首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Obtaining reliable measurements of plasma parameters in the Sun’s corona remains an important challenge for solar physics. We previously presented a method for producing maps of electron temperature and speed of the solar corona using K-corona brightness measurements made through four color filters in visible light, which were tested for their accuracies using models of a structured, yet steady corona. In this article we test the same technique using a coronal model of the Bastille Day (14 July 2000) coronal mass ejection, which also contains quiet areas and streamers. We use the coronal electron density, temperature, and flow speed contained in the model to determine two K-coronal brightness ratios at (410.3, 390.0 nm) and (423.3, 398.7 nm) along more than 4000 lines of sight. Now assuming that for real observations, the only information we have for each line of sight are these two K-coronal brightness ratios, we use a spherically symmetric model of the corona that contains no structures to interpret these two ratios for electron temperature and speed. We then compare the interpreted (or measured) values for each line of sight with the true values from the model at the plane of the sky for that same line of sight to determine the magnitude of the errors. We show that the measured values closely match the true values in quiet areas. However, in locations of coronal structures, the measured values are predictably underestimated or overestimated compared to the true values, but can nevertheless be used to determine the positions of the structures with respect to the plane of the sky, in front or behind. Based on our results, we propose that future white-light coronagraphs be equipped to image the corona using four color filters in order to routinely create coronal maps of electron density, temperature, and flow speed.  相似文献   

2.
Images taken in the band centered at 30.4 nm are routinely used to map the radiance of the He?ii Ly?α line on the solar disk. That line is one of the strongest, if not the strongest, line in the EUV observed in the solar spectrum, and one of the few lines in that wavelength range providing information on the upper chromosphere or lower transition region. However, when observing the off-limb corona, the contribution from the nearby Si?xi 30.3 nm line can become significant. In this work we aim at estimating the relative contribution of those two lines in the solar corona around the minimum of solar activity. We combine measurements from CDS taken in August 2008 with temperature and density profiles from semiempirical models of the corona to compute the radiances of the two lines, and of other representative coronal lines (e.g. Mg?x 62.5 nm, Si?xii 52.1 nm). Considering both diagnosed quantities from line ratios (temperatures and densities) and line radiances in absolute units, we obtain a good overall match between observations and models. We find that the Si?xi line dominates the He?ii line from just above the limb up to ≈?2?R in streamers, while its contribution to narrowband imaging in the 30.4 nm band is expected to become smaller, even negligible in the corona beyond ≈?2?–?3?R , the precise value being strongly dependent on the coronal temperature profile.  相似文献   

3.
The EUV Imaging Spectrometer for Hinode   总被引:1,自引:0,他引:1  
The EUV Imaging Spectrometer (EIS) on Hinode will observe solar corona and upper transition region emission lines in the wavelength ranges 170?–?210 Å and 250?–?290 Å. The line centroid positions and profile widths will allow plasma velocities and turbulent or non-thermal line broadenings to be measured. We will derive local plasma temperatures and densities from the line intensities. The spectra will allow accurate determination of differential emission measure and element abundances within a variety of corona and transition region structures. These powerful spectroscopic diagnostics will allow identification and characterization of magnetic reconnection and wave propagation processes in the upper solar atmosphere. We will also directly study the detailed evolution and heating of coronal loops. The EIS instrument incorporates a unique two element, normal incidence design. The optics are coated with optimized multilayer coatings. We have selected highly efficient, backside-illuminated, thinned CCDs. These design features result in an instrument that has significantly greater effective area than previous orbiting EUV spectrographs with typical active region 2?–?5 s exposure times in the brightest lines. EIS can scan a field of 6×8.5 arc?min with spatial and velocity scales of 1 arc?sec and 25 km?s?1 per pixel. The instrument design, its absolute calibration, and performance are described in detail in this paper. EIS will be used along with the Solar Optical Telescope (SOT) and the X-ray Telescope (XRT) for a wide range of studies of the solar atmosphere.  相似文献   

