首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of gas drag and gravitational perturbations by a planetary embryo on the orbit of a planetesimal in the solar nebula was examined. Non-Keplerian rotation of the gas causes secular decay of the orbit. If the planetesimal's orbit is exterior to the perturber's, resonant perturbations oppose this drag and can cause it to be trapped in a stable orbit at a commensurability of order j/(j + 1), where j is an integer. Numerical and analytical demonstrations show that resonant trapping occurs for wide ranges of perturbing mass, planetesimal size, and j. Induced eccentricities are large, causing overlap of orbits for bodies in different resonances with j > 2. Collisions between planetesimals in different resonances, or between resonant and nonresonant bodies, result in their disruption. Fragments smaller than a critical size can pass through resonances under the influence of drag and be accreted by the embryo. This effect speeds accretion and tends to prevent dynamical isolation of planetary embryos, making gas-rich scenarios for planetary formation more plausible.  相似文献   

2.
Abstract— The primordial asteroid belt contained at least several hundred and possibly as many as 10,000 bodies with diameters of 1000 km or larger. Following the formation of Jupiter, nebular gas drag combined with passage of such bodies through Jovian resonances produced high eccentricities (e = 0.3‐0.5), low inclinations (i < 0.5°), and, therefore, high velocities (3–10 km/s) for “resonant” bodies relative to both nebular gas and non‐resonant planetesimals. These high velocities would have produced shock waves in the nebular gas through two mechanisms. First, bow shocks would be produced by supersonic motion of resonant bodies relative to the nebula. Second, high‐velocity collisions of resonant bodies with non‐resonant bodies would have generated impact vapor plume shocks near the collision sites. Both types of shocks would be sufficient to melt chondrule precursors in the nebula, and both are consistent with isotopic evidence for a time delay of ?1‐1.5 Myr between the formation of CAIs and most chondrules. Here, initial simulations are first reported of impact shock wave generation in the nebula and of the local nebular volumes that would be processed by these shocks as a function of impactor size and relative velocity. Second, the approximate maximum chondrule mass production is estimated for both bow shocks and impact‐generated shocks assuming a simplified planetesimal population and a rate of inward migration into resonances consistent with previous simulations. Based on these initial first‐order calculations, impact‐generated shocks can explain only a small fraction of the minimum likely mass of chondrules in the primordial asteroid belt (?1024‐1025g). However, bow shocks are potentially a more efficient source of chondrule production and can explain up to 10–100 times the estimated minimum chondrule mass.  相似文献   

3.
We investigate the orbital evolution of 10(13)- to 10(25) -g planetesimals near 1 AU and in the asteroid belt (near 2.6 AU) prior to the stage of evolution when the mutual perturbations between the planetesimals become important. We include nebular gas drag and the effects of Jupiter and Saturn at their present masses and in their present orbits. Gas drag introduces a size-dependent phasing of the secular perturbations, which leads to a pronounced dip in encounter velocities (Venc) between bodies of similar mass. Plantesimals of identical mass have Venc approximately 1 and approximately 10 m s-1 (near 1 and 2.6 AU, respectively) while bodies differing by approximately 10 in mass have Venc approximately 10 and approximately 100 m s-1 (near 1 and 2.6 AU, respectively). Under these conditions, growth, rather than erosion, will occur only by collisions of bodies of nearly the same mass. There will be essentially no gravitational focusing between bodies less than 10(22) to 10(25) g, allowing growth of planetary embryos in the terrestrial planet region to proceed in a slower nonrunaway fashion. The environment in the asteroid belt will be even more forbidding and it is uncertain whether even the severely depleted present asteroid belt could form under these conditions. The perturbations of Jupiter and Saturn are quite sensitive to their semi-major axes and decrease when the planets' heliocentric distances are increased to allow for protoplanet migration. It is possible, though not clearly demonstrated, that this could produce a depleted asteroid belt but permit formation of a system of terrestrial planet embryos on a approximately 10(6)-year timescale, initially by nonrunaway growth and transitioning to runaway growth after approximately 10(5) years. The calculations reported here are valid under the condition that the relative velocities of the bodies are determined only by Jupiter and Saturn perturbations and by gas drag, with no mutual perturbations between planetesimals. If, while subject to these conditions, the bodies become large enough for their mutual perturbations to influence their velocity and size evolution significantly, the problem becomes much more complex. This problem is under investigation.  相似文献   

4.
Numerous studies in the past few years have analyzed possible effects of planetary migration on the small bodies of the Solar System (mainly asteroids and KBOs), with the double aim of explaining certain dynamical structures in these systems, as well as placing limits on the magnitude of the radial migration of the planets. Here we undertake a similar aim, only this time concentrating on the dynamical stability of planetary satellites in a migration scenario. However, different from previous works, the strongest perturbations on satellite systems are not due to the secular variation of the semimajor axes of the planets, but from the planetesimals themselves. These perturbations result from close approaches between the planetesimals and satellites.We present results of several numerical simulations of the dynamical evolution of real and fictitious satellite systems around the outer planets, under the effects of multiple passages of a population of planetesimals representing the large-body component of a residual rocky disk. Assuming that this component dominated the total mass of the disk, our results show that the present systems of satellites of Uranus and Neptune do not seem to be compatible with a planetary migration larger than even one quarter that suggested by previous studies, unless these bodies were originated during the late stage of evaporation of the planetesimal disk. For larger variations of the semimajor axes of the planets, most of the satellites would either be ejected from the system or suffer mutual collisions due to excitation in their eccentricities. For the systems of Jupiter and Saturn, these perturbations are not so severe, and even large migrations do not introduce large instabilities.Nevertheless, even a small number of 1000-km planetesimals in the region may introduce significant excitation in the eccentricities and inclinations of satellites. Adequate values of this component may help explain the present dynamical distribution of distant satellites, including the highly peculiar orbit of Nereid.  相似文献   

5.
Jiang & Yeh proposed gas-drag-induced resonant capture as a mechanism able to explain the dominant 3:2 resonance observed in the trans-Neptunian belt. Using a model of a disc–star–planet system they concluded that gaseous drag in a protoplanetary disc can trap trans-Neptunian object (TNO) embryos into the 3:2 resonance rather easily although it could not trap objects into the 2:1 resonance. Here we further investigate this scenario using numerical simulations within the context of the planar restricted four-body problem by including both present-day Uranus and Neptