首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
P. Brown  R.J. Weryk  D.K. Wong  J. Jones 《Icarus》2008,195(1):317-339
Using a meteor orbit radar, a total of more than 2.5 million meteoroids with masses ∼10−7 kg have had orbits measured in the interval 2002-2006. From these data, a total of 45 meteoroid streams have been identified using a wavelet transform approach to isolate enhancements in radiant density in geocentric coordinates. Of the recorded streams, 12 are previously unreported or unrecognized. The survey finds >90% of all meteoroids at this size range are part of the sporadic meteoroid background. A large fraction of the radar detected streams have q<0.15 AU suggestive of a strong contribution from sungrazing comets to the meteoroid stream population currently intersecting the Earth. We find a remarkably long period of activity for the Taurid shower (almost half the year as a clearly definable radiant) and several streams notable for a high proportion of small meteoroids only, among these a strong new shower in January at the time of the Quadrantids (January Leonids). A new shower (Epsilon Perseids) has also been identified with orbital elements almost identical to Comet 96P/Machholz.  相似文献   

2.
We carried out double station observations of the Leonid meteor shower outburst, which occurred in the morning hours of November 19, 2006. Using image-intensified cameras we recorded approximately 100 Leonid meteors. As predicted, the outburst was rich especially in fainter meteors. The activity profile shows that the peak of the outburst occurred at 4:40 ± 0:05 UT. The maximum reached flux was 0.03 meteoroids km−2 hod−1 for meteors brighter than +6.5 magnitude.  相似文献   

3.
The structures of the meteor streams of cometary origin—Draconids, Ursids, Perseids, and Lyrids—and the streams presumably connected with asteroids—Taurids and α-Capricornids—are compared. The comparative analysis was performed by the mass distribution of meteoroids in the stream and the activity profile for the meteors with the maximum recorded stellar magnitude +3 m and brighter. Visual observations of 1987–2008 from the database of the International Meteor Organization (IMO) and earlier sources were considered. It has been shown that the structures of the meteor streams of cometary and, presumably, asteroidal origin differ somewhat by the activity profile and the mass distribution of meteoroids in the cross-section of a stream along the Earth’s orbit.  相似文献   

4.
The November 18, 1999 Leonid storm was rich in meteors and well observed by airborne intensified video cameras aimed low in the sky which enabled enhanced meteor counts over ground-based observations. The two- and three-dimensional distribution of meteoroids was investigated for signs of clustering that could provide evidence of meteoroid fragmentation shortly after lift-off from the parent comet 55P/Tempel-Tuttle, or much later due to space weathering. Analysis of the video tapes yields a refined estimation of the mass ratio during the peak of s = 1.65 and spatial flux density of 0.5 particles/km2 greater than those causing visual magnitude +6.5 during the 5 min centered around the peak of the storm. Furthermore, the projection of the individual trails into three-dimensional Heliocentric coordinates, shows non-homogeneity of the stream on spatial scales from hundreds to thousands of kilometers.  相似文献   

5.
A.F. Cook 《Icarus》1978,33(2):349-360
Comparison is made between the run of number density of meteoroids from penetration detectors aboard Helios A (masses below 10?8 g) and Pioneer 10 (masses near and above 3 × 10?9 g), the source function of the zodiacal light deduced from photometric observations aboard Helios A and Pioneer 10, counts versus brightness of objects passing by Pioneer 10 from the Sisyphus experiment and the distribution of meteoroids deduced from radar and optical meteors at the Earth. The Sisyphus experiment on Pioneer 10 observed reflecting glints on meteoroids rather than the meteoroids themselves and the counting statistics refer not to the effective radii of the meteoroids but to the effective radii of curvature of the reflecting glints on the meteoroids. The penetration detectors appear to find some increase in number density toward the Sun and a flat distribution outward to 5.2 AU. The overall behavior of the zodiacal light is that the relative distribution over direction is unchanged while the source scattering function diminishes as the inverse 1.4 power of distance from the Sun. The fit to the brightness of the zodiacal light obtained from these statistics can be combined with the mass distribution results from the optical meteors to deduce a mean geometric albedo of meteoroids of 0.006 at 1 AU from the Sun. Combination of the space distribution from radar meteors with the scattering source function of the zodiacal light yields geometric albedos for meteoroids running from 0.07 at 0.1 AU, from the Sun through 0.006 at 1 AU down to about 0.0001 at 3.3 AU which may run flat thence outward. This result is imposed by the indicated modest increase in density of meteoroids very near the Sun, a minimum between the Sun and the Earth near 0.4 AU and rising density outward to somewhere beyond 3.3 AU which is very different from the inverse 1.4 power of the distance shown for scatterers (product of number density and albedo) by the zodiacal light. A check on the distribution at very large sizes is possible if a search is made for fireballs in Jupiter's atmosphere by the Mariner Jupiter Saturn 1977 television cameras during the two encounters with Jupiter in 1979. An easy detection of such activity would put the maximum in the meteoroid distribution out near Jupiter and lend further confirmation to the indicated drop in albedo.  相似文献   

6.
The ejection velocities of meteoroids belonging to the Leonid and Perseid meteoroid streams are deduced from the observed differences between the longitude of the ascending node of the outburst meteoroids and that of the parent comet. The difference is very sensitive to the true anomaly of the ejection point, as well as the ejection velocity, and probable values for both are discussed.  相似文献   

7.
We analyse data obtained by different ground-based video camera systems during the 1999 Leonid meteor storm. We observe similar activity profiles at nearby observing sites, but significant differences over distances in the order of 4,000 km. The main peak occured at 02:03 UT (λ=235.286, J2000, corrected for the time of the topocentric stream encounter). At the Iberian peninsula quasi-periodic activity fluctuations with a period of about 7 min were recorded. The camera in Jordan detected a broad plateau of activity at 01:39–01:53 UT, but no periodic variations. The Leonid brightness distribution derived from all cameras shows a lack of faint meteors with a turning point close to +3m, which corresponds to meteoroids of approximately 10-3 g. We find a pin-point radiant at αalpha=153.65 ±0.1, δ=21.80 ±0. (λ=235.290). The radiant positionis identical before and after the storm, and also during the storm no driftis observed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
In 2006, Earth encountered a trail of dust left by Comet 55P/Tempel-Tuttle two revolutions ago, in A.D. 1932. The resulting Leonid shower outburst was observed by low light level cameras from locations in Spain. The outburst peaked on 2006 Nov. 19d 04h39m ± 3m UT (predicted: 19d 04h50m ± 15m UT), with a FWHM of 43 ± 10 min (predicted: 38 min), at a peak rate of ZHR=80±10/h (predicted: 50-200 per hour). A low level background of older and brighter Filament Leonids (χ∼2.1) was also present, which dominated rates for Leonids brighter than magnitude +4. The 1932-dust outburst was detected among Leonids of +0 magnitude and brighter. These outburst Leonids were much brighter than expected, with a magnitude distribution index χ=2.60±0.15 (predicted: χ=3.47 and up). Trajectories and orbits of 24 meteors were calculated, most of which are part of the Filament component. Those that were identified as 1932-dust grains penetrated just as deep as Leonids in past encounters. We conclude that larger meteoroids than expected were present in the tail of the 1932-dust trail and meteoroids did not end up there because of low density. We also find that the radiant position of meteors in the Filament component scatter in a circle with radius 0.39°, which is wider than in 1998, when the diameter was 0.09°. This supports the hypothesis that the Filament component consists of meteoroids in mean-motion resonances.  相似文献   

9.
Using the CMOR system, a search was conducted through 2.5 years (more than 1.5 million orbits) of archived data for meteoroids having unbound hyperbolic orbits around the Sun. Making use of the fact that each echo has an individually measured error, we were able to apply a cut-off for heliocentric speeds both more than two, and three standard deviations above the parabolic limit as our main selection criterion. CMOR has a minimum detectable particle radius near 100 μm for interstellar meteoroids. While these sizes are much larger than reported by the radar detections of extrasolar meteoroids by AMOR or Arecibo, the interstellar meteoroid population at these sizes would be of great astrophysical interest as such particles are more likely to remain unperturbed by external forces found in the interstellar medium, and thus, more likely to be traceable to their original source regions. It was found that a lower limit of approximately 0.0008% of the echoes (for the 3σ case) were of possible interstellar origin. For our effective limiting mass of 1×10−8 kg, this represents a flux of meteoroids arriving at the Earth of 6×10−6 meteoroids/km2/h. For our 2σ results, the lower limit was 0.003%, with a flux of 2×10−5 meteoroids/km2/h. The total number of events was too low to be statistically meaningful in determining any temporal or directional variations.  相似文献   

10.
The number ratio of carbonaceous to ordinary chondrites (the CC/OC ratio) varies with mass. It is very high (≳90) in small mass ranges (10−8 to 10−12 kg) among interplanetary dust particles and micrometeorites; it is moderately high (~5 to 30) for 1 to 10 m size fireball meteoroids (with estimated masses between ~103 and ~106 kg). In the range of most normal-sized meteorite falls (0.01–20 kg), the ratio is low (0.04–0.05); the ratio increases at greater mass ranges: at ≥200 kg, the ratio is 0.09; at ≥500 kg, the ratio is 0.20. The CC/OC ratio also increases from 0.05 to 0.16 for small meteorite finds (10−3 to 10−4 kg). High CC/OC ratios at low and high mass ranges are due to the predominance of CC material in the outer solar system. Small particles from this region spiral into the inner solar system typically in ≤106 years due to Poynting–Robertson drag. Meter-sized meteoroids in this region are affected by Yarkovsky forces, pushing them into resonances where they are efficiently transferred to the inner solar system. Normal-sized meteorites are derived from centimeter-to-decimeter-sized meteoroids that have sluggish drift rates (i.e., they are less affected by the seasonal Yarkovsky effect) compared to larger bodies. Consequently, the centimeter-to-decimeter-sized meteoroids spend more time in interplanetary space (where they are subject to collisions) than larger objects. The greater friability of carbonaceous chondrites relative to ordinary chondrites tends to winnow the carbonaceous chondrites out in this size/mass range during their long interplanetary sojourn, thereby decreasing the CC/OC ratio.  相似文献   

11.
Comet outburst activity and the structure of solar wind streams were compared on the basis of Pioneer 10, 11, Vela 3 and IMP 7, 8 measurements at the heliocentric distance r ≈ 1–6 AU. It is shown that the solar wind velocity waves which are evolving into corotating shock waves beyond the Earth orbit may be responsible for comet outburst activity. The correlation between variations of comet outburst activity with heliocentric distance and the behavior of the solar wind velocity waves is established. The closeness of the characteristic times for the velocity waves and comet outburst activity (7–8 days at r = 1 AU) as well as the simultaneous growth of both the characteristic times with r are noted. The observed distribution of the comet outburst activity parameters during the 11-year cycle is also in good agreement with the phase distributions during the 11-year cycle of variations of the coronal hole areas and the rate of change of the sunspot area δS p.  相似文献   

12.
The orbital evolution of model meteoroids ejected from the comet Encke has been investigated. The particles abandon the mother body with velocities 20 and 40 ms-1 perihelion within the interval of the past 10,000 years. Their 10,000 years old osculating orbits were numerically integrated forward, using a dynamical model of the solar system consisting of all planets. Forces from solar electromagnetic and corpuscular radiation effecting the particles are considered, too. Orbital dispersions of the model meteoroids are presented. The importance of nongravitational forces for a long-term orbital evolution of meteoroid streams is shown.  相似文献   

13.
《Planetary and Space Science》2007,55(11):1494-1501
In this work, we calculate the neutral Na production rates on the Moon and Mercury, as due to the impacts of meteoroids having an impact probability on the surface that can influence the daily observations of the exosphere: the meteoroids radius range considered for the Moon and Mercury are 10−8–0.15 and 10−8–0.10 m, respectively. We also estimate the mass of meteoroids that has impacted the surfaces of the Moon and Mercury in the last 3.8 Gy (after the end of the Late Heavy Bombardment).The results of our model are that (i) the Na production rates are ∼(3–4.9)×104 and ∼(1.8–2.3)×106 atoms cm−2 s−1, for Moon and Mercury, respectively, and (ii) in the last 3.8 Gy, the mass of meteoroids that has impacted the whole surface of the Moon and Mercury has been 8.86×1018 and 2.66×1019 g, respectively.  相似文献   

