首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ocean Engineering》1987,14(1):1-18
A practical method has been formulated to predict the second order wave loads on large offshore structures. In this study, Lighthill's technique for deep water waves has been extended to shallow water waves. Particular attention has been paid to evaluate the overturning moments, and the theory has been applied to large circular cylinders and square caissons. The theoretical predictions have been compared with the experimental measurements and the comparison shows good agreement.  相似文献   

2.
Wave Numerical Model for Shallow Water   总被引:4,自引:0,他引:4  
The history of forecasting wind waves by wave energy conservation equation is briefly des-cribed.Several currently used wave numerical models for shallow water based on different wave theoriesare discussed.Wave energy conservation models for the simulation of shallow water waves are introduced,with emphasis placed on the SWAN model,which takes use of the most advanced wave research achieve-ments and has been applied to several theoretical and field conditions.The characteristics and applicabilityof the model,the finite difference numerical scheme of the action balance equation and its source termscomputing methods are described in detail.The model has been verified with the propagation refractionnumerical experiments for waves propagating in following and opposing currents;finally.the model is ap-plied to the Haian Gulf area to simulate the wave height and wave period field there,and the results arecompared with observed data.  相似文献   

3.
《Coastal Engineering》2006,53(2-3):265-275
Sand waves form a prominent regular pattern in the offshore seabeds of sandy shallow seas and pose a threat to a range of offshore activities. A two-dimensional vertical (2DV) flow and morphological simulation model describing the behaviour of these sand waves has been developed. The simulation model contains the 2DV shallow water equations, with a free water surface and a general bed load formula. The water movement is coupled to the sediment transport equation with a seabed evolution equation. The domain is non-periodic in both directions. The spatial discretisation is performed by a spectral method based on Chebyshev polynomials. A fully implicit method is chosen for the discretisation in time. Firstly, we validate the simulation model mathematically by reproducing the results obtained using a linear stability analysis for infinitely small sand waves. Hereby, we investigate a steady current situation induced by a wind stress applied at the sea surface. The bed forms we find have wavelengths in the order of hundreds of metres when the resistance at the seabed is relatively large. The results show that it is possible to model the initial evolution of sand waves with a numerical simulation model. This paper forms the necessary first step to investigate the intermediate term behaviour of sand waves.  相似文献   

4.
An empirical modification to the Airy equation for wave celerity reduces to the expression for solitary waves in shallow water whilst retaining its usual form for deep water. The equation yields celerities in reasonable agreement with those for cnoidal waves in intermediate water depths. In this aspect, it is similar to the work described by Le Roux [Le Roux, J.P., 2007. A function to determine wavelength from deep into shallow water based on the length of the cnoidal wave at breaking. Coastal Engineering 54, 770–774]. The empirical modification has been widely applied in computer programs over the past 30 years.  相似文献   

5.
《Coastal Engineering》2004,51(1):1-15
The shallow water equations (SWE) have been used to model a series of experiments examining violent wave overtopping of a near-vertical sloping structure with impacting wave conditions. A finite volume scheme was used to solve the shallow water equations. A monotonic reconstruction method was applied to eliminate spurious oscillations and ensure proper treatment of bed slope terms. Both the numerical results and physical observations of the water surface closely followed the relevant Rayleigh probability distributions. However, the numerical model overestimated the wave heights and suffered from the lack of dispersion within the shallow water equations. Comparisons made on dimensionless parameters for the overtopping discharge and percentage of waves overtopping between the numerical model and the experimental observations indicated that for the lesser impacting waves, the shallow water equations perform satisfactorily and provide a good alternative to computationally more expensive methods.  相似文献   

6.
The nonlinear interactions of waves with a double-peaked power spectrum have been studied in shallow water.The starting point is the prototypical equation for nonlinear unidirectional waves in shallow water,i.e.the Korteweg de Vries equation.By means of a multiple-scale technique two defocusing coupled Nonlinear Schrdinger equations are derived.It is found analytically that plane wave solutions of such a system are unstable for small perturbations,showing that the existence of a new energy exchange mechanism which can influence the behavior of ocean waves in shallow water.  相似文献   

7.
Jiankang Wu  Bo Chen 《Ocean Engineering》2003,30(15):1899-1913
Based on Green–Naghdi equation this work studies unsteady ship waves in shallow water of varying depth. A moving ship is regarded as a moving pressure disturbance on free surface. The moving pressure is incorporated into the Green–Naghdi equation to formulate forcing of ship waves in shallow water. The frequency dispersion term of the Green–Naghdi equation accounts for the effects of finite water depth on ship waves. A wave equation model and the finite element method (WE/FEM) are adopted to solve the Green–Naghdi equation. The numerical examples of a Series 60 (CB=0.6) ship moving in shallow water are presented. Three-dimensional ship wave profiles and wave resistance are given when the ship moves in shallow water with a bed bump (or a trench). The numerical results indicate that the wave resistance increases first, then decreases, and finally returns to normal value as the ship passes a bed bump. A comparison between the numerical results predicted by the Green–Naghdi equation and the shallow water equations is made. It is found that the wave resistance predicted by the Green–Naghdi equation is larger than that predicted by the shallow water equations in subcritical flow , and the Green–Naghdi equation and the shallow water equations predict almost the same wave resistance when , the frequency dispersion can be neglected in supercritical flows.  相似文献   

8.
驱动非线性浅水波的行波特征研究   总被引:2,自引:1,他引:1  
采用带有外界强迫效应的浅水动力学模式研究非线性波动、获得了依赖于外界输入形式的驱动水波的行波解。研究结果表明,驱动水波仍具有非线性波动的一般性质,而当外界强迫波速与水波固有速度一致时,水波出现共振效应,并且外界强迫孤立子将导致驱动水波孤立子产生。  相似文献   

9.
-Nonlinear tidal waves in a kind of estuary are studied in the paper using one-dimensional nonlinear hydrody-namic equations with friction. The estuary has exponentially varying width B=B0 e-bx and uniform depth h. The one-dimensional hydrodynamic equations are solved by perturbation method. It was found that our solution included two special cases, Pelisenpeki's solution and Airy's solution. The former can be got by letting b=0 in our solutions, and the latter by setting 6 = 0 and f= 0 (f is linear frictional coefficient). In terms of the second-order solution, the physical mechanism of nonlinear tidal waves in estuaries with gradually varying cross-section is explored. It is shown that, under the assumption of linear friction coefficient, shallow water constituent waves consist of two parts, one is produced by shallow water nonlinear effect outside the estuary, the other is generated by shallow water nonlinear effect inside estuary. In addition, the physical mechanism of the residual tidal current and  相似文献   

10.
The aim of this paper is to present an analytical expression for the vertical distribution of the correlation between the horizontal ( ) and vertical ( ) wave velocity components. This quantity, , which appears explicitly in the time-averaged momentum balance equations, has been shown to play an important role in the vertical distribution of wave-induced currents.The proposed formulation for is based on an identity that relates the effective (wave) shear stress to the effective (wave) normal stresses ( 2 and 2) and to the vorticity of the oscillatory flow gw. This general expression has been applied to simplified situations and has been shown to degenerate into other existing formulations with comparable simplifying assumptions, viz. irrotational waves in shallow water over an arbitrary bottom topography and breaking waves over a horizontal bottom.The model has also been applied to the case of waves interacting with a depth-varying current over a horizontal bottom, in which preliminary results have been obtained for a simplified situation invoking linear (small-amplitude) wave theory.  相似文献   

11.
Water waves, wave-induced long-shore currents and movement of pollutants in waves and currents have been numerically studied based on the hyperbolic mild-slope equation, the shallow water equation , as well as the pollutant movement equation, and the numerical results have also been validated by experimental data. It is shown that the long-shore current velocity and wave set-up increase with the increasing incident wave amplitude and slope steepness of the shore plane ; the wave set-up increases with the in- creasing incident wave period;and the pollutant morement proceeds more quiekly with the increasing incident wave amplitude and slope steepness of the shore palane. In surf zones, the long-shore currents induced by the inclined incident waves have effectively affected the pollutant movement.  相似文献   

12.
近岸沿岸流及污染物运动的数值模拟   总被引:5,自引:1,他引:4  
唐军  沈永明  邱大洪 《海洋学报》2008,30(1):147-155
基于双曲型缓坡方程和近岸浅水方程对近岸波浪斜向入射破碎所生成的沿岸流及污染物在沿岸波流作用下的运动进行了数值模拟,并对数值模拟结果进行了验证分析。数值模拟结果表明,在相近工况参数下,随着入射波高的增大,沿岸流流速和平均水面升高值均明显增大;随着岸坡坡度的增加,沿岸流流速和平均水面升高值明显增大;随着入射波浪周期的增大,平均水面升高值明显增大。在沿岸缓坡区域,由斜向入射波浪破碎所产生的沿岸流对污染物的运动起着不可忽略的影响。  相似文献   

