首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
In July 2003 the International Association of Geodesy (IAG) established the Global Geodetic Observing System (GGOS). The GGOS is integrating the three basic components: geometry, the earth rotation and gravity. The backbone of this integration is the existing global ground network, based on the geodetic space techniques: very long baseline interferometry, satellite laser ranging, global navigation satellite systems and Doppler orbitography and radiopositioning integrated by satellite. These techniques have to operate as one global entity and in one global reference frame. The global reference frame in the GGOS is a realization of the International Terrestrial Reference System (ITRS). The ITRS is a world spatial reference system co-rotating with the Earth in its diurnal motion in the space. The IAG Subcommision for the European Reference Frame (EUREF) in 1991 recommended that the terrestrial reference system for Europe should be coincident with ITRS at the epoch t 0 = 1989.0 and fixed to the stable part of the Eurasian Plate. It was named the European Terrestrial Reference System 89 (ETRS89). On the 2nd of June 2008, the Head Office of Geodesy and Cartography in Poland commenced operating the ASG-EUPOS multifunctional precise satellite positioning system. The ASG-EUPOS network defines the European Terrestrial Reference System ETRS89 in Poland. A close connection between the ASG-EUPOS stations and 15 out of 18 Polish EUREF permanent network stations controls the realization of the ETRS89 on Polish territory. This paper is a review of the global ITRS, as well as a regional and a national geodetic reference systems ETRS89.  相似文献   

2.
Terrestrial reference frame requirements within GGOS perspective   总被引:4,自引:0,他引:4  
One of the main objectives of the promising and challenging IAG project GGOS (Global Geodetic Observing System) is the availability of a global and accurate Terrestrial Reference Frame for Earth Science applications, particularly Earth Rotation, Gravity Field and geophysics. With the experience gained within the activities related to the International Terrestrial Reference System (ITRS) and its realization, the International Terrestrial Reference Frame (ITRF), the combination method proved its efficiency to establish a global frame benefiting from the strengths of the various space geodetic techniques and, in the same time, underlining their biases and weaknesses. In this paper we focus on the limitation factors inherent to each individual technique and to the combination, such as the current status of the observing networks, distribution of the co-location sites and their quality and accuracy of the combined frame parameters. Results of some TRF and EOP simultaneous combinations using CATREF software will be used to illustrate the current achievement and to help drawing up future goals and improvements in the GGOS framework. Beyond these technical aspects, the overall visibility and acceptance of ITRS/ITRF as international standard for science and applications is also discussed.  相似文献   

3.
《Journal of Geodynamics》2006,41(4-5):363-374
One of the main objectives of the promising and challenging IAG project GGOS (Global Geodetic Observing System) is the availability of a global and accurate Terrestrial Reference Frame for Earth Science applications, particularly Earth Rotation, Gravity Field and geophysics. With the experience gained within the activities related to the International Terrestrial Reference System (ITRS) and its realization, the International Terrestrial Reference Frame (ITRF), the combination method proved its efficiency to establish a global frame benefiting from the strengths of the various space geodetic techniques and, in the same time, underlining their biases and weaknesses. In this paper we focus on the limitation factors inherent to each individual technique and to the combination, such as the current status of the observing networks, distribution of the co-location sites and their quality and accuracy of the combined frame parameters. Results of some TRF and EOP simultaneous combinations using CATREF software will be used to illustrate the current achievement and to help drawing up future goals and improvements in the GGOS framework. Beyond these technical aspects, the overall visibility and acceptance of ITRS/ITRF as international standard for science and applications is also discussed.  相似文献   

