首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
 Synchrotron excited X-ray photoelectron spectra (SXPS) of hexagonal pyrrhotite reveal three distinct Fe 3d-derived photopeaks within its outer valence band. The t 2gα band (majority spin) is centered at about 2.5 eV, the e g α band at about 1.0 eV and the t 2gβ (minority spin) contribution at about 0.25 eV. From these data the ligand field splitting energy is 1.5 (±0.2) eV and the majority spin pairing energy is 2.25 (±0.2) eV. These are the first such XPS measurements for this mineral. S 3p-derived bonding and non-bonding bands are identified, with the former centred at about 6.5 eV and the latter near 4.5 eV. The XPS results are remarkably consistent with SCF-Xα scattered wave molecular orbital calculations. Although the calculations and the collected spectra are consistent, they differ from a recent interpretation of the pyrrhotite valence band. An explanation for the discrepant results is provided. Auger resonant enhancement of Fe 3d photopeaks at 60 eV photon energy results in the t 2gα emission (at 2.5 eV) being strongly enhanced and broader than the t 2gβ emission (0.25 eV). The explanation of these observations requires the presence of weak Fe–Fe π and π* crystal (molecular) orbitals located near 2.5 eV, and separated by no more than about 0.5 eV. The π-bonded crystal orbitals are derived from weak mixing of adjacent Fe t 2g atomic orbitals along the c crystallographic axis. Received: 15 June 2000 / Accepted: 11 June 2001  相似文献   

2.
The clinopyroxenes spodumene (LiAlSi2O6), LiScSi2O6 and ZnSiO3, all with space group C2/c at ambient conditions, were studied under high pressures by single-crystal X-ray diffraction in a diamond-anvil cell. Changes in the evolution of the unit-cell parameters, optical properties and the appearance of h + k odd reflections characteristic of a primitive lattice, indicate that all three pyroxenes undergo phase transitions. The transitions are mostly displacive in character, and are non-quenchable. Transition pressures are 3.19 GPa in spodumene, ∼0.6 GPa in LiScSi2O6 and 1.92 GPa in ZnSiO3. The space group of all three high-pressure phases was determined to be P21/c by structure refinement to single-crystal X-ray intensity data collected in the DAC. In the ZnSiO3 clinopyroxene the intermediate P21/c phase further transforms to a second C2/c phase (HP-C2/c) at 4.9 GPa (confirmed by structure refinement). The volume change at this transition is about 2.6%, three times larger than in the first phase transition, and typical of the P21/c→ HP-C2/c phase transitions found previously in MgSiO3, FeSiO3, etc. These results therefore provide the first direct evidence that the HP-C2/c and the HT-C2/c structures of pyroxenes are distinct polymorphs with the same space group. The phase transition from C2/c to P21/c symmetry in spodumene and LiScSi2O6 therefore occurs because the polymorphs stable at ambient conditions are isotypic to the high-temperature C2/c phases of clinopyroxenes such as pigeonite and clinoenstatite. Received: 22 December 1999 / Accepted: 7 June 2000  相似文献   

3.
Optical constituents as suspended particulate matter (SPM), chlorophyll (Chl-a), colored dissolved organic matter (CDOM), and grain sizes were obtained on a transect in the arctic fjord-type estuary Kangerlussuaq (66°) in August 2007 along with optical properties. These comprised diffuse attenuation coefficient of downwelling PAR (K d(PAR)), upwelling PAR (K u(PAR)), particle beam attenuation coefficient (c p), and irradiance reflectance R(−0, PAR). PAR is white light between 400 and 700 nm. The estuary receives melt water from the Greenland Inland Ice and stations covered a transect from the very high turbid melt water outlet to clear marine waters. Results showed a strong spatial variation with high values as for suspended matter concentrations, CDOM, diffuse attenuation coefficient K d(PAR), particle beam attenuation coefficients (c p), and reflectance R(−0, PAR) at the melt water outlet. Values of optical constituents and properties decreased with distance from the melt water outlet to a more or less constant level in central and outer part of the estuary. There was a strong correlation between inorganic suspended matter (SPMI) and diffuse attenuation coefficient K d(PAR) (r 2 = 0.92) and also for particle beam attenuation coefficient (c p; r 2 = 0.93). The obtained SPMI specific attenuation—K d*(PAR) = 0.13 m2 g−1 SPMI—and the SPMI specific particle beam attenuation—c p* = 0.72 m2 g−1—coefficients were about two times higher than average literature values. Irradiance reflectance R(−0, PAR) was comparatively high (0.09−0.20) and showed a high (r 2 = 0.80) correlation with K u(PAR). Scattering dominated relative to absorption—b(PAR)/a(PAR) = 12.3. Results strongly indicated that the high values in the optical properties were related to the very fine particle sizes (mean = 2–6 μm) of the suspended sediment. Data and results are discussed and compared to similar studies from both temperate and tropical estuaries.  相似文献   