13.
While the destruction caused by a tsunami can vary significantly owing to near- and onshore controls, we have only a limited quantitative understanding of how different local parameters influence the onshore response of tsunamis. Here, a numerical model based on the non-linear shallow water equations is first shown to agree well with analytical expressions developed for periodic long waves inundating over planar slopes. More than 13,000 simulations are then conducted to examine the effects variations in the wave characteristics, bed slopes, and bottom roughness have on maximum tsunami run-up and water velocity at the still water shoreline. While deviations from periodic waves and planar slopes affect the onshore dynamics, the details of these effects depend on a combination of factors. In general, the effects differ for breaking and non-breaking waves, and are related to the relative shift of the waves along the breaking–non-breaking wave continuum. Variations that shift waves toward increased breaking, such as steeper wave fronts, tend to increase the onshore impact of non-breaking waves, but decrease the impact of already breaking waves. The onshore impact of a tsunami composed of multiple waves can be different from that of a single wave tsunami, with the largest difference occurring on long, shallow onshore topographies. These results demonstrate that the onshore response of a tsunami is complex, and that using analytical expressions derived from simplified conditions may not always be appropriate.  相似文献   

14.
Recognising the importance of understanding sediment dynamics to evaluate the status of a coastal lagoon environment, this work has been focused on the investigation of the hydrodynamic and sediment transport processes occurring in such basins. In order to describe the lagoon system, a modelling approach combining hydrodynamics, waves and sediment dynamics has been developed. The framework of the numerical model consists of a finite element hydrodynamic model, a third generation finite element spectral wave model and a sediment transport and morphodynamic model for both cohesive and non-cohesive sediments. The model adopts the finite element technique for spatial integration, which has the advantage to describe more accurately complicated bathymetry and irregular boundaries for shallow water areas. The developed model has been applied to test cases and to a very shallow tidal lagoon, the Venice Lagoon, Italy. Numerical results show good agreement with water level, waves and turbidity measurements collected in several monitoring stations inside the Lagoon of Venice. Such a model represents an indispensable tool in analysing coastal problems and assessing morphological impacts of human interference.  相似文献   

15.
In this paper, the water waves and wave-induced longshore currents in Obaky coastal water which is located at the Mediterranean coast of Turkey were numerically studied. The numerical model is based on the parabolic mild-slope equation for coastal water waves and the nonlinear shallow water equation for the wave-induced currents. The wave transformation under the effects of shoaling, refraction, diffraction and breaking is considered, and the wave provides radiation stresses for driving currents in the model. The numerical results for the water wave-induced longshore currents were validated by the measured data to demonstrate the efficiency of the numerical model. Then the water waves and longshore currents induced by the waves from main directions were numerically simulated and analyzed based on the numerical results. The numerical results show that the movement of the longshore currents was different while the wave propagated to a coastal zone from different directions.  相似文献   

16.
Simulations of Rossby–Haurwitz waves have been carried out using four different high‐resolution numerical shallow water models: a spectral model, two semi‐Langrangian models predicting wind components and potential vorticity respectively, and a finite‐volume model on a hexagonal–icosahedral grid. The simulations show that (i) unlike the nondivergent case, the shallow water Rossby–Haurwitz wave locally generates small‐scale features and so has a potential enstrophy cascade, and (ii) contrary to common belief, the zonal wavenumber 4 Rossby–Haurwitz wave is dynamically unstable and will eventually break down if initially perturbed. Implications of these results for the use of the Rossby–Haurwitz wave as a numerical model test case are discussed. The four models tested give very similar results, giving confidence in the accuracy and robustness of the results. The most noticeable difference between the models is that truncation errors in the hexagonal–icosahedral grid model excite the Rossby–Haurwitz wave instability, causing the wave to break down quickly, whereas for the other models in the configurations tested the instability is excited only by roundoff error at worst, and the Rossby–Haurwitz wave breaks down much more slowly or not at all.  相似文献   

