首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Coronal mass ejections (CMEs) are one of the primary manifestations of solar activity and can drive severe space weather effects. Therefore, it is vital to work towards being able to predict their occurrence. However, many aspects of CME formation and eruption remain unclear, including whether magnetic flux ropes are present before the onset of eruption and the key mechanisms that cause CMEs to occur. In this work, the pre-eruptive coronal configuration of an active region that produced an interplanetary CME with a clear magnetic flux rope structure at 1 AU is studied. A forward-S sigmoid appears in extreme-ultraviolet (EUV) data two hours before the onset of the eruption (SOL2012-06-14), which is interpreted as a signature of a right-handed flux rope that formed prior to the eruption. Flare ribbons and EUV dimmings are used to infer the locations of the flux rope footpoints. These locations, together with observations of the global magnetic flux distribution, indicate that an interaction between newly emerged magnetic flux and pre-existing sunspot field in the days prior to the eruption may have enabled the coronal flux rope to form via tether-cutting-like reconnection. Composition analysis suggests that the flux rope had a coronal plasma composition, supporting our interpretation that the flux rope formed via magnetic reconnection in the corona. Once formed, the flux rope remained stable for two hours before erupting as a CME.  相似文献   

2.
The nature of three-dimensional reconnection when a twisted flux tube erupts during an eruptive flare or coronal mass ejection is considered. The reconnection has two phases: first of all, 3D “zipper reconnection” propagates along the initial coronal arcade, parallel to the polarity inversion line (PIL); then subsequent quasi-2D “main-phase reconnection” in the low corona around a flux rope during its eruption produces coronal loops and chromospheric ribbons that propagate away from the PIL in a direction normal to it. One scenario starts with a sheared arcade: the zipper reconnection creates a twisted flux rope of roughly one turn (\(2\pi \) radians of twist), and then main-phase reconnection builds up the bulk of the erupting flux rope with a relatively uniform twist of a few turns. A second scenario starts with a pre-existing flux rope under the arcade. Here the zipper phase can create a core with many turns that depend on the ratio of the magnetic fluxes in the newly formed flare ribbons and the new flux rope. Main phase reconnection then adds a layer of roughly uniform twist to the twisted central core. Both phases and scenarios are modeled in a simple way that assumes the initial magnetic flux is fragmented along the PIL. The model uses conservation of magnetic helicity and flux, together with equipartition of magnetic helicity, to deduce the twist of the erupting flux rope in terms the geometry of the initial configuration. Interplanetary observations show some flux ropes have a fairly uniform twist, which could be produced when the zipper phase and any pre-existing flux rope possess small or moderate twist (up to one or two turns). Other interplanetary flux ropes have highly twisted cores (up to five turns), which could be produced when there is a pre-existing flux rope and an active zipper phase that creates substantial extra twist.  相似文献   

3.
The initiation of solar Coronal Mass Ejections (CMEs) is studied in the framework of numerical magnetohydrodynamics (MHD). The initial CME model includes a magnetic flux rope in spherical, axi-symmetric geometry. The initial configuration consists of a magnetic flux rope embedded in a gravitationally stratified solar atmosphere with a background dipole magnetic field. The flux rope is in equilibrium due to an image current below the photosphere. An emerging flux triggering mechanism is used to make this equilibrium system unstable. When the magnetic flux emerges within the filament below the flux rope, this results in a catastrophic behavior similar to previous models. As a result, the flux rope rises and a current sheet forms below it. It is shown that the magnetic reconnection in the current sheet below the flux rope in combination with the outward curvature forces results in a fast ejection of the flux rope as observed for solar CMEs. We have done a parametric study of the emerging flux rate.  相似文献   

4.
Coronal Magnetic Flux Rope Equilibria and Magnetic Helicity   总被引:1,自引:0,他引:1  
1 INTRODUCTIONObservations show that the magnetic helicity of solar magnetic structures has a predominantsign in each hemisphere of the Sun, positive in the southern hemisphere and negative in thenorthern, regardless of the solar cycle (Rust, 1994). The magnetic helicity is strictly conservedin the frame of ideal MHD (WOltjer, 1958), and approximately conserved in the presence ofresistive dissipation and magnetic reconnection in a highly conductive plajsma (Taylor, 1974;Berger, 1984; H…  相似文献   

5.
M. J. Owens 《Solar physics》2009,260(1):207-217
Magnetic clouds are a class of interplanetary coronal mass ejections (CME) predominantly characterised by a smooth rotation in the magnetic field direction, indicative of a magnetic flux rope structure. Many magnetic clouds, however, also contain sharp discontinuities within the smoothly varying magnetic field, suggestive of narrow current sheets. In this study we present observations and modelling of magnetic clouds with strong current sheet signatures close to the centre of the apparent flux rope structure. Using an analytical magnetic flux rope model, we demonstrate how such current sheets can form as a result of a cloud’s kinematic propagation from the Sun to the Earth, without any external forces or influences. This model is shown to match observations of four particular magnetic clouds remarkably well. The model predicts that current sheet intensity increases for increasing CME angular extent and decreasing CME radial expansion speed. Assuming such current sheets facilitate magnetic reconnection, the process of current sheet formation could ultimately lead a single flux rope becoming fragmented into multiple flux ropes. This change in topology has consequences for magnetic clouds as barriers to energetic particle propagation.  相似文献   

6.
Zipper reconnection has been proposed as a mechanism for creating most of the twist in the flux tubes that are present prior to eruptive flares and coronal mass ejections. We have conducted a first numerical experiment on this new regime of reconnection, where two initially untwisted parallel flux tubes are sheared and reconnected to form a large flux rope. We describe the properties of this experiment, including the linkage of magnetic flux between concentrated flux sources at the base of the simulation, the twist of the newly formed flux rope, and the conversion of mutual magnetic helicity in the sheared pre-reconnection state into the self-helicity of the newly formed flux rope.  相似文献   

7.
We present a simplified analytic model of a quadrupolar magnetic field and flux rope to model coronal mass ejections. The model magnetic field is two-dimensional, force-free and has current only on the axis of the flux rope and within two current sheets. It is a generalization of previous models containing a single current sheet anchored to a bipolar flux distribution. Our new model can undergo quasi-static evolution either due to changes at the boundary or due to magnetic reconnection at either current sheet. We find that all three kinds of evolution can lead to a catastrophe, known as loss of equilibrium. Some equilibria can be driven to catastrophic instability either through reconnection at the lower current sheet, known as tether cutting, or through reconnection at the upper current sheet, known as breakout. Other equilibria can be destabilized through only one and not the other. Still others undergo no instability, but they evolve increasingly rapidly in response to slow steady driving (ideal or reconnective). One key feature of every case is a response to reconnection different from that found in simpler systems. In our two-current-sheet model a reconnection electric field in one current sheet causes the current in that sheet to increase rather than decrease. This suggests the possibility for the microscopic reconnection mechanism to run away.  相似文献   

8.
Magnetic flux ropes are characterized by coherently twisted magnetic field lines, which are ubiquitous in magnetized plasmas. As the core structure of various eruptive phenomena in the solar atmosphere, flux ropes hold the key to understanding the physical mechanisms of solar eruptions,which impact the heliosphere and planetary atmospheres. The strongest disturbances in the Earth's space environments are often associated with large-scale flux ropes from the Sun colliding with the Earth's magnetosphere, leading to adverse, sometimes catastrophic, space-weather effects. However, it remains elusive as to how a flux rope forms and evolves toward eruption, and how it is structured and embedded in the ambient field. The present paper addresses these important questions by reviewing current understandings of coronal flux ropes from an observer's perspective, with an emphasis on their structures and nascent evolution toward solar eruptions, as achieved by combining observations of both remote sensing and in-situ detection with modeling and simulation. This paper highlights an initiation mechanism for coronal mass ejections(CMEs) in which plasmoids in current sheets coalesce into a 'seed' flux rope whose subsequent evolution into a CME is consistent with the standard model, thereby bridging the gap between microscale and macroscale dynamics.  相似文献   

9.
The onset stage of coronal mass ejections (CMEs) is difficult to observe and is poorly studied. In spite of their practical importance, methods for CME predictions with sufficient lead times are only in the nascent stages of development. The most probable CME mechanism is a catastrophic loss of equilibrium of a large-scale current system in the corona (a flux rope). A twisted magnetic rope is maintained by the tension of field lines of photospheric sources until parameters of the system reach critical values and the equilibrium is lost. Unfortunately, there is low-density plasma (coronal cavity) in most of the rope volume; thus, it is difficult to observe a rope. However, the lower parts of the helical field lines of a rope are fine traps for the dense cold plasma of prominences. Thus, prominences are the best tracers of flux ropes in the corona. The maximal height up to which the rope is in stable equilibrium can be found by analyzing the distribution of the magnetic field generated by photospheric sources in the corona. Comparing this critical height with the actually observed prominence height, one can estimate the probability of the loss of equilibrium by a magnetic rope with a following eruption of prominences and coronal mass ejections.  相似文献   