4.
 The cation distribution of Co, Ni, and Zn between the M1 and M2 sites of a synthetic olivine was determined with a single-crystal diffraction method. The crystal data are (Co0.377Ni0.396Zn0.227)2SiO4, M r  = 212.692, orthorhombic, Pbnm, a = 475.64(3), b = 1022.83(8), and c = 596.96(6) pm, V = 0.2904(1) nm3, Z = 4, D x  = 4.864 g cm−3, and F(0 0 0) = 408.62. Lattice, positional, and thermal parameters were determined with MoKα radiation; R = 0.025 for 1487 symmetry-independent reflections with F > 4σ(F). The site occupancies of Co, Ni, and Zn were determined with synchrotron radiation employing the anomalous dispersion effect of Co and Ni. The synchrotron radiation data include two sets of intensity data collected at 161.57 and 149.81 pm, which are about 1 pm longer than Co and Ni absorption edges, respectively. The R value was 0.022 for Co K edge data with 174 independent reflections, and 0.034 for Ni K edge data with 169 reflections. The occupancies are 0.334Co + 0.539Ni + 0.127Zn in the M1 sites, and 0.420Co + 0.253Ni + 0.327Zn in the M2 sites. The compilation of the cation distributions in olivines shows that the distributions depend on ionic radii and electronegativities of constituent cations, and that the partition coefficient can be estimated from the equation: ln [(A/B)M1/(A/B)M2] = −0.272 (IR A -IR B ) + 3.65 (EN A EN B ), where IR (pm) and EN are ionic radius and electronegativity, respectively. Received: 8 April 1999 / Revised, accepted: 7 September 1999  相似文献   

5.
Fe L-, S L-, and O K-edge X-ray absorption spectra of natural monoclinic and hexagonal pyrrhotites, Fe1-xS, and arsenopyrite, FeAsS, have been measured and compared with the spectra of minerals oxidized in air and treated in aqueous acidic solutions, as well as with the previous XPS studies. The Fe L-edge X-ray absorption near-edge structure (XANES) of vacuum-cleaved pyrrhotites showed the presence of, aside from high-spin Fe2+, small quantity of Fe3+, which was higher for a monoclinic mineral. The spectra of the essentially metal-depleted surfaces produced by the non-oxidative and oxidative acidic leaching of pyrrhotites exhibit substantially enhanced contributions of Fe3+ and a form of high-spin Fe2+ with the energy of the 3d orbitals increased by 0.3–0.8 eV; low-spin Fe2+ was not confidently distinguished, owing probably to its rapid oxidation. The changes in the S L-edge spectra reflect the emergence of Fe3+ and reduced density of S s–Fe 4s antibonding states. The Fe L-edge XANES of arsenopyrite shows almost unsplit eg band of singlet Fe2+ along with minor contributions attributable to high-spin Fe2+ and Fe3+. Iron retains the low-spin state in the sulphur-excessive layer formed by the oxidative leaching in 0.4 M ferric chloride and ferric sulphate acidic solutions. The S L-edge XANES of arsenopyrite leached in the ferric chloride, but not ferric sulphate, solution has considerably decreased pre-edge maxima, indicating the lesser admixture of S s states to Fe 3d orbitals in the reacted surface layer. The ferric nitrate treatment produces Fe3+ species and sulphur in oxidation state between +2 and +4.  相似文献   

6.
Summary Kristiansenite occurs as a late hydrothermal mineral in vugs in an amazonite pegmatite at Heftetjern, T?rdal, Telemark, Norway. Tapering crystals, rarely up to 2 mm long, are colourless, white, or slightly yellowish. The mineral has the ideal composition Ca2ScSn(Si2O7)(Si2O6OH) and is triclinic C1 with cell parameters a = 10.028(1), b = 8.408(1), c = 13.339(2) ?, α = 90.01(1), β = 109.10(1), γ = 90.00(1)°, V = 1062.7(3) ?3 (Z = 4). It has a monoclinic cell within ∼ 0.1 ? and is polysynthetically twinned on {010} by metric merohedry. The strongest reflections in the X-ray powder pattern are [d in ?, (I obs), (hkl)]: 5.18 (53) (1–11), 3.146 (100) (004), 3.089 (63) (−222), 2.901 (19) (221), 2.595 (34) (222), 2.142 (17) (−3–31). The Mohs’ hardness is 5?–6; Dcalc. = 3.64 g/cm3; only a mean refractive index of 1.74 could be measured. Scandium enrichment in the Heftetjern pegmatite and the crystal chemistry of scandium are briefly discussed. Received April 30, 2001; accepted July 28, 2001  相似文献   

7.
Summary The crystal structure of arsentsumebite, ideally, Pb2Cu[(As, S)O4]2(OH), monoclinic, space group P21/m, a = 7.804(8), b = 5.890(6), c = 8.964(8) ?, β = 112.29(6)°, V = 381.2 ?3, Z = 2, dcalc. = 6.481 has been refined to R = 0.053 for 898 unique reflections with I> 2σ(I). Arsentsumebite belongs to the brackebuschite group of lead minerals with the general formula Pb2 Me(XO4)2(Z) where Me = Cu2+, Mn2+, Zn2+, Fe2+, Fe3+; X = S, Cr, V, As, P; Z = OH, H2O. Members of this group include tsumebite, Pb2Cu(SO4)(PO4)(OH), vauquelinite, Pb2Cu(CrO4)(PO4)(OH), brackebuschite, Pb2 (Mn, Fe)(VO4)2(OH), arsenbracke buschite, Pb2(Fe, Zn)(AsO4)2(OH, H2O), fornacite, Pb2Cu(AsO4)(CrO4)(OH), and feinglosite, Pb2(Zn, Fe)[(As, S)O4]2(H2O). Arsentsumebite and all other group members contain M = MT chains where M = M means edge-sharing between MO6 octahedra and MT represents corner sharing between octahedra and XO4 tetrahedra. A structural relationship exists to tsumcorite, Pb(Zn, Fe)2(AsO4)2 (OH, H2O)2 and tsumcorite-group minerals Me(1)Me(2)2(XO4)2(OH, H2O)2. Received June 24, 2000; revised version accepted February 8, 2001  相似文献   