4.
The gravity field of the earth is a natural element of the Global Geodetic Observing System (GGOS). Gravity field quantities are like spatial geodetic observations of potential very high accuracy, with measurements, currently at part-per-billion (ppb) accuracy, but gravity field quantities are also unique as they can be globally represented by harmonic functions (long-wavelength geopotential model primarily from satellite gravity field missions), or based on point sampling (airborne and in situ absolute and superconducting gravimetry). From a GGOS global perspective, one of the main challenges is to ensure the consistency of the global and regional geopotential and geoid models, and the temporal changes of the gravity field at large spatial scales. The International Gravity Field Service, an umbrella “level-2” IAG service (incorporating the International Gravity Bureau, International Geoid Service, International Center for Earth Tides, International Center for Global Earth models, and other future new services for, e.g., digital terrain models), would be a natural key element contributing to GGOS. Major parts of the work of the services would, however, remain complementary to the GGOS contributions, which focus on the long-wavelength components of the geopotential and its temporal variations, the consistent procedures for regional data processing in a unified vertical datum and Terrestrial Reference Frame, and the ensuring validations of long-wavelength gravity field data products.  相似文献   

5.
A key geodetic contribution to both the three Global Observing Systems and initiatives like the European Global Monitoring for Environment and Security is an accurate, long-term stable, and easily accessible reference frame as the backbone. Many emerging scientific as well as non-scientific high-accuracy applications require access to an unique, technique-independent reference frame decontaminated for short-term fluctuations due to global Earth system processes. Such a reference frame can only be maintained and made available through an observing system such as the Global Geodetic Observing System (GGOS), which is currently implemented and expected to provide sufficient information on changes in the Earth figure, its rotation and its gravity field. Based on a number of examples from monitoring of infrastructure, point positioning, maintenance of national references frames to global changes studies, likely future accuracy requirements for a global terrestrial reference frame are set up as function of time scales. Expected accuracy requirements for a large range of high-accuracy applications are less than 5 mm for diurnal and sub-diurnal time scales, 2–3 mm on monthly to seasonal time scales, better than 1 mm/year on decadal to 50 years time scales. Based on these requirements, specifications for a geodetic observing system meeting the accuracy requirements can be derived.  相似文献   

6.
邹蓉  孙付平  王啸  黎争 《中国地震》2020,36(4):684-692
地球参考框架是国家重要的空间基础设施,是地球上人类所有活动的空间参考基准。本文首先阐述了国际地球参考框架(International Terrestrial Reference Frame,ITRF)的发展现状,重点评述了ITRF的建立与维持,针对ITRF的发展现状提出了存在的问题;其次,以ITRF与2000国家大地坐标系(China Geodetic Coordinate System 2000,CGCS2000)的关系及现状为切入点,探讨了我国建立北斗坐标系的必要性,介绍了建立北斗坐标系的基本思路以及初始实现;最后,对地球参考框架的未来发展进行了展望。  相似文献   

7.
This paper concerns an analysis of the accuracy of the estimated parameters Ω (Φ, Λ, ω) which define the tectonic plate motions. The study is based on the velocities of station positions in the IERS (International Earth Rotation and Reference Systems Service) which has published new realization of the International Terrestrial Reference System—ITRF2008 for Doppler Orbitography by Radiopositioning Integrated on Satellite DORIS technique. Eurasian, African, Australian, North American, Australian, Pacific, Antarctic and South American plates were used in the analysis. The influence of the number and localization of stations on the plate surface on the estimation accuracy of the tectonic plate motion parameters were discussed. The results were compared with the APKIM 2005 IGN model and our earlier estimation for the SLR technique. In general, a remarkable concurrent agreement between the present and the APKIM 2005 solutions was found.  相似文献   