10.
Coronal Flux Rope Equilibria in Closed Magnetic Fields   总被引:1,自引:0,他引:1  
Using a 2.5-dimensional ideal MHD model in Cartesian coordinates,we investigate the equilibrium properties of coronal magnetic flux ropes in background magnetic fields that are completely closed.The background fields are produced by a dipole,a quadrupole,and an octapole,respectively,located below the photosphere at the same depth.A magnetic flux rope is then launched from below the photo-sphere,and its magnetic properties,i.e,the annular magnetic fluxφp and the axial magnetic fluxφz,are controlled by a single emergence parameter.The whole sys-tem eventually evolves into equilibrium,and the resultant flux rope is characterized by three geometrical parameters:the height of the rope axis,the half-width of the rope,and the length of the vertical current sheet below the rope.It is found that the geometrical parameters increase monotonically and continuously with increasing φp and φz:no catastrophe occurs.Moreover,there exists a steep segment in the profiles of the geometrical parameters versus either φp or φz,and the faster the background field decays with height,the larger both the gradient and the growth amplitude within the steep segment will be.  相似文献   

11.
Catastrophe of Coronal Magnetic Flux Ropes Caused by Photospheric Motions   总被引:1,自引:0,他引:1  
Hu  Y.Q.  Jiang  Y.W. 《Solar physics》2001,203(2):309-319
Using a 2.5-D, time-dependent ideal MHD model in Cartesian coordinates, we carried out numerical simulations to investigate the equilibrium and evolution properties of a magnetic configuration that consists of a coronal magnetic flux rope and a partly open photospheric background field, which is equivalent to that produced by a two-patch magnetic source on the photospheric surface. The axial and annular magnetic fluxes of the flux rope are given and fixed. The global magnetic configuration evolves in response to three types of changes of the background field: decreasing of the distance between the two sources, shrinking of the size of each source, and increasing of the shear in the closed component of the background field. As a result, the geometrical parameters of the flux rope, i.e. the height of the rope axis, the half-width of the rope and the length of the vertical current sheet below the rope, change due to the variation of the background field. It is shown that for a given coronal magnetic flux rope in a partly open background field, the variation of the geometrical parameters of the flux rope displays a catastrophic behavior, namely, there exists a critical point for each case, at which an infinitesimal change of the background field leads to a loss of equilibrium, and thus a jump of the flux rope. The implication of such a catastrophe in solar active phenomena is briefly discussed.  相似文献   

12.
磁云因其独特的磁场结构经常是重大灾害性空间天气的驱动源. 近来从磁云的边界层结构、环向通量、大尺度结构等方面关于磁云传播的动力学演化过程的研究取得了一些进展. 在磁云边界存在一个由于磁场重联而形成的边界层结构. 在磁云传播过程中, 这种发生在边界处的磁场重联可能会把磁云的磁场剥蚀掉, 进而引起其磁通量绳结构环向通量的减少以及不对称. 在磁云内部, 经常会观测到多个子通量绳结构. 这些特性各异的子通量绳可以通过磁场重联而合并, 进而引起磁云磁结构的改变. 关于磁云大尺度磁场拓扑位形的演化机制, 除了较早提出的交换重联外, 目前的研究表明在行星际空间中, 磁云边界处的重联过程也可以将磁云闭合或半开放的磁场线打开或断开. 尽管在相关研究中已经取得了较大进展, 但关于磁云传播的动力学演化过程还有许多问题尚不清楚. 在行星际小尺度磁通量绳边界也发现了边界层结构, 那么磁云是否会因剥蚀而成为小尺度通量绳? 磁云内子通量绳结构在相互作用中会不会引起某些不稳定性而导致整个通量绳系统的崩溃? 这些问题的解决还有待于进一步的理论、观测和数值模拟研究.  相似文献   

13.
Hu  Y.Q. 《Solar physics》2001,200(1-2):115-126
Using a 2.5-D, time-dependent ideal MHD model in Cartesian coordinates, a numerical study is carried out to find equilibrium solutions associated with a magnetic flux rope in the corona. The ambient magnetic field is partially open, consisting of a closed arcade in the center and an open field at the flank. The coronal magnetic flux rope is characterized by its magnetic properties, including the axial and annular magnetic fluxes and the magnetic helicity, and its geometrical features, including the height of the rope axis, the halfwidth of the rope and the length of the vertical current sheet below the rope. It is shown that for a given partially open ambient magnetic field, the dependence of the geometrical features on the magnetic properties displays a catastrophic behavior, namely, there exists a certain critical point, across which an infinitesimal enhancement of the magnetic parameters causes a finite jump of the geometrical parameters for the rope. The amplitude of the jump depends on the extent to which the ambient magnetic field in open, and approaches to zero when the ambient magnetic field becomes completely closed. The implication of such a catastrophe in solar active phenomena is briefly discussed.  相似文献   