8.
Summary This study reports foggite and churchite-(Y) from two spatially separate locations in the guano-related phosphate deposit from the Cioclovina Cave, Romania. Optical microscope observations, powder X-ray diffraction, electron microprobe analyses, and FTIR were used in the analysis of the two minerals. The chemical composition of foggite was determined to be Ca0.925(Al0.91Fe2+0.016)Σ0.926(P0.991Si0.043)Σ1.034O3.74(OH)2.26 · H2O and churchite-(Y) [(Y0.830Dy0.043Er0.033Gd0.029Yb0.022)Σ0.957Ca0.009]P1.023O4.00 · 2H2O. Chemical analyses of Cioclovina churchite-(Y) clearly revealed enrichment in lanthanides of even atomic number. The refined unit-cell parameters are for foggite (orthorhombic) a = 9.264(1) ?, b = 21.334(8) ?, c = 5.197(7) ?, and V = 1027.13(8) ?3 (Z = 8); for churchite-(Y) (monoclinic): a = 5.578(8) ?, b = 15.013(6) ?, c = 6.277(8) ?, β = 117.94(4)°, and V = 464.38(5) ?3 (Z = 4). FTIR spectrum of churchite-(Y) exhibits all the bands assigned to the vibrations of PO4, OH, and water groups. Unlike other documented occurrences of foggite and churchite-(Y), in Cioclovina Cave, the occurrence of these minerals are related to a process that phosphatized subjacent limestone and various cave sediments (sand, clay, and limy mud) to form a complex phosphate assemblage. The minerals are presumably derived from phosphate-rich solutions that reacted with clay earth while moving downward through the sediments. Foggite was formed at the expense of the originally precipitated crandallite. Locally concentrated yttrium, REE, and dissolved phosphate are probably responsible for the precipitation of churchite-(Y). Present address: Department of Geology, University of South Florida, Tampa, FL, USA  相似文献   

9.
Sulfur K-edge x-ray absorption spectra (XANES and EXAFS) and L-edge XANES of sphalerite (ZnS), chalcopyrite (CuFeS2) and stannite (Cu2FeSnS4) have been recorded using synchrotron radiation. The K- and L-edge XANES features are interpreted using a qualitative MO/energy band structure model. The densities of unoccupied states at the conduction bands of sphalerite, chalcopyrite and stannite are determined using S K- and L-edge XANES features (up to 15 eV above the edge), combined with published metal K-edge XANES. The SK- and L-edge XANES also indicate that, for sphalerite, the Fe2+ 3d band at the fundamental gap has little or no bonding hybridization with S 3p and S 3s orbitals; for chalcopyrite, the Cu+ 3d and Fe3+ 3d bands have strong mixing with S 3p and S 3s states, while for stannite the Cu+ 3d band strongly hybridizes with S 3p and S 3s orbitals, but the Fe2+ 3d band does not. The post-edge XANES features (15–50 eV above the edge) of sphalerite, chalcopyrite and stannite are similar. These features are related to the tetrahedral coordination of sulfur in all these structures, and interpreted by a multiple scattering model. The resonance energies from both the K-edge and L-edge XANES for these minerals are well correlated with reciprocal interatomic distances and lattice spaces. Sulfur K-edge EXAFS analyses using Fourier transform and curve fitting procedures are presented. Comparison of the structural parameters from EXAFS with x-ray structure data shows that the first shell bond distances (BD) from EXAFS are usually accurate to ±0.02 Å, and that coordination numbers (CN) are generally accurate to ±20 percent. For sphalerite, EXAFS analysis yields the structure parameters for the first three neighbour shells around a sulfur atom; the BD and CN even for the third shell are in close agreement with the x-ray structure, and the Debye-Waller term decreases from the first shell to the third shell. It is shown that sphalerite (ZnS) is a good model compound for EXAFS analysis of sulfur in chalcogenide glasses and metalloproteins.  相似文献   

10.
Summary Batiferrite, ideally Ba[Ti2Fe10]O19, was found in the Quaternary volcanic rocks near üdersdorf, Graulai, and Altburg, western Eifel area, Germany. The new mineral typically occurs as euhedral platy grains in cavities of melilite- and leucite-nephelinite basalts. Associated minerals are hematite, magnetite, titanite, g?tzenite, clinopyroxene, nepheline, and biotite. It exhibits a hexagonal tabular habit flattened on {0001}, diameter 0.5–1 mm, thickness 20–125 μm, and {10&1macr;3}, {10&1macr;0} as observable forms. The mineral is opaque, of black color with submetallic lustre, and shows a ferrimagnetic behavior. VHN50 is 793 with a range of 710–841 from ten indentations. The quantitative reflectance measurements of Ro/Re on oriented grains in air and oil immersion, respectively, are [%]: for 470 nm 22.1/20.1 and 8.4/7.1, for 546 nm 21.0/19.4 and 7.8/6.6, for 589 nm 20.2/18.8 and 7.4/6.3, and for 650 nm 19.3/18.3 and 6.8/5.9. The bireflectance is distinct (air) to weak (oil), and parallel (0001) a moderate anisotropy with straight extinction can be observed. Typical microprobe analyses give [wt%] K2O 0.28–0.33, Na2O 0.17–0.20, SrO 0.46–0.55, BaO 11.80–12.17, MgO 1.27–1.47, Al2O3 0.31–0.33, TiO2 13.11–13.63, MnO 2.38–2.57, Fe2O3 61.36–63.12, FeO 5.49–5.86 (Fe3+/Fe2+ calculated for charge compensation), which is equivalent to (Ba0.84Na0.06K0.06Sr0.05)1.01(Fe8.48 3+Fe0.86 2+Ti1.82Mg0.37Mn0.37Al0.06)11.96O19 as the average composition based on 19 oxygen atoms. Batiferrite is a magnetoplumbite-type mineral with hexagonal symmetry, space group P6 3 /mmc (no. 194), a = 5.909(1) ?, c = 23.369(4) ?, V = 706.6(2) ?3, Z = 2, and a calculated density of 5.016 gcm−3. The structure was refined to R1 = 0.031 for 278 unique reflections with Fo 2 > 4σ (Fo 2) and R1 = 0.079 for all 452 unique observations using single crystal X-ray data. The strongest reflections of the X-ray powder diffraction pattern are [d obs, I/Io, (hkl)]: 2.631, 100, (114); 2.799, 80, (107); 1.478, 70, (220); 2.429, 60, (203); 1.672, 50, (217). The new mineral is comparable to the other Ba containing magnetoplumbite-type minerals haggertyite and hawthorneite, the iron content, however, is much higher and in the range of magnetoplumbite. The large cation site (A) is dominated by Ba, and four of the five remaining crystallographic cation sites in the structure are dominated by Fe (M1, 2, 3, 5), the octahedrally coordinated M4-site is dominated by Ti. No oxygen vacancy on the O3-site like in plumboferrite can be observed. Batiferrite is named for its main chemical composition and the relationship to the M-type hexaferrites (polytype 5H).
Zusammenfassung Batiferrit, ein neues ferrimagnetisches Mineral des Magnetoplumbit-Typs aus den quart?ren Vulkaniten der West-Eifel, Deutschland Das neue Mineral Batiferrite, mit der Idealformel Ba[Ti2Fe10]O19, wurde an drei Fundpunkten in den Quart?ren Vulkangesteinen der westlichen Eifel, Deutschland, in der N?he von üdersdorf, Graulai und Altburg gefunden. Das neue Mineral tritt typischerweise bl?ttchenf?rmig in kleinen Hohlr?umen von Melilith- und Leucit-Nephelininit Basalten auf. Vergesellschaftete Minerale sind H?matit, Magnetit, Titanit, G?tzenit, Klinopyroxen, Nephelin und Biotit. Der Habitus ist hexagonal tafelig nach {0001}, mit einem Durchmesser von 0.5–1 mm und einer Dicke von 20–125 μm, zus?tzlich k?nnen die Formen {10&1macr;3} und {10&1macr;0} beobachtet werden. Das Mineral ist opak, hat eine schwarze Farbe mit einem leicht metallischen Glanz, und ist ferromagnetisch. Die H?rte VHN50 ist 793 mit einem Bereich von 710–841 aus 10 Eindruckbestimmungen. Die quantitativen Reflexionsmessungen von Ro/Re an orientierten K?rnern in Luft beziehungsweise ?limmersion, ergaben [%]: für 470 nm 22.1/20.1 und 8.4/7.1, für 546 nm 21.0/19.4 und 7.8/6.6, für 589 nm 20.2/18.8 und 7.4/6.3, und für 650 nm 19.3/18.3 und 6.8/5.9. Die Bireflexion ist deutlich (Luft) bis schwach (?l) und parallel (0001) kann eine mittlere Anisotropie mit gerader Ausl?schung beobachtet werden. Eine typische Mikrosondenanalyse ergibt [wt%] K2O 0.28–0.33, Na2O 0.17–0.20, SrO 0.46–0.55, BaO 11.80–12.17, MgO 1.27–1.47, Al2O3 0.31–0.33, TiO2 13.11–13.63, MnO 2.38–2.57, Fe2O3 61.36–63.12, FeO 5.49–5.86 (Fe3+/Fe2+ berechnet zum Ladungsausgleich), die mittlere chemische Formel auf der Basis von 19 Sauerstoffatomen lautet (Ba0.84Na0.06K0.06Sr0.05)1.01 (Fe8.48 3+Fe0.86 2+Ti1.82Mg0.37Mn0.37Al0.06)11.96O 19. Batiferrit ist ein Mineral der Magnetoplumbitgruppe, hat hexagonale Symmetrie mit der Raumgruppe P63/mmc (Nr. 194), a = 5.909(1) ?, c = 23.369(4) ?, V = 706.6(2) ?3, Z = 2, und einer berechneten Dichte von 5.016 gcm−3. Die Struktur wurde aus Einkristall-R?ntgendaten bis zu einem R1-Wert von 0.031 für 278 Fo 2 > 4σ(Fo 2), und einem R1-Wert von 0.079 für alle 452 Fo 2 verfeinert. Die st?rksten Beugungsreflexe der Pulver-R?ntgendaten sind [dobs, I/Io, (hkl)]: 2.631, 100, (114); 2.799, 80, (107); 1.478, 70, (220); 2.429, 60, (203); 1.672, 50, (217). Das neue Mineral weist deutliche ?hnlichkeiten zu den anderen beiden Ba-reichen Mineralen Haggertyit und Hawthorneit der Magnetoplumbit-Gruppe auf, jedoch ist der Eisengehalt wesentlich h?her und im Bereich des Minerals Magnetoplumbit. Der gro?e Kationenplatz (A) ist von Barium dominiert, vier (M1, 2, 3, 5) der restlichen fünf kristallographischen Kationenpl?tze in der Struktur sind fast ausschlie?lich mit Fe, die oktaedrisch koordinierte M4-Position ist überwiegend mit Ti besetzt. An der O3-Position konnte kein Sauerstoffdefizit wie in Plumboferrit festgestellt werden. Batiferrit ist nach seiner chemischen Beschaffenheit und nach seiner Zugeh?hrigkeit zu den M-Typ Hexaferriten (Polytyp 5H) benannt.