4.
The ground based observations of the coronal emission lines using a coronagraph are affected by the short duration of clear sky and varying sky transparency. These conditions do not permit to study small amplitude variations in the coronal emission reliably necessary to investigate the process or processes involved in heating the coronal plasma and dynamics of solar corona. The proposed Visible Emission Line Coronagraph (VELC) over comes these limitations and will provide continuous observation 24 h a day needed for detailed studies of solar corona and drivers for space weather predictions. VELC payload onboard India’s Aditya-L1 space mission is an internally occulted solar coronagraph for studying the temperature, velocity, density and heating of solar corona. To achieve the proposed science goals, an instrument which is capable of carrying out simultaneous imaging, spectroscopy and spectro-polarimetric observations of the solar corona close to the solar limb is required. VELC is designed with salient features of (a) Imaging solar corona at 500 nm with an angular resolution of 5 arcsec over a FOV of 1.05Ro to 3Ro (Ro:Solar radius) (b) Simultaneous multi-slit spectroscopy at 530.3 nm [Fe XIV],789.2 nm [Fe XI] and 1074.7 nm [Fe XIII] with spectral dispersion of 28mÅ, 31mÅ and 202mÅ per pixel respectively, over a FOV of 1.05Ro to 1.5Ro. (c) Multi-slit dual beam spectro-polarimetry at 1074.7 nm. All the components of instrument have been optimized in view of the scientific objectives and requirements of space payloads. In this paper we present the details of optical configuration and the expected performance of the payload.  相似文献   

5.
We conducted an experiment in conjunction with the total solar eclipse of 21 June 2001 in Lusaka, Zambia, to obtain the K-coronal spectrum simultaneously from multiple locations on the solar corona. Then we matched the observed K-coronal spectra with the modeled K-coronal spectra to determine the coronal electron temperature and its bulk flow speed. Here the models assumed a symmetric and isothermal corona with the coronal electron flowing away from the Sun at a constant flow speed. We were able to make remarkable matches between the observations and the models. In this paper we will try to explain how the anomalies in the matches could be accounted for with the introduction of streamers in the K-coronal spectral models.  相似文献   

6.
This paper presents the results of a comparison between observations of coronal holes in UV (SOHO EIT) and radio emission (17, 5.7 GHz, 327 and 150.9 MHz, from NoRH, SSRT and Nançay radioheliographs), and solar wind parameters, from ACE spacecraft data over the period 12 March?–?31 May 2007. The increase in the solar wind velocity up to ~?600 km?s?1 was found to correlate with a decrease in the UV flux in the central parts of the solar disk. A connection between the parameters of the radio emission from three different layers of the solar atmosphere and the solar wind velocity near the Earth’s orbit was discovered. Such a connection is suggestive of a common mechanism of solar wind acceleration from chromospheric heights to the upper corona.  相似文献   

7.
Using one-arcsecond-slit-scan observations from the Hinode/EUV Imaging Spectrometer (EIS) on 5 February 2007, we find the plasma outflows in the open and expanding coronal funnels at the eastern boundary of AR 10940. The Doppler-velocity map of Fe?xii 195.120 Å shows the diffuse closed-loop system to be mostly red-shifted. The open arches (funnels) at the eastern boundary of AR exhibit blue-shifts with a maximum speed of about 10?–?15 km?s?1. This implies outflowing plasma through these magnetic structures. In support of these observations, we perform a 2D numerical simulation of the expanding coronal funnels by solving the set of ideal MHD equations in appropriate VAL-III C initial temperature conditions using the FLASH code. We implement a rarefied and hotter region at the footpoint of the model funnel, which results in the evolution of slow plasma perturbations propagating outward in the form of plasma flows. We conclude that the heating, which may result from magnetic reconnection, can trigger the observed plasma outflows in such coronal funnels. This can transport mass into the higher corona, giving rise to the formation of the nascent solar wind.  相似文献   

8.
Determining the coronal electron density by the inversion of white-light polarized brightness (pB) measurements by coronagraphs is a classic problem in solar physics. An inversion technique based on the spherically symmetric geometry (spherically symmetric inversion, SSI) was developed in the 1950s and has been widely applied to interpret various observations. However, to date there is no study of the uncertainty estimation of this method. We here present the detailed assessment of this method using a three-dimensional (3D) electron density in the corona from 1.5 to 4 R as a model, which is reconstructed by a tomography method from STEREO/COR1 observations during the solar minimum in February 2008 (Carrington Rotation, CR 2066). We first show in theory and observation that the spherically symmetric polynomial approximation (SSPA) method and the Van de Hulst inversion technique are equivalent. Then we assess the SSPA method using synthesized pB images from the 3D density model, and find that the SSPA density values are close to the model inputs for the streamer core near the plane of the sky (POS) with differences generally smaller than about a factor of two; the former has the lower peak but extends more in both longitudinal and latitudinal directions than the latter. We estimate that the SSPA method may resolve the coronal density structure near the POS with angular resolution in longitude of about 50°. Our results confirm the suggestion that the SSI method is applicable to the solar minimum streamer (belt), as stated in some previous studies. In addition, we demonstrate that the SSPA method can be used to reconstruct the 3D coronal density, roughly in agreement with the reconstruction by tomography for a period of low solar activity (CR 2066). We suggest that the SSI method is complementary to the 3D tomographic technique in some cases, given that the development of the latter is still an ongoing research effort.  相似文献   

9.
Variations in the propagation of globally propagating disturbances (commonly called “EIT waves”) through the low solar corona offer a unique opportunity to probe the plasma parameters of the solar atmosphere. Here, high-cadence observations of two “EIT wave” events taken using the Atmospheric Imaging Assembly (AIA) instrument onboard the Solar Dynamics Observatory (SDO) are combined with spectroscopic measurements from the Extreme ultraviolet Imaging Spectrometer (EIS) onboard the Hinode spacecraft and used to examine the variability of the quiet coronal magnetic-field strength. The combination of pulse kinematics from SDO/AIA and plasma density from Hinode/EIS is used to show that the magnetic-field strength is in the range ≈?2?–?6 G in the quiet corona. The magnetic-field estimates are then used to determine the height of the pulse, allowing a direct comparison with theoretical values obtained from magnetic-field measurements from the Helioseismic and Magnetic Imager (HMI) onboard SDO using global-scale PFSS and local-scale extrapolations. While local-scale extrapolations predict heights inconsistent with prior measurements, the agreement between observations and the PFSS model indicates that “EIT waves” are a global phenomenon influenced by global-scale magnetic field.  相似文献   

10.
We statistically analyzed the kinematical evolution and wave pulse characteristics of 60 strong large-scale EUV wave events that occurred during January 2007 to February 2011 with the STEREO twin spacecraft. For the start velocity, the arithmetic mean is 312±115 km?s?1 (within a range of 100?–?630 km?s?1). For the mean (linear) velocity, the arithmetic mean is 254±76 km?s?1 (within a range of 130?–?470 km?s?1). 52 % of all waves under study show a distinct deceleration during their propagation (a≤?50 m?s?2), the other 48 % are consistent with a constant speed within the uncertainties (?50≤a≤50 m?s?2). The start velocity and the acceleration are strongly anticorrelated with c≈?0.8, i.e. initially faster events undergo stronger deceleration than slower events. The (smooth) transition between constant propagation for slow events and deceleration in faster events occurs at an EUV wave start-velocity of v≈230 km?s?1, which corresponds well to the fast-mode speed in the quiet corona. These findings provide strong evidence that the EUV waves under study are indeed large-amplitude fast-mode MHD waves. This interpretation is also supported by the correlations obtained between the peak velocity and the peak amplitude, impulsiveness, and build-up time of the disturbance. We obtained the following association rates of EUV wave events with other solar phenomena: 95 % are associated with a coronal mass ejection (CME), 74 % to a solar flare, 15 % to interplanetary type II bursts, and 22 % to coronal type II bursts. These findings are consistent with the interpretation that the associated CMEs are the driving agents of the EUV waves.  相似文献   