14.
In our work, the method that can help to predict the existence of distant objects in the Solar system is demonstrated. This method is connected with statistical properties of a heliocentric orbital complex of meteoroids with high eccentricities. Heliocentric meteoroid orbits with high eccentricities are escape routes for dust material from distant parental objects with near-circular orbits to Earth-crossing orbits. Ground-based meteor observations yield trajectory information from which we can derive their place of possible origin: comets, asteroids, and other objects (e.g. Kuiper Objects) in the Solar system or even interstellar space. Statistical distributions of radius vectors of nodes, and other parameters of orbits of meteoroids contain key information about position of greater bodies. We analyze meteor orbits with high eccentricities that were registered in 1975–1976 in Kharkiv (Ukraine). The orbital data of the Kharkiv electronic catalogue are received from observations of radiometeors with masses 10−6−10−3 g.  相似文献   

15.
G. Cremonese  M. Bruno  S. Marchi 《Icarus》2005,177(1):122-128
Meteoroid impact has been shown to be a source of sodium, and most likely of other elements, on the Moon. The same process could be also relevant for Mercury. In this work we calculate the vapor and neutral Na production rates on Mercury due to the impacts of meteoroids in the radius range of 10−8-10−1 m. We limit our calculations to this size range, because meteoroids with radius larger than 10−1 m have not to be found important for the daily production of the exosphere. This work is based on a new dynamical model of the meteoroid flux at the heliocentric distance of Mercury, regarding objects in the size range 10−2-10−1 m. This size range, never investigated before, is not affected by nongravitational forces, such as the Poynting-Robertson effect, which is dominant for particles smaller than 10−2 m. In order to evaluate the release of neutral sodium atoms also for smaller meteoroids we have used the distribution reported by M.J. Cintala [1992. Impact-induced thermal effects in the lunar and mercurian regoliths. J. Geophys. Res. 97, 947-973] calculated for particle size range 10−8-10−3 m. We have extrapolated this distribution up to 10−2 m and we have based the impact calculations on a new surface composition assuming 90% plagioclase and 10% pyroxene. The results of our model are that (i) the total mass of vapor produced by the impact of meteoroids in the size range 10−8-10−1 m is 4.752×108 g per year, and (ii) the production rate of neutral sodium atoms is 1.5×1022 s−1.  相似文献   

16.
There is strong anticipation that the Leonid meteor shower could produce storm-level activity in 1998 and/or 1999. The well-documented Leonid outburst in 1996 and the more poorly observed one in 1994 have been taken by many observers to imply that a storm is imminent, This article explores the possible relationship between the 1996 outburst in activity and possible Leonid storms. The curve of activity is found to be much closer to that of normal activity, although with greater hourly rates, than it is to the very brief, steeply rising activity curve of a storm. It is probable that the 1996 outburst is thus completely unrelated to any future storm which may appear.  相似文献   

17.
E. Grün  H.A. Zook  H. Fechtig  R.H. Giese 《Icarus》1985,62(2):244-272
Taking into account meteoroid measurements by in situ experiments, zodiacal light observations, and oblique angle hypervelocity impact studies, it is found that the observed size distributions of lunar microcraters usually do not represent the interplanetary meteoroid flux for particles with masses ?10?10g. From the steepest observed lunar crater size distribution a “lunar flux” is derived which is up to 2 orders of magnitude higher than the interplanetary flux at the smallest particle masses. New models of the “lunar” and “interplanetary” meteoroid fluxes are presented. The spatial mass density of interplanetary meteoritic material at 1 AU is ~10?16g/m3. A large fraction of this mass is in particles of 10?6 to 10?4 g. A detailed analysis of the effects of mutual collisions (i.e., destruction of meteoroids and production of fragment particles) and of radiation pressure has been performed which yielded a new picture of the balance of the meteoritic complex. It has been found that the collisional lifetime at 1 AU is shortest (~104years) for meteoroids of 10?4 to 1 g mass. For particles with masses m > 10?5g, Poynting-Robertson lifetimes are considerably larger than collisional lifetimes. The collisional destruction rate of meteoroids with masses m ? 10?3g is about 10 times larger than the rate of collisional production of fragment particles in the same mass range. About 9 tons/sec of these “meteor-sized” (m > 10?5g) particles are lost inside 1 AU due to collisions and have to be replenished by other sources, e.g., comets. Under steady-state conditions, most of these large particles are “young”; i.e., they have not been fragmented by collisions and their initial orbits are not altered much by radiation pressure drag. Many more micrometeoroids of masses m ? 10?5g are generated by collisions from more massive particles than are destroyed by collisions. The net collisional production rate of intermediate-sized particles 10?10g ? m ? 10?5g is found to be about 16 times larger at 1 AU than the Poynting-Robertson loss rate. The total Poynting-Robertson loss rate inside 1 AU is only about 0.26 tons/sec. The smallest fragment particles (m ? 10?10g) will be largely injected into hyperbolic trajectories under the influence of radiation pressure (β meteoroids). These particles provide the most effecient loss mechanism from the meteoritic complex. When it is assumed that meteoroids fragment similarly to experimental impact studies with basalt, then it is found that interplanetary meteoroids in the mass range 10?10g ? m ? 10?5g cannot be in temporal balance under collisions and Poynting-Robertson drag but their spatial density is presently increasing with time.  相似文献   