8.
《Journal of Geodynamics》2006,41(4-5):414-431
Towards the end of the 19th century, geodetic observation techniques allowed it to create geodetic networks of continental size. The insight that big networks can only be set up through international collaboration led to the establishment of an international collaboration called “Central European Arc Measurement”, the predecessor of the International Association of Geodesy (IAG), in 1864. The scope of IAG activities was extended already in the 19th century to include gravity.At the same time, astrometric observations could be made with an accuracy of a few tenths of an arcsecond. The accuracy stayed roughly on this level, till the space age opened the door for milliarcsecond (mas) astrometry. Astrometric observations allowed it at the end of the 19th century to prove the existence of polar motion. The insight that polar motion is almost unpredictable led to the establishment of the International Latitude Service (ILS) in 1899.The IAG and the ILS were the tools (a) to establish and maintain the terrestrial and the celestial reference systems, including the transformation parameters between the two systems, and (b) to determine the Earth's gravity field.Satellite-geodetic techniques and astrometric radio-interferometric techniques revolutionized geodesy in the second half of the 20th century. Satellite Laser Ranging (SLR) and methods based on the interferometric exploitation of microwave signals (stemming from Quasars and/or from satellites) allow it to realize the celestial reference frame with (sub-)mas accuracy, the global terrestrial reference frame with (sub-)cm accuracy, and to monitor the transformation between the systems with a high time resolution and (sub-)mas accuracy. This development led to the replacement of the ILS through the IERS, the International Earth Rotation Service in 1989.In the pre-space era, the Earth's gravity field could “only” be established by terrestrial methods. The determination of the Earth's gravitational field was revolutionized twice in the space era, first by observing geodetic satellites with optical, Laser, and Doppler techniques, secondly by implementing a continuous tracking with spaceborne GPS receivers in connection with satellite gradiometry. The sequence of the satellite gravity missions CHAMP, GRACE, and GOCE allow it to name the first decade of the 21st century the “decade of gravity field determination”.The techniques to establish and monitor the geometric and gravimetric reference frames are about to reach a mature state and will be the prevailing geodetic tools of the following decades. It is our duty to work in the spirit of our forefathers by creating similarly stable organizations within IAG with the declared goal to produce the geometric and gravimetric reference frames (including their time evolution) with the best available techniques and to make accurate and consistent products available to wider Earth sciences community as a basis for meaningful research in global change. IGGOS, the Integrated Global Geodetic Observing System, is IAG's attempt to achieve these goals. It is based on the well-functioning and well-established network of IAG services.  相似文献   

9.
不同高程基准位差计算的严密理论研究   总被引:1,自引:1,他引:0       下载免费PDF全文
高程基准是大地测量参考框架的重要组成部分,也是数字地球基础框架的重要内容.但目前各个国家或地区使用的大多是局部高程基准,这严重影响了地球信息数据的全球共享机制.本文利用高程基准与重力位之间的关系,推导了不同高程系统之间的严密位差计算公式和近似计算公式.该理论将为我国和全球高程基准的统一提供理论支持.  相似文献   

10.
《Journal of Geodynamics》2006,41(4-5):479-486
A key geodetic contribution to both the three Global Observing Systems and initiatives like the European Global Monitoring for Environment and Security is an accurate, long-term stable, and easily accessible reference frame as the backbone. Many emerging scientific as well as non-scientific high-accuracy applications require access to an unique, technique-independent reference frame decontaminated for short-term fluctuations due to global Earth system processes. Such a reference frame can only be maintained and made available through an observing system such as the Global Geodetic Observing System (GGOS), which is currently implemented and expected to provide sufficient information on changes in the Earth figure, its rotation and its gravity field. Based on a number of examples from monitoring of infrastructure, point positioning, maintenance of national references frames to global changes studies, likely future accuracy requirements for a global terrestrial reference frame are set up as function of time scales. Expected accuracy requirements for a large range of high-accuracy applications are less than 5 mm for diurnal and sub-diurnal time scales, 2–3 mm on monthly to seasonal time scales, better than 1 mm/year on decadal to 50 years time scales. Based on these requirements, specifications for a geodetic observing system meeting the accuracy requirements can be derived.  相似文献   