11.
Solar five-minute oscillations have been detected in the power spectra of two six-day time intervals from soft X-ray measurements of the Sun observed as a star using the Extreme Ultraviolet Spectrophotometer (ESP) onboard the Solar Dynamics Observatory (SDO)/Extreme Ultraviolet Variability Experiment (EVE). The frequencies of the largest amplitude peaks were found to match the known low-degree (?=0?–?3) modes of global acoustic oscillations within 3.7 μHz and can be explained by a leakage of the global modes into the corona. Due to the strong variability of the solar atmosphere between the photosphere and the corona, the frequencies and amplitudes of the coronal oscillations are likely to vary with time. We investigated the variations in the power spectra for individual days and their association with changes of solar activity, e.g. with the mean level of the EUV irradiance, and its short-term variations caused by evolving active regions. Our analysis of samples of one-day oscillation power spectra for a 49-day period of low and intermediate solar activity showed little correlation with the mean EUV irradiance and the short-term variability of the irradiance. We suggest that some other changes in the solar atmosphere, e.g., magnetic fields and/or inter-network configuration may affect the mode leakage to the corona.  相似文献   

12.
Lewis  D.J.  Simnett  G.M. 《Solar physics》2001,200(1-2):75-89
We present data obtained from the Large Angle Spectrometric Coronagraph (LASCO) aboard the Solar and Heliospheric Observatory spacecraft (SOHO). We compare the rotation of the white-light corona as seen during a period approaching the maximum of the solar 11-year activity cycle with that observed in a previous study made at solar minimum (Lewis et al., 1999). We find no fundamental difference in the rotation characteristics and again find the white-light corona to be radially rigid. The rotation has been observed at altitudes from 2.5 R to beyond 15 R and as predicted in the previous study, the greater level of complexity in the coronal structures and their relatively rapid evolution has not allowed periods to be determined as accurately as at solar minimum. Our best estimate of the mean synodic rotation period during the period of study (7 March 1999 to 6 March 2000) is 27.5±0.3 days. This is consistent with the relatively small scale structures associated with the surface activity imposing their rotation signature on an otherwise axisymmetric background corona. The short-lived nature of the small scale coronal morphologies at this epoch has made a thorough analysis of the latitudinal variation difficult, although we again find some evidence for the white light corona's increased latitudinal rigidity when compared to the underlying photosphere. However, we again note how projection effects create difficulties in confirming the exact degree of rigidity in the corona at these altitudes and a very simple coronal model is used to highlight how the appearance of lower latitude features in projection can contaminate the coronal signal observed at other latitudes. We also note evidence for a sudden and apparently fundamental change to the global coronal morphology on the approach to solar maximum and suggest this may represent the time beyond which the classical solar dipole ceases to dominate the coronal field.  相似文献   

13.
We study the solar sources of an intense geomagnetic storm of solar cycle 23 that occurred on 20 November 2003, based on ground- and space-based multiwavelength observations. The coronal mass ejections (CMEs) responsible for the above geomagnetic storm originated from the super-active region NOAA 10501. We investigate the H?? observations of the flare events made with a 15 cm solar tower telescope at ARIES, Nainital, India. The propagation characteristics of the CMEs have been derived from the three-dimensional images of the solar wind (i.e., density and speed) obtained from the interplanetary scintillation data, supplemented with other ground- and space-based measurements. The TRACE, SXI and H?? observations revealed two successive ejections (of speeds ???350 and ???100 km?s?1), originating from the same filament channel, which were associated with two high speed CMEs (???1223 and ???1660 km?s?1, respectively). These two ejections generated propagating fast shock waves (i.e., fast-drifting type II radio bursts) in the corona. The interaction of these CMEs along the Sun?CEarth line has led to the severity of the storm. According to our investigation, the interplanetary medium consisted of two merging magnetic clouds (MCs) that preserved their identity during their propagation. These magnetic clouds made the interplanetary magnetic field (IMF) southward for a long time, which reconnected with the geomagnetic field, resulting the super-storm (Dst peak=?472 nT) on the Earth.  相似文献   