14.
Numerical simulations of the helical (m=1) kink instability of an arched, line-tied flux rope demonstrate that the helical deformation enforces reconnection between the legs of the rope if modes with two helical turns are dominant as a result of high initial twist in the range Φ≳6π. Such a reconnection is complex, involving also the ambient field. In addition to breaking up the original rope, it can form a new, low-lying, less twisted flux rope. The new flux rope is pushed downward by the reconnection outflow, which typically forces it to break as well by reconnecting with the ambient field. The top part of the original rope, largely rooted in the sources of the ambient flux after the break-up, can fully erupt or be halted at low heights, producing a “failed eruption.” The helical current sheet associated with the instability is squeezed between the approaching legs, temporarily forming a double current sheet. The leg – leg reconnection proceeds at a high rate, producing sufficiently strong electric fields that it would be able to accelerate particles. It may also form plasmoids, or plasmoid-like structures, which trap energetic particles and propagate out of the reconnection region up to the top of the erupting flux rope along the helical current sheet. The kinking of a highly twisted flux rope involving leg – leg reconnection can explain key features of an eruptive but partially occulted solar flare on 18 April 2001, which ejected a relatively compact hard X-ray and microwave source and was associated with a fast coronal mass ejection.  相似文献   

15.
Simple models for the MHD eruption of a solar prominence are presented, in which the prominence is treated as a twisted magnetic flux tube that is being repelled from the solar surface by magnetic pressure forces. The effects of different physical assumptions to deal with this magneto-hydrodynamically complex phenomenon are evaluated, such as holding constant the prominence current, radius, flux or twist or modelling the prominence as a current sheet. Including a background magnetic field allows the prominence to be in equilibrium initially with an Inverse Polarity and then to erupt due to magnetic non-equilibrium when the background magnetic field is too small or the prominence twist is too great. The electric field at the neutral point below the prominence rapidly increases to a maximum value and then declines. Including the effect of gravity also allows an equilibrium with Normal Polarity to exist. Finally, an ideal MHD solution is found which incorporates self-consistently a current sheet below the prominence and which implies that a prominence will still erupt and form a current sheet even if no reconnection occurs. When reconnection is allowed it is, therefore, driven by the eruption.  相似文献   

16.
Transequatorial Filament Eruption and Its Link to a Coronal Mass Ejection   总被引:3,自引:0,他引:3  
We revisit the Bastille Day flare/CME Event of 2000 July 14, and demonstrate that this flare/CME event is not related to only one single active region (AR). Activation and eruption of a huge transequatorial filament are seen to precede the simultaneous filament eruption and flare in the source active region, NOAA AR 9077, and the full halo-CME in the high corona. Evidence of reconfiguration of large-scale magnetic structures related to the event is illustrated by SOHO EIT and Yohkoh SXT observations, as well as, the reconstructed 3D magnetic lines of force based on the force-free assumption. We suggest that the AR filament in AR9077 was connected to the transequatorial filament. The large-scale magnetic composition related to the transequatorial filament and its sheared magnetic arcade appears to be an essential part of the CME parent magnetic structure. Estimations show that the filament-arcade system has enough magnetic helicity to account for the helicity carried by the related CMEs. In addition, rather global magnetic connectivity, covering almost all the visible range in longitude and a huge span in latitude on the Sun, is implied by the Nancay Radioheliograph (NRH) observations. The analysis of the Bastille Day event suggests that although the triggering of a global CME might take place in an AR, a much larger scale magnetic composition seems to be the source of the ejected magnetic flux, helicity and plasma. The Bastille Day event is the first described example in the literature, in which a transequatorial filament activity appears to play a key role in a global CME. Many tens of halo-CME are found to be associated with transequatorial filaments and their magnetic environment.  相似文献   

17.
Two-dimensional numerical magnetohydrodynamic simulations of a cancelling magnetic feature (CMF) and the associated coronal X-ray bright point (XBP) are presented. Coronal magnetic reconnection is found to produce the Ohmic heating required for a coronal XBP. During the BP phase where reconnection occurs above the base, about 90–95 per cent of the magnetic flux of the converging magnetic bipole cancels at the base. The last ≈5 to 10 per cent of the base magnetic flux is cancelled when reconnection occurs at the base. Reconnection happens in a time-dependent way in response to the imposed converging footpoint motions. A potential field model gives a good first approximation to the qualitative behaviour of the system, but the magnetohydrodynamics (MHD) experiments reveal several quantitative differences: for example, the effects of plasma inertia and a pressure build-up in-between the converging bipole are to delay the onset of coronal reconnection above the base and to lower the maximum X -point height.  相似文献   