11.
Towards the end of the 19th century, geodetic observation techniques allowed it to create geodetic networks of continental size. The insight that big networks can only be set up through international collaboration led to the establishment of an international collaboration called “Central European Arc Measurement”, the predecessor of the International Association of Geodesy (IAG), in 1864. The scope of IAG activities was extended already in the 19th century to include gravity.At the same time, astrometric observations could be made with an accuracy of a few tenths of an arcsecond. The accuracy stayed roughly on this level, till the space age opened the door for milliarcsecond (mas) astrometry. Astrometric observations allowed it at the end of the 19th century to prove the existence of polar motion. The insight that polar motion is almost unpredictable led to the establishment of the International Latitude Service (ILS) in 1899.The IAG and the ILS were the tools (a) to establish and maintain the terrestrial and the celestial reference systems, including the transformation parameters between the two systems, and (b) to determine the Earth's gravity field.Satellite-geodetic techniques and astrometric radio-interferometric techniques revolutionized geodesy in the second half of the 20th century. Satellite Laser Ranging (SLR) and methods based on the interferometric exploitation of microwave signals (stemming from Quasars and/or from satellites) allow it to realize the celestial reference frame with (sub-)mas accuracy, the global terrestrial reference frame with (sub-)cm accuracy, and to monitor the transformation between the systems with a high time resolution and (sub-)mas accuracy. This development led to the replacement of the ILS through the IERS, the International Earth Rotation Service in 1989.In the pre-space era, the Earth's gravity field could “only” be established by terrestrial methods. The determination of the Earth's gravitational field was revolutionized twice in the space era, first by observing geodetic satellites with optical, Laser, and Doppler techniques, secondly by implementing a continuous tracking with spaceborne GPS receivers in connection with satellite gradiometry. The sequence of the satellite gravity missions CHAMP, GRACE, and GOCE allow it to name the first decade of the 21st century the “decade of gravity field determination”.The techniques to establish and monitor the geometric and gravimetric reference frames are about to reach a mature state and will be the prevailing geodetic tools of the following decades. It is our duty to work in the spirit of our forefathers by creating similarly stable organizations within IAG with the declared goal to produce the geometric and gravimetric reference frames (including their time evolution) with the best available techniques and to make accurate and consistent products available to wider Earth sciences community as a basis for meaningful research in global change. IGGOS, the Integrated Global Geodetic Observing System, is IAG's attempt to achieve these goals. It is based on the well-functioning and well-established network of IAG services.  相似文献   

12.
A unified global height reference system as a basis for IGGOS   总被引:1,自引:0,他引:1  
The definition of a global height reference system is based on a mean sea surface, gravity field parameters, and a three-dimensional terrestrial reference frame (TRF). Tide gauge records, satellite altimetry, gravity measurements on Earth and from space, TRF coordinates, and spirit levelling have to be combined for the realization of the vertical reference frame. Observations and parameters have to be consistent with respect to the used standards, conventions and models. They have to provide globally unified reference surfaces (geoid or quasigeoid, respectively, and mean sea surface). The continental reference systems of Europe (EUREF, ECGN) and South America (SIRGAS) are considering these requirements in their strategies. They are presented here, and slightly different definitions and realizations for a globally unified height reference system are discussed.  相似文献   

13.
Vertical geomagnetic cutoff rigidities are obtained for the stations of the global network of neutron monitors via trajectory calculations for each year of the period from 1950 to 2020. Geomagnetic cutoff rigidities are found from the model of the Earth’s main field International Geomagnetic Reference Field (IGRF) for 1950–2015, and the forecast until 2020 is provided. In addition, the geomagnetic cutoff rigidities for the same period are obtained by Tsyganenko model T89 (Tsyganenko, 1989) with the average annual values of the Kp-index. In each case, the penumbra is taken into account in the approximation of the flat and power spectra of variations of cosmic rays. The calculation results show an overall decrease in geomagnetic cutoff rigidities, which is associated with the overall decrease and restructuring of the geomagnetic field during the reporting period, at almost all points.  相似文献   

14.
Satellite orbital data yield reliable values of low degree and order coefficients in the spherical harmonic expansion of the Earth's gravity field. The second degree coefficient yields the shape of the Earth — probably the most important single parameter in geodesy. It is crucial in the numerical evaluation of different forms of the theoretical gravity formula. The new information requires the standardization of gravity anomalies obtained from satellite gravity and terrestrial gravity data in the context of three most commonly used reference figures, e.g.,International Reference Ellipsoid, Reference Ellipsoid 1967, andEquilibrium Reference Ellipsoid. This standardization is important in the comparison and combination of satellite gravity and gravimetric data as well as the integration of surface gravity data, collected with different objectives, in a single reference system.Examination of the nature of satellite gravity anomalies aids in the geophysical and geodetic interpretation of these anomalies in terms of the tectonic features of the Earth and the structure of the Earth's crust and mantle. Satellite results also make it possible to compute the Potsdam correction and Earth's equatorial radius from the satellite-determined geopotential. They enable the decomposition of the total observed gravity anomaly into components of geophysical interest. They also make it possible to study the temporal variations of the geogravity field. In addition, satellite results make significant contributions in the prediction of gravity in unsurveyed areas, as well as in providing a check on marine gravity profiles.On leave from University of Hawaii, Honolulu.  相似文献   