Received December 14, 1999; accepted March 2, 2000  相似文献   

11.
 In order to elucidate high-pressure transformations of high-P clinopyroxene (C2/c) at kinetically low temperature where atoms are not thermally activated, the transformation processes of FeGeO3 clinopyroxene (C2/c) have been investigated at pressures up to 20 GPa and 365 °C by powder X-ray diffraction using a synchrotron radiation source and TEM observation. With increasing pressure up to 20 GPa at room temperature, FeGeO3 high-P clinopyroxene (C2/c) reversibly transforms into a new high-pressure phase, FeGeO3(II). On increasing the temperature up to 365 °C, this phase rapidly transforms into FeGeO3 ilmenite within about 2 h. Intensity analysis of the X-ray diffraction pattern reveals that the high-pressure phase of FeGeO3(II) has an intermediate structure between clinopyroxene and ilmenite: the cation arrangement is similar to that of clinopyroxene and the oxygen arrangement is similar to that of ilmenite. The comparison of the crystal structures of these polymorphs suggests that clinopyroxene to FeGeO3(II) and FeGeO3(II) to ilmenite transformations are performed by the slight deformation of the oxygen packing and the short-range movement of cations, respectively. It is shown that this high-P clinopyroxene transforms into ilmenite through a low-activation energy path under the low-temperature condition. Received: 30 August 2000 / Accepted: 10 February 2001  相似文献   

12.
Summary Geometric data of fault planes and fault plane lineations, together with the observed sense of shear on the slip planes, were used to calculate paleostress tensors and fields responsible for the post metamorphic peak D3 and D4 deformation events in the four Odenwald units sensu Krohe (1991). The paleostress fields were calculated using the method of Will and Powell (1991). As inferred from the paleostress analysis, the D3 strike-slip deformation west of the Otzberg fault zone was caused by a, ± N-S directed, compressional regional stress field, with shallowly plunging σ1 axes and σ3 directions that plunge at shallow to moderate angles to the E or W; the calculated mean orientations are: σ1 06 → 350, σ2 77 → 234 and σ3 12 → 085. The B?llsteiner Odenwald east of the Otzberg fault zone was not affected by this stress field. This implies that the Bergstr?sser and B?llsteiner Odenwald were spatially separated and formed independent crustal blocks during D3. The D4 faulting event is recognised in all areas investigated, even though most prominently in units III and IV, and juxtaposed the Bergstr?sser and B?llsteiner Odenwald. This faulting episode was caused by a paleostress field with a steeply westerly plunging σ1 axis and a shallowly southsoutheasterly plunging σ3 axis. The orientations of the principal stresses are: σ1 52 → 270, σ2 38 → 085 and σ3 06 → 174. With continued deformation from D3 to D4, there was a progressive change in the orientation of the stress field indicating a change from a N-S compressional to extensional stress field, accompanied by the progressive development of strike-slip faults and late normal faults. Paleostress field orientations in the Pfalz Forest, SW of the Odenwald, determined by Fl?ttmann and Oncken (1992) are very similar to those obtained for the Odenwald region and indicate a regionally consistent stress pattern in the southwestern part of the Mid-German Crystalline Rise (MGCR) during strike-slip and normal faulting deformations.
Zusammenfassung Paleostress-Tensor Analyse sp?ter Deformationsereignisse im Odenwald-Kristallin und ein Vergleich mit anderen Einheiten der Mitteldeutschen Kristallinzone, Deutschland Für die vier Odenwald-Einheiten im Sinne von Krohe (1991) wurden Pal?ostressfelder für die Blattverschiebungs- und Abschiebungsereignisse D3 und D4 mit der Methode von Will und Powell (1991) berechnet. Die Analyse ergibt, da? das regionale Spannungsfeld, das westlich der Otzberg-Zone im Bergstr?sser Odenwald zum D3-Ereignis führte, ein ± N-S gerichtetes kompressives Stresssfeld war. Die σ1-Achse f?llt flach nach N bzw. S ein, die σ3-Achse mit kleinen bis moderaten Winkeln nach E bzw. W; die berechneten Orientierungen der Hauptspannungsrichtungen sind: σ1 08 → 350, σ2 77 → 234 and σ3 12 → 085. Der B?llsteiner Odenwald, ?stlich der Otzberg-Zone, wurde von diesem Spannungsfeld nicht erfa?t. Dies impliziert, da? Bergstr?sser und B?llsteiner Odenwald w?hrend des D3-Ereignisses voneinander getrennt waren und separate Krusteneinheiten darstellten. Auswirkungen der D4-Deformation k?nnen im gesamten Untersuchungsgebiet erkannt werden, am st?rksten jedoch in den Einheiten III und IV. Dieses Ereignis wurde von einem Pal?ostressfeld mit einer steil nach W einfallenden σ1- und einer flach nach SSE einfallenden σ3-Achse verursacht und führte zum Zusammenschlu? von Bergstr?sser und B?llsteiner Odenwald. Die berechneten Orientierungen der Hauptspannungsrichtungen sind: σ1 52 → 270, σ2 38 → 085 und σ3 06 → 174. Die Rotation der Hauptspannungsrichtungen war mit einer ?nderung von einem kompressionalen N-S gerichteten (D3) hin zu einem extensionalen (D4) Stressfeld verbunden. Die erzielten Ergebnisse sind sehr ?hnlich mit Resultaten, die Fl?ttmann und Oncken (1992) im Pf?lzer Wald ermittelten. Dies weist auf ein regional übereinstimmendes Spannungsfeld im SW-Teil der Mitteldeutschen Kristallinzone hin.