17.
A large number of studies have been done dealing with sinusoidal wave boundary layers in the past. However, ocean waves often have a strong asymmetric shape especially in shallow water, and net of sediment movement occurs. It is envisaged that bottom shear stress and sediment transport behaviors influenced by the effect of asymmetry are different from those in sinusoidal waves. Characteristics of the turbulent boundary layer under breaking waves (saw-tooth) are investigated and described through both laboratory and numerical experiments. A new calculation method for bottom shear stress based on velocity and acceleration terms, theoretical phase difference, φ and the acceleration coefficient, ac expressing the wave skew-ness effect for saw-tooth waves is proposed. The acceleration coefficient was determined empirically from both experimental and baseline kω model results. The new calculation has shown better agreement with the experimental data along a wave cycle for all saw-tooth wave cases compared by other existing methods. It was further applied into sediment transport rate calculation induced by skew waves. Sediment transport rate was formulated by using the existing sheet flow sediment transport rate data under skew waves by Watanabe and Sato [Watanabe, A. and Sato, S., 2004. A sheet-flow transport rate formula for asymmetric, forward-leaning waves and currents. Proc. of 29th ICCE, ASCE, pp. 1703–1714.]. Moreover, the characteristics of the net sediment transport were also examined and a good agreement between the proposed method and experimental data has been found.  相似文献   

18.
Dike resilience against wave overtopping has gained more and more attention in recent years due to the effect of expected future climate changes. The overtopping flow velocities and flow depths on dikes have recently been studied in 2D small-scale experiments. This has led to semi-empirical formulae for the estimation of flow depths and flow velocities across a dike. The results have been coupled to the actual erosion of the landward dike slope determined by full-scale 2D tests using the so-called “Overtopping Simulator”. This paper describes the results from 96 small-scale tests carried out in a shallow water basin at Aalborg University to cover the so far unknown 3D effects from oblique long-crested and short-crested waves. Based on results from the laboratory tests, expansions are proposed to the existing 2D formulae so as to cover oblique and short-crested waves. The wave obliquity is seen to significantly reduce the overtopping flow velocities and flow depths on especially the landward slope of a sea dike. Moreover, the tests showed that the average flow directions on the dike crest from oblique long-crested and short-crested waves correspond approximately to the incident wave direction. Flow depths and the squared flow velocities on the dike are concluded to be Rayleigh-distributed in case of both long-crested and short-crested waves for all considered incident wave obliquities. Findings in the present paper are needed to obtain more realistic estimates of dike erosion caused by wave overtopping.  相似文献   

19.
浅水方程被广泛应用于海啸预警报业务及研究,而针对线性浅水方程与非线性浅水方程在不同海区水深地形条件下的适用范围、计算效率问题是海啸研究人员急需了解的。本文应用基于浅水方程的海啸数值预报模型就海啸波在南海、东海传播的线性、非线性特征以及陆架对其传播之影响进行了数值分析研究。海啸波在深水的传播表征为强线性特征,此时线性系统对海啸波幅的模拟计算具有较高的精度和效率,而弱的非线性特征及弱的色散特征对海啸波幅的预报影响甚微,可以忽略不计。海啸波传播至浅水大陆架后受海底坡度变化、海底粗糙度等因素影响,波动的非线性效应迅速传播、积累,与线性浅水方程计算的海啸波相比表现出较大差异,主要表现为:在南海区,水深小于100m时,海啸波首波以后的系列波动非线性特征比较明显,两者波幅差别较大,但首波波幅的区别不大,因此对于该区域在不考虑海啸爬高的情况下,应用线性系统计算得到的海啸波幅也可满足海啸预警报的要求;在东海区由于陆架影响,海啸波非线性特征明显增强,水深小于100m区域,首波及其后系列波波幅均差异较大,故在该区域必须考虑海啸波非线性作用。本文就底摩擦项对海啸波首波波幅的影响进行了数值对比分析,结果表明:底摩擦作用对海啸波首波波幅影响仅作用于小于100m水深。最后,该文通过敏感性试验,初步分析了陆架宽度及陆架边缘深度对海啸波波幅的影响,得出海啸波经陆架传播共振、变形后,海啸波幅的放大或减小与陆架的宽度及陆架边缘水深有关。  相似文献   

20.
A new form of generalized Boussinesq equations for varying water depth   总被引:1,自引:0,他引:1  
M. Zhao  B. Teng  L. Cheng 《Ocean Engineering》2004,31(16):597-2072
A new set of equations of motion for wave propagation in water with varying depth is derived in this study. The equations expressed by the velocity potentials and the wave surface elevations include first-order non-linearity of waves and have the same dispersion characteristic to the extended Boussinesq equations. Compared to the extended Boussinesq equations, the equations have only two unknown scalars and do not contain spatial derivatives with an order higher than 2. The wave equations are solved by a finite element method. Fourth-order predictor–corrector method is applied in the time integration and a damping layer is applied at the open boundary for absorbing the outgoing waves. The model is applied to several examples of wave propagation in variable water depth. The computational results are compared with experimental data and other numerical results available in literature. The comparison demonstrates that the new form of the equations is capable of calculating wave transformation from relative deep water to shallow water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号