15.
《Journal of Geodynamics》2006,41(4-5):436-449
In the interest of improving the performance and efficiency of space geodesy a diverse group in the US, in collaboration with IGGOS, has begun to establish a unified National Geodetic Observatory (NGO). To launch this effort an international team will conduct a multi-year program of research into the technical issues of integrating SLR, VLBI, and GPS geodesy to produce a unified set of global geodetic products. The goal is to improve measurement accuracy by up to an order of magnitude while lowering the cost to current sponsors. A secondary goal is to expand and diversify international sponsorship of space geodesy. Principal benefits will be to open new vistas of research in geodynamics and surface change while freeing scarce NASA funds for scientific studies. NGO will proceed in partnership with, and under the auspices of, the International Association of Geodesy (IAG) as an element of the Integrated Global Geodetic Observation System project. The collaboration will be conducted within, and will make full use of, the IAG's existing international services: the IGS, IVS, ILRS, and IERS. Seed funding for organizational activities and technical analysis will come from NASA's Solid Earth and Natural Hazards Program. Additional funds to develop an integrated geodetic data system known as Inter-service Data Integration for Geodetic Operations (INDIGO), will come from a separate NASA program in Earth science information technology. INDIGO will offer ready access to the full variety of NASA's space geodetic data and will extend the GPS Seamless Archive (GSAC) philosophy to all space geodetic data types.  相似文献   

16.
The horizontal transport of water in Earth's surface layer, including sea level change, deglaciation, and surface runoff, is a manifestation of many geophysical processes. These processes entail ocean and atmosphere circulation and tidal attraction, global climate change, and the hydrological cycle, all having a broad range of spatiotemporal scales. The largest atmospheric mass variations occur mostly at synoptic wavelengths and at seasonal time scales. The longest wavelength component of surface mass transport, the spherical harmonic degree-1, involves the exchange of mass between the northern and southern hemispheres. These degree-1 mass loads deform the solid Earth, including its surface, and induce geocenter motion between the center-of-mass of the total Earth system (CM) and the center-of-figure (CF) of the solid Earth surface. Because geocenter motion also depends on the mechanical properties of the solid Earth, monitoring geocenter motion thus provides an additional opportunity to probe deep into Earth's interior. Most modern geodetic measurement systems rely on tracking data between ground stations and satellites that orbit around CM. Consequently, geocenter motion is intimately related to the realization of the International Terrestrial Reference Frame (ITRF) origin, and, in various ways, affects many of our measurement objectives for global change monitoring. In the last 15 years, there have been vast improvements in geophysical fluid modeling and in the global coverage, densification, and accuracy of geodetic observations. As a result of these developments, tremendous progress has been made in the study of geocenter motion over the same period. This paper reviews both the theoretical and measurement aspects of geocenter motion and its implications.  相似文献   

17.
Integrated Global Geodetic Observing System (IGGOS)—science rationale   总被引:1,自引:0,他引:1  
The International Association of Geodesy has decided to establish an Integrated Global Geodetic Observing System (IGGOS). The objective of IGGOS is to integrate in a well-defined global terrestrial reference frame the three fundamental pillars of geodesy, which are the determination of all variations of surface geometry of our planet (land, ice and ocean surfaces), of the irregularities in Earth rotation sub-divided in changes of nutation, polar motion and spin rate, and of the spatial and temporal variations of gravity and of the geoid. This integration will have to be done with a relative precision of 1 part-per-billion and be maintained stable in space and time over decades. IGGOS will quantify on a global scale surface changes, mass anomalies, mass transport and mass exchange and exchange in angular momentum in system Earth. It will be a novel and unique contribution to Earth system and Global Change research. It is intended to make IGGOS part of the Integrated Global Observing Strategy (IGOS).  相似文献   

18.
《Journal of Geodynamics》2006,41(4-5):357-362
The International Association of Geodesy has decided to establish an Integrated Global Geodetic Observing System (IGGOS). The objective of IGGOS is to integrate in a well-defined global terrestrial reference frame the three fundamental pillars of geodesy, which are the determination of all variations of surface geometry of our planet (land, ice and ocean surfaces), of the irregularities in Earth rotation sub-divided in changes of nutation, polar motion and spin rate, and of the spatial and temporal variations of gravity and of the geoid. This integration will have to be done with a relative precision of 1 part-per-billion and be maintained stable in space and time over decades. IGGOS will quantify on a global scale surface changes, mass anomalies, mass transport and mass exchange and exchange in angular momentum in system Earth. It will be a novel and unique contribution to Earth system and Global Change research. It is intended to make IGGOS part of the Integrated Global Observing Strategy (IGOS).  相似文献   

19.
We compute globally the consolidated crust-stripped gravity disturbances/anomalies. These refined gravity field quantities are obtained from the EGM2008 gravity data after applying the topographic and crust density contrasts stripping corrections computed using the global topography/bathymetry model DTM2006.0, the global continental ice-thickness data ICE-5G, and the global crustal model CRUST2.0. All crust components density contrasts are defined relative to the reference crustal density of 2,670 kg/m3. We demonstrate that the consolidated crust-stripped gravity data have the strongest correlation with the crustal thickness. Therefore, they are the most suitable gravity data type for the recovery of the Moho density interface by means of the gravimetric modelling or inversion. The consolidated crust-stripped gravity data and the CRUST2.0 crust-thickness data are used to estimate the global average value of the crust-mantle density contrast. This is done by minimising the correlation between these refined gravity and crust-thickness data by adding the crust-mantle density contrast to the original reference crustal density of 2,670?kg/m3. The estimated values of 485 kg/m3 (for the refined gravity disturbances) and 481?kg/m3 (for the refined gravity anomalies) very closely agree with the value of the crust-mantle density contrast of 480?kg/m3, which is adopted in the definition of the Preliminary Reference Earth Model (PREM). This agreement is more likely due to the fact that our results of the gravimetric forward modelling are significantly constrained by the CRUST2.0 model density structure and crust-thickness data derived purely based on methods of seismic refraction.  相似文献   

20.
First, we present three different definitions of the vertical which relate to (i) astronomical longitude and astronomical latitude as spherical coordinates in gravity space, (ii) Gauss surface normal coordinates (also called geodetic coordinates) of type ellipsoidal longitude and ellipsoidal latitude and (iii) Jacobi ellipsoidal coordinates of type spheroidal longitude and spheroidal latitude in geometry space. Up to terms of second order those vertical deflections agree to each other. Vertical deflections and gravity disturbances relate to a reference gravity potential. In order to refer the horizontal and vertical components of the disturbing gravity field to a reference gravity field, which is physically meaningful, we have chosen the Somigliana-Pizzetti gravity potential as well as its gradient. Second, we give a new closed-form representation of Somigliana-Pizzetti gravity, accurate to the sub Nano Gal level. Third, we represent the gravitational disturbing potential in terms of Jacobi ellipsoidal harmonics. As soon as we take reference to a normal potential of Somigliana-Pizzetti type, the ellipsoidal harmonics of degree/order (0,0), (1,0), (1, − 1), (1,1) and (2,0) are eliminated from the gravitational disturbing potential. Fourth, we compute in all detail the gradient of the gravitational disturbing potential, in particular in orthonormal ellipsoidal vector harmonics. Proper weighting functions for orthonormality on the International Reference Ellipsoid are constructed and tabulated. In this way, we finally arrive at an ellipsoidal harmonic representation of vertical deflections and gravity disturbances. Fifth, for an ellipsoidal harmonic Gravity Earth Model (SEGEN: http://www.uni-stuttgart.de/gi/research/paper/coefficients/coefficients.zip) up to degree/order 360/360 we compute the global maps of ellipsoidal vertical deflections and ellipsoidal gravity disturbances which transfer a great amount of geophysical information in a properly chosen equiareal ellipsoidal map projection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号