14.
We conducted an experiment in conjunction with the total solar eclipse of 29 March 2006 in Libya that measured the coronal intensity through two filters centered at 3850 Å and 4100 Å with bandwidths of ≈?40 Å. The purpose of these measurements was to obtain the intensity ratio through these two filters to determine the electron temperature. The instrument, Imaging Spectrograph of Coronal Electrons (ISCORE), consisted of an eight inch, f/10 Schmidt Cassegrain telescope with a thermoelectrically-cooled CCD camera at the focal plane. Results show electron temperatures of 105 K close to the limb to 3×106 K at 1.3R . We describe this novel technique, and we compare our results to other relevant measurements. This technique could be easily implemented on a space-based platform using a coronagraph to produce global maps of the electron temperature of the solar corona.  相似文献   

15.
Observations with the balloon-borne Sunrise/Imaging Magnetograph eXperiment (IMaX) provide high spatial resolution (roughly 100 km at disk center) measurements of the magnetic field in the photosphere of the quiet Sun. To investigate the magnetic structure of the chromosphere and corona, we extrapolate these photospheric measurements into the upper solar atmosphere and analyze a 22-minute long time series with a cadence of 33 seconds. Using the extrapolated magnetic-field lines as tracer, we investigate temporal evolution of the magnetic connectivity in the quiet Sun’s atmosphere. The majority of magnetic loops are asymmetric in the sense that the photospheric field strength at the loop foot points is very different. We find that the magnetic connectivity of the loops changes rapidly with a typical connection recycling time of about 3±1 minutes in the upper solar atmosphere and 12±4 minutes in the photosphere. This is considerably shorter than previously found. Nonetheless, our estimate of the energy released by the associated magnetic-reconnection processes is not likely to be the sole source for heating the chromosphere and corona in the quiet Sun.  相似文献   

16.
In this article, we present a multi-wavelength and multi-instrument investigation of a halo coronal mass ejection (CME) from active region NOAA 12371 on 21 June 2015 that led to a major geomagnetic storm of minimum \(\mathrm{Dst} = -204\) nT. The observations from the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory in the hot EUV channel of 94 Å confirm the CME to be associated with a coronal sigmoid that displayed an intense emission (\(T \sim6\) MK) from its core before the onset of the eruption. Multi-wavelength observations of the source active region suggest tether-cutting reconnection to be the primary triggering mechanism of the flux rope eruption. Interestingly, the flux rope eruption exhibited a two-phase evolution during which the “standard” large-scale flare reconnection process originated two composite M-class flares. The eruption of the flux rope is followed by the coronagraphic observation of a fast, halo CME with linear projected speed of 1366 km?s?1. The dynamic radio spectrum in the decameter-hectometer frequency range reveals multiple continuum-like enhancements in type II radio emission which imply the interaction of the CME with other preceding slow speed CMEs in the corona within \(\approx10\)?–?\(90~\mbox{R} _{\odot}\). The scenario of CME–CME interaction in the corona and interplanetary medium is further confirmed by the height–time plots of the CMEs occurring during 19?–?21 June. In situ measurements of solar wind magnetic field and plasma parameters at 1 AU exhibit two distinct magnetic clouds, separated by a magnetic hole. Synthesis of near-Sun observations, interplanetary radio emissions, and in situ measurements at 1 AU reveal complex processes of CME–CME interactions right from the source active region to the corona and interplanetary medium that have played a crucial role towards the large enhancement of the geoeffectiveness of the halo CME on 21 June 2015.  相似文献   