18.
Catastrophe of coronal magnetic rope embedded in a partly open multipolar background magnetic field is studied by using a 2-dimensional, 3-component ideal MHD model in spherical coordinates. The background field is composed of three closed bipolar fields of a coronal streamer and an open field with an equatorial current sheet. The magnetic rope lies below the central bipolar field, and it is characterized by its annular and axial magnetic fluxes. For a given annual flux, there is a critical value of the axial flux, and for a given axial flux, there is a critical value of annual flux such that, below the critical value, the magnetic rope is attached to the solar surface and the system stays in equilibrium, but when the critical value is exceeded, the magnetic rope breaks free and erupts upward. This implies that catastrophe can occur in a coronal magnetic rope embedded in a partly open multipolar background magnetic field. Our computation gives a threshold value of magnetic energy that is about 15% greater than the energy of the partly open magnetic field (the central bipolar field open and the fields on either side closed). The excess energy may serve as source for solar explosions such as coronal mass ejections.  相似文献   

19.
Energetic Particle Fluxes during the Bastille Day Solar Eruption   总被引:2,自引:0,他引:2  
Mäkelä  Pertti  Torsti  Jarmo 《Solar physics》2001,204(1-2):213-225
We report on our observations of solar energetic particle fluxes of p, He, C, O, Ne, Mg, Si, and Fe ions measured by the Energetic and Relativistic Nucleon and Electron (ERNE) experiment associated with the Bastille Day solar flare and coronal mass ejection (CME) on 14 July 2000. We observed two clear maxima of the Fe/O ratio at the energies 8.5–15 MeV nucl−1. The first Fe/O maximum occurred ∼ 3 hours after the beginning of the particle event, and the second maximum ∼ 22 hours after the first one at the arrival of the shock associated with the Bastille Day eruption. We also observed a change in the energy spectrum of oxygen concurrent with a change in the direction of the interplanetary magnetic field at the start of the second enhancement of the Fe/O ratio. We propose an interpretation of the particle event where observed interplanetary particle fluxes are associated with two different particle sources near the Sun and in interplanetary space. We suggest that heavy ions observed during the first period of the Fe/O enhancement were released when a coronal shock reached a magnetic foot point connected to 1 AU. The second maximum of Fe/O occurred when spacecraft encountered Fe-rich material stored in magnetic field flux tubes early in the event and was possibly reaccelerated by the interplanetary shock.  相似文献   

20.
The resistive MHD equations are numerically solved in two dimensions for an initial-boundary-value problem which simulates reconnection between an emerging magnetic flux region and an overlying coronal magnetic field. The emerging region is modelled by a cylindrical flux tube with a poloidal magnetic field lying in the same plane as the external, coronal field. The plasma betas of the emerging and coronal regions are 1.0 and 0.1, respectively, and the magnetic Reynolds number for the system is 2 × 103. At the beginning of the simulation the tube starts to emerge through the base of the rectangular computational domain, and, when the tube is halfway into the computational domain, its position is held fixed so that no more flux of plasma enters through the base. Because the time-scale of the emergence is slower than the Alfvén time-scale, but faster than the reconnection time-scale, a region of closed loops forms at the base. These loops are gradually opened and reconnected with the overlying, external magnetic field as time proceeds.The evolution of the plasma can be divided into four phases as follows: First, an initial, quasi-steady phase during which most of the emergence is completed. During this phase, reconnection initially occurs at the slow rate predicted by the Sweet model of diffusive reconnection, but increases steadily until the fast rate predicted by the Petschek model of slow-shock reconnection is approached. Second, an impulsive phase with large-scale, super-magnetosonic flows. This phase appears to be triggered when the internal mechanical equilibrium inside the emerging flux tube is upset by reconnection acting on the outer layers of the flux tube. During the impulsive phase most of the flux tube pinches off from the base to form a cylindrical magnetic island, and temporarily the reconnection rate exceeds the steady-state Petschek rate. (At the time of the peak reconnection rate, the diffusion region at the X-line is not fully resolved, and so this may be a numerical artifact.) Third, a second quasi-steady phase during which the magnetic island created in the impulsive phase is slowly dissipated by continuing, but low-level, reconnection. And fourth, a static, non-evolving phase containing a potential, current-free field and virtually no flow.During the short time in the impulsive phase when the reconnection rate exceeds the steady-state Petschek rate, a pile-up of magnetic flux at the neutral line occurs. At the same time the existing Petschek-slow-mode shocks are shed and replaced by new ones; and, for a while, both new and old sets of slow shocks coexist.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号