18.
Abstract— Two‐station electro‐optical observations of the 1998 Leonid shower are presented. Precise heights and light curves were obtained for 79 Leonid meteors that ranged in brightness (at maximum luminosity) from +0.3 to +6.1 astronomical magnitude. The mean photometric mass of the data sample was 1.4 × 10?6 kg. The dependence of astronomical magnitude at peak luminosity on photometric mass and zenith angle was consistent with earlier studies of faint sporadic meteors. For example, a Leonid meteoroid with a photometric mass of ~1.0 × 10‐7 kg corresponds to a peak meteor luminosity of about +4.5 astronomical magnitudes. The mean beginning height of the Leonid meteors in this sample was 112.6 km and the mean ending height was 95.3 km. The highest beginning height observed was 144.3 km. There is relatively little dependence of either the first or last heights on mass, which is indicative of meteoroids that have clustered into constituent grains prior to the onset of intensive grain ablation. The height distribution, combined with numerical modelling of the ablation of the meteoroids, suggests that silicate‐like materials are not the principal component of Leonid meteoroids and hints at the presence of a more volatile component. Light curves of many Leonid meteors were examined for evidence of the physical structure of the associated meteoroids: similar to the 1997 Leonid meteors, the narrow, nearly symmetric curves imply that the meteoroids are not solid objects. The light curves are consistent with a dustball structure.  相似文献   

19.
David ?apek  Ji?í Borovi?ka 《Icarus》2009,202(2):361-370
A considerable depletion of sodium was observed in Geminid meteoroids. To explain this phenomenon, we developed a quantitative model of sodium loss from meteoroids due to solar heating. We found that sodium can be lost completely from Geminid meteoroids after several thousands of years when they are composed of grains with sizes up to ∼100 μm. The observed variations of sodium abundances in Geminid meteor spectra can be explained by differences in the grain sizes among these meteoroids. Sodium depletions are also to be expected for other meteoroid streams with perihelion distances smaller than ∼0.2 AU. In our model, the meteoroids were represented by spherical dust-balls of spherical grains with an interconnected pore space system. The grains have no porosity and contain usual minerals known from meteorites and IDP's, including small amount of Na-bearing minerals. We modeled the sequence of three consecutive processes for sodium loss in Geminid meteoroids: (i) solid-state diffusion of Na atoms from Na-bearing minerals to the surface of grains, (ii) thermal desorption from grain surfaces and (iii) diffusion through the pore system to the space. The unknown material parameters were approximated by terrestrial analogs; the solid-state diffusion of Na in the grains was approximated by the diffusion rates for albite and orthoclase.  相似文献   

20.
Long-term visual observations of the Lyrid meteoroid shower have been analyzed to determine the mass distribution of Lyrid meteoroids. The value of the parameter S has been confirmed to be less than 1.8, which is normally assumed for meteoroid streams. The inclination of the descending and ascending branches of the S curve, depending on the longitude of the Sun, does not seem to exceed 3°. Observations carried out from 1987 until 2007 reveal that the minimum value of S corresponding to the longitude of the Sun 32.19 ± 0.04° is equal to 1.54 ± 0.02 (2000.0). The analysis of the S parameter derived from visual observations did not discover any particularities in the mass distribution of the meteoroids in the stream connected with the assumed 12-year enhancement period in the activity of the Lyrids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号