17.
The solar spectrum is a key parameter for different scientific disciplines such as solar physics, climate research, and atmospheric physics. The SOLar SPECtrometer (SOLSPEC) instrument of the Solar Monitoring Observatory (SOLAR) payload onboard the International Space Station (ISS) has been built to measure the solar spectral irradiance (SSI) from 165 to 3088 nm with high accuracy. To cover the full wavelength range, three double-monochromators with concave gratings are used. We present here a thorough analysis of the data from the third channel/double-monochromator, which covers the spectral range between 656 and 3088 nm. A new reference solar spectrum is therefore obtained in this mainly infrared wavelength range (656 to 3088 nm); it uses an absolute preflight calibration performed with the blackbody of the Physikalisch-Technische Bundesanstalt (PTB). An improved correction of temperature effects is also applied to the measurements using in-flight housekeeping temperature data of the instrument. The new solar spectrum (SOLAR–IR) is in good agreement with the ATmospheric Laboratory for Applications and Science (ATLAS?3) reference solar spectrum from 656 nm to about 1600 nm. However, above 1600 nm, it agrees better with solar reconstruction models than with spacecraft measurements. The new SOLAR/SOLSPEC measurement of solar spectral irradiance at about 1600 nm, corresponding to the minimum opacity of the solar photosphere, is 248.08 ± 4.98 mW?m?2?nm?1 (1?\(\sigma\)), which is higher than recent ground-based evaluations.  相似文献   

18.
In order to study the solar corona during eclipses, a new telescope was constructed. Three coronal images were obtained simultaneously through a single objective of the telescope as the coronal radiation passed through three polarizers (whose transmission directions were turned 0°, 60°, and 120° in the chosen direction); one image was obtained without a polarizer. The telescope was used to observe the solar corona during the eclipse of 1 August 2008. We obtained the distributions of polarization brightness, K-corona brightness, the degree of K-corona polarization and the total polarization degree; the polarization direction, depending on the latitude and radius in the plane of the sky, was also obtained. We calculated the radial distributions of electron density depending on the latitude. The properties of all these distributions were compared for different coronal structures. We determined the temperature of the coronal plasma in different coronal structures assuming hydrostatic equilibrium.  相似文献   

19.
We measured the brightness of the white light corona at the total solar eclipses on 1 August 2008 and 22 July 2009, when solar activity was at its lowest in one hundred years. After careful calibration, the brightness of the corona in both eclipses was evaluated to be approximately 0.4×10?6 of the total brightness of the Sun, which is the lowest level ever observed. Furthermore, the total brightness of the K+F-corona beyond 3R in both eclipses is lower than some of the previous measurements of the brightness of the F-corona only. Our accurate measurements of the coronal brightness provide not only the K-corona brightness during a period of very low solar activity but also a reliable upper limit of the brightness of the F-corona.  相似文献   

20.
The Solar EUV Monitor (SEM) onboard SOHO has measured absolute extreme ultraviolet (EUV) and soft X-ray solar irradiance nearly continuously since January 1996. The EUV Variability Experiment (EVE) on SDO, in operation since April of 2010, measures solar irradiance in a wide spectral range that encompasses the band passes (26?–?34 nm and 0.1?–?50 nm) measured by SOHO/SEM. However, throughout the mission overlap, irradiance values from these two instruments have differed by more than the combined stated uncertainties of the measurements. In an effort to identify the sources of these differences and eliminate them, we investigate in this work the effect of reprocessing the SEM data using a more accurate SEM response function (obtained from synchrotron measurements with a SEM sounding-rocket clone instrument taken after SOHO was already in orbit) and time-dependent, measured solar spectral distributions – i.e., solar reference spectra that were unavailable prior to the launch of the SDO. We find that recalculating the SEM data with these improved parameters reduces mean differences with the EVE measurements from about 20 % to less than 5 % in the 26?–?34 nm band, and from about 35 % to about 15 % for irradiances in the 0.1?–?7 nm band extracted from the SEM 0.1?–?50 nm channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号