Received July 8, 1999; revised version accepted March 28, 2000  相似文献   

13.
Various X-ray diffraction methods have been applied to study the compression behavior of gibbsite, Al(OH)3, in diamond cells at room temperature. A phase transformation was found to take place above 3 GPa where gibbsite started to convert to its high-pressure polymorph. The high-pressure (HP) phase is quenchable and coexists with gibbsite at the ambient conditions after being unloaded. This HP phase was identified as nordstrandite based on the diffraction patterns obtained at room pressure by angle dispersive and energy dispersive methods. On the basis of this structural interpretation, the bulk modulus of the two polymorphs, i.e., gibbsite and nordstrandite, could be determined as 85 ± 5 and 70 ± 5 GPa, respectively, by fitting a Birch-Murnaghan equation to the compression data, assuming their Ko as 4. Molar volume cross-over occurs at 2 GPa, above which the molar volume of nordstrandite is smaller than that of gibbsite. The differences in the molar volume and structure between the two polymorphs are not significant, which accounts for the irreversibility of the phase transition. In gibbsite, the axial compressibility behaves as c/c o>a/a o>b/b o. This is due to the fact that the dioctahedral sheets along the c-axis are held by the relatively weak hydrogen bonding, which results in the greater compressibility along this direction. In nord- strandite, the axial compressibility is b/b o>c/c o>a/a o, which can also be interpreted as resulting from the the existence of hydrogen bonds along the b-axis. Received: 28 September 1998 / Revised, accepted: 22 December 1998  相似文献   

14.
Single-crystal electron paramagnetic resonance (EPR) spectra of a gem-quality jeremejevite, Al6B5O15(F, OH)3, from Cape Cross, Namibia, reveal an S = 1/2 hole center characterized by an 27Al hyperfine structure arising from interaction with two equivalent Al nuclei. Spin-Hamiltonian parameters obtained from single-crystal EPR spectra at 295 K are as follows: g 1 = 2.02899(1), g 2 = 2.02011(2), g 3 = 2.00595(1); A 1/g e β e  = −0.881(1) mT, A 2/g e β e  = −0.951(1) mT, and A 3/g e β e  = −0.972(2) mT, with the orientations of the g 3- and A 3-axes almost coaxial and perpendicular to the Al–O–Al plane; and those of the g 1- and A 1-axes approximately along the Al–Al and Al–OH directions, respectively. These results suggest that this aluminum-associated hole center represents hole trapping on a hydroxyl oxygen atom linked to two equivalent octahedral Al3+ ions, after the removal of the proton (i.e., a VIAl–OVIAl center). Periodic ab initio UHF and DFT calculations confirmed the experimental 27Al hyperfine coupling constants and directions, supporting the proposed structural model. The VIAl–OVIAl center in jeremejevite undergoes the onset of thermal decay at 300 °C and is completely bleached at 525 °C. These data obtained from the VIAl–OVIAl center in jeremejevite provide new insights into analogous centers that have been documented in several other minerals.  相似文献   

15.
Pelitic rocks were thermally metamorphosed at the contact of the Chimakurthy mafic-ultramafic igneous complex, Eastern Ghats Belt, India. The rocks show progressive change in mineralogy from biotite-sillimanite-quartz-garnet-K-feldspar (association I, 150 m from the intrusive contact) to garnet-spinel-cordierite-K-feldspar-sillimanite (association II, 20–30 m from the intrusive contact) to cordierite-K-feldspar-(cordierite-orthopyroxene-K-feldspar symplectite after osumilite)-spinel-FeTiAl oxides with/without garnet (associations III and IV, 5 m from the intrusive contact), and finally to spinel-orthopyroxene-cordierite-K-feldspar (association V, xenoliths). Oxide mineral clots in associations III and IV resemble emery-type rocks. Initial mineral reactions involved biotite-dehydration melting with partial segregation of the melt. Down-temperature mineral reactions were largely diffusion controlled and preservation of symplectitic and coronitic textures in microdomains is common. Interpretation of reaction textures in relevant petrogenetic grids for the sytems KFMASH and FMAS and combined with geothermobarometry suggest that the pelitic rocks were thermally metamorphosed at c. 6 kbar pressure along a heating-cooling trajectory within the temperature interval between c. 750 °C and c. 1000 °C. Received: 20 October 1996 / Accepted: 17 June 1997  相似文献   

