crater lake of Poás Volcano revealed that large variations in SO4/Cl, F/Cl, and Mg/Cl ratios were caused by the enhanced release of HCl vapor from the lake surface due to increasing lake temperature and solution acidity. Variation in the concentration of polythionic acids (H2SxO6, x=4–6) was the most reliable predictor of renewed phreatic eruptive activity at the volcano, exhibiting sharp decreases three months prior to the initiation of phreatic eruptions in June 1987. Polythionic acids may offer a direct indicator of changing subsurface magmatic activity whereas chloride-based element ratios may be influenced by surface volatilization of HCl and subsequent recycling of acidic fluids in crater lake volcanoes.  相似文献   

17.
El Chichón crater lake appeared immediately after the 1982 catastrophic eruption in a newly formed, 1-km wide, explosive crater. During the first 2 years after the eruption the lake transformed from hot and ultra-acidic caused by dissolution of magmatic gases, to a warm and less acidic lake due to a rapid “magmatic-to-hydrothermal transition” — input of hydrothermal fluids and oxidation of H2S to sulfate. Chemical composition of the lake water and other thermal fluids discharging in the crater, stable isotope composition (δD and δ18O) of lake water, gas condensates and thermal waters collected in 1995–2006 were used for the mass-balance calculations (Cl, SO4 and isotopic composition) of the thermal flux from the crater floor. The calculated fluxes of thermal fluid by different mass-balance approaches become of the same order of magnitude as those derived from the energy-budget model if values of 1.9 and 2 mmol/mol are taken for the catchment coefficient and the average H2S concentration in the hydrothermal vapors, respectively. The total heat power from the crater is estimated to be between 35 and 60 MW and the CO2 flux is not higher than 150 t/day or ~ 200 gm− 2 day− 1.  相似文献   

18.
Fumarole discharges (95–560°C) collected from the dacite dome inside Mount St. Helens crater show temporal changes in their isotopic and chemical compositions. A δD vs. δ18O plot shows that condensed waters from the gases are mixtures of meteoric and magmatic components, but that the apparent magmatic end-member in 1994 was depleted by about 7‰ in δD relative to the apparent end-member in 1980. Based on δD modeling, approximately 63% of shallow, post-1980 magma has yet to degas. Surprisingly, Cl and F contents in the 1994 samples were only 0.47 and 3.8%, respectively, of the concentrations determined for end-member magmatic fluid in 1980. The data indicate that Cl (and F and B) is degassed from magma relatively quickly compared to water and/or that most of the Cl degassed in later years is dissolved into the shallow Mount St. Helens hydrothermal system. Because metals are often transported in magmatic and hydrothermal fluids as Cl complexes, rapid changes in surface volatile compositions may have implications for the timing and location of metals transport and deposition in some volcanoes.  相似文献   

19.
The sequence of large Vulcanian explosions occurring at the andesitic Popocatépetl volcano, Mexico during November 1998 to April 1999 was studied. The size of 26 largest explosions was estimated from broadband seismic records at the distance of 4 km from the crater. The sequence began with the largest explosion (E = 2.6 × 1012 J) occurring on 25 November at 08:05, and following largest daily explosions were characterized by gradual decrease in the energy. The energy of 20 large (E ≥ 1011 J) explosions was distributed as Student's t-distribution with a geometrical mean Log E = 11.81 (J).  相似文献   

20.
We have collected 14 water and gas samples from 9 thermal springs and gas vents near Nevado del Ruiz volcano, Colombia. The 3He/4He and 4He/20Ne ratios vary significantly from 0.98 Ratm (where Ratm is the atmospheric 3He/4He ratio of 1.4 × 10−6) to 6.30 Ratm, and from 0.37 to 7.0, respectively. The 3He/4He ratio (corrected for air contamination) decreases with increasing distance from the central crater of the volcano to the sampling site. The trend is very similar to that observed at Ontake volcano, Japan. A hydrodynamic porous-media dispersion model can explain the 3He/4He trend. The temporal variations in the 3He/4He ratio at four sites provide useful information on the apparent velocity of the magmatic fluid flow brought on by a volcanic eruption. The estimated value of several tens m day−1 agrees well with the inferred velocity of flow in Oshima volcano, Japan and is comparable to the largest rate of groundwater movement in a deep sedimentary basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号