16.
Sorption of phosphate by Fe(III)- and Al(III)-(hydr)oxide minerals regulates the mobility of this potential water pollutant in the environment. The objective of this research was to determine the molecular configuration of phosphate bound on ferrihydrite at pH 6 by interpreting P K-edge XANES spectra in terms of bonding mode. XANES and UV-visible absorption spectra for aqueous Fe(III)-PO4 solutions (Fe/P molar ratio = 0-2.0) provided experimental trends for energies of P(3p)-O(2p) and Fe(3d)-O(2p) antibonding molecular orbitals. Molecular orbitals for Fe(III)-PO4 or Al(III)-PO4 complexes in idealized monodentate or bidentate bonding mode were generated by conceptual bonding arguments, and Extended-Hückel molecular orbital computations were used to understand and assign XANES spectral features to bound electronic states. The strong white line at the absorption edge in P K-edge XANES spectra for Fe-PO4 or Al-PO4 systems is attributable to an electronic transition from a P 1s atomic orbital into P(3p)-O(2p) or P(3p)-O(2p)-Al(3p) antibonding molecular orbitals, respectively. For Fe-PO4 systems, a XANES peak at 2-5 eV below the edge was assigned to a P 1s electron transition into Fe(4p)-O(2p) antibonding molecular orbitals. Similarly, a shoulder on the low-energy side of the white line for variscite corresponds to a transition into Al(3p)-O(2p) orbitals. In monodentate-bonded phosphate, Fe-O bonding is optimized and P-O bonding is weakened, and the converse is true of bidentate-bonded phosphate. These differences explained an inverse correlation between energies of P(3p)-O(2p) and Fe(3d)-O(2p) antibonding molecular orbitals consistent with a monodentate-to-bidentate transition in aqueous Fe(III)-PO4 solutions. The intensity of the XANES pre-edge feature in Fe(III)-bonded systems increased with increasing number of Fe(III)-O-P bonds. Based on the similarity of intensity and splitting of the pre-edge feature for phosphate sorbed on ferrihydrite at 750 mmol/kg at pH 6 and aqueous Fe-PO4 solutions containing predominantly bidentate complexes, XANES results indicated that phosphate adsorbed on ferrihydrite was predominantly a bidentate-binuclear surface complex.  相似文献   

17.
A selected set of five different kyanite samples was analysed by electron microprobe and found to contain chromium between <0.001 and 0.055 per formula unit (pfu). Polarized electronic absorption spectroscopy on oriented single crystals, R1, R2-sharp line luminescence and spectra of excitation of λ3- and λ4-components of R1-line of Cr3+-emission had the following results: (1) The Fe2+–Ti4+ charge transfer in c-parallel chains of edge connected M(1) and M(2) octahedra shows up in the electronic absorption spectra as an almost exclusively c(||Z′)-polarized, very strong and broad band at 16000 cm−1 if <, in this case the only band in the spectrum, and at an invariably lower energy of 15400 cm−1 in crystals with  ≥ . The energy difference is explained by an expansion of the Of–Ok, and Ob–Om edges, by which the M(1) and M(2) octahedra are interconnected (Burnham 1963), when Cr3+ substitutes for Al compared to the chromium-free case. (2) The Cr3+ is proven in two greatly differing crystal fields a and b, giving rise to two sets of bands, derived from the well known dd transitions of Cr3+ 4A2g4T2g(F)(I), →4T1g(F)(II), and →4T1g(P)(III). Band energies in the two sets a and b, as obtained by absorption, A, and excitation, E, agree well: I: 17300(a, A), 17200(a, E), 16000(b, A), 16200(b, E); II: 24800(a, A), 24400(a, E); 22300(b, A), 22200(b, E); III: 28800(b,A) cm−1. Evaluation of crystal field parameters from the bands in the electronic spectra yield Dq(a)=1730 cm−1, Dq(b)=1600 cm−1, B(a)=790 cm−1, B(b)=620 cm−1 (errors ca. ±10 cm−1), again in agreement with values extracted from the λ3, λ4 excitation spectra. The CF-values of set a are close to those typical of Cr3+ substituting for Al in octahedra of other silicate minerals without constitutional OH as for sapphirine, mantle garnets or beryl, and are, therefore, interpreted as caused by Cr3+ substituting for Al in some or all of the M(1) to M(4) octaheda of the kyanite structure, which are crystallographically different but close in their mean Al–O distances, ranging from 1.896 to 1.919 A (Burnham 1963), and slight degrees of distortion. Hence, band set a originates from substitutive Cr3+ in the kyanite structural matrix. The CF-data of Cr3+ type b, expecially B, resemble those of Cr3+ in oxides, especially of corundum type solid solutions or eskolaite. This may be interpreted by the assumption that a fraction of the total chromium contents might be allocated in a precursor of a corundum type exsolution. Received: 3 January 1997 / Revised, accepted: 2 May 1997  相似文献   

18.
The Archean Shawmere anorthosite lies within the granulite facies portion of the Kapuskasing Structural Zone (KSZ), Ontario, and is crosscut by numerous linear alteration veins containing calcite + quartz ± dolomite ± zoisite ± clinozoisite ± margarite ±paragonite ± chlorite. These veins roughly parallel the trend of the Ivanhoe Lake Cataclastic Zone. Equilibria involving clinozoisite + margarite + quartz ± calcite ± plagioclase show that the vein minerals were stable at T < 600 °C, XCO2 < 0.4 at P ≈ 6 kbar. The stabilities of margarite and paragonite in equilibrium with quartz are also consistent with T < 600 °C and XCO2 < 0.4 at 6 kbar. Additional assemblages consisting of calcite + clinochlore + quartz + talc + margarite indicate T < 500 °C with XCO2 > 0.9. Thus, vein formation, while clearly retrograde, spanned a range of temperatures, and fluid compositions evolved from H2O-rich to CO2-rich. The calcite in the retrograde veins has δ18O values that range from 8.4 to 11.2‰ (average = +9.7 ± 0.9‰) and δ13C values that range from −3.9 to −1.6‰ (average = −3.1 ± 0.6‰). These values indicate that the fluids from which calcite precipitated underwent extensive exchange with the anorthosite and other crustal lithologies. The fluids may have been initially derived either from devolatilization of metamorphic rocks or crystallization of igneous rocks in the adjacent Abitibi subprovince. Vein quartz contains CO2-rich fluid inclusions (final melting T = −57.0 to −58.7 °C) that range in size from 5 to 17 μm. Measured homogenization temperatures (T h) range from −44.0 to 14.5 °C, however for most inclusions (46 of S1), T h = −44.0 to −21.1 °C (ρCO2 ≈ 1.13 to 1.05 g/cm3). At 400 to 600 °C, these densities correspond to pressures of 3.5 to 7 kbar, which is the best estimate of pressures of vein formation. It has been argued that some high density CO2-rich fluid inclusions found in the KSZ were formed during peak metamorphism and thus document the presence of a CO2-rich fluid during peak granulite facies metamorphism (Rudnick et al. 1984). The association of high density CO2-rich fluid inclusions with clearly retrograde veins documents the formation of similar composition and density inclusions after the peak of metamorphism. Thus, the coincidence of entrapment pressures calculated from fluid inclusion density measurements with peak metamorphic pressures alone should not be considered strong evidence for peak metamorphic inclusion entrapment. All fluid inclusion results are consistent with an initially semi-isobaric retrograde PT path. Received: 2 April 1996 / Accepted: 15 November 1996  相似文献   

19.
The EPR spectra of Maxixe-type beryl contain a large number of overlapping signals. The angular dependence of the 1:3:3:1 signal typical for the CH3 radical shows that this radical is located at the center of the channel cavity with its symmetry axis parallel to the crystal c-axis and is rotating around this axis. Its EPR spectrum is axially symmetric with g // = 2.00263, g  = 2.00249 and A// = 2.288 mT, A = 2.256 mT. These anisotropies have the opposite signs of those found for surface-adsorbed methyl radicals. Hydrogen atoms are located at position 2a at the center of the beryl cavity and the EPR parameters of the narrow doublet signal are A 0 = 1,407 MHz and g = 2.00230. Another doublet signal, which is broader and has axial symmetry with g // = 2.00265, g  = 2.00625 and A// = 0.895 mT, A = 0.885 mT, could come from a HCO3 radical. One narrow and easily saturated signal with g // = 2.00227 and g  = 2.00386 is interpreted to arise from a carbon monoxide radical in the beryl channel, oriented with its axis parallel to the crystal c-axis. Additional weak doublet lines, which have similar g values as the carbon monoxide radical, are created by nearby hydrogens. A powder spectrum with g // = 2.0017 and g  = 2.0004 appears upon UV irradiation of the single crystal and is easily saturated. This spectrum is interpreted to arise from a carbon dioxide radical, which rotates around its symmetry axis.  相似文献   

20.
Fluid inclusions in garnet, kyanite and quartz from microdiamond-bearing granulites in the Western Gneiss Region, Norway, document a conspicuous fluid evolution as the rocks were exhumed following Caledonian high- and ultrahigh-pressure (HP–UHP) metamorphism. The most important of the various fluid mixtures and daughter minerals in these rocks are: (N2 + CO2 + magnesian calcite), (N2 + CO2 + CH4 + graphite + magnesian calcite), (N2 + CH4), (N2 + CH4 + H2O), (CO2) and (H2O + NaCl + CaCl2 + nahcolite). Rutile also occurs in the N2 + CO2 inclusions as a product of titanium diffusion from the garnet host into the fluid inclusions. Volatiles composed of N2 + CO2 + magnesian calcite characterise the ambient metamorphic environment between HP–UHP (peak) and early retrograde metamorphism. During progressive decompression, the mole fraction of N2 increased in the fluid mixtures; as amphibolite-facies conditions were reached, CH4 and later, H2O, appeared in the fluids, concomitant with the disappearance of CO2 and magnesian calcite. Graphite is ubiquitous in the host lithologies and fluid inclusions. Thermodynamic modelling of the metamorphic volatiles in a graphite-buffered C-O-H system demonstrates that the observed metamorphic volatile evolution was attainable only if the f O2 increased from c. −3.5 (±0.3) to −0.8 (±0.3) log units relative to the FMQ oxygen buffer. External introduction of oxidising aqueous solutions along a system of interconnected ductile shear zones adequately explains the dramatic increase in the f O2. The oxidising fluids introduced during exhumation were likely derived from dehydration of oceanic crust and continental sediments previously subducted during an extended period of continental collision in conjunction with the Caledonian orogeny. Received: 15 December 1997 / Accepted: 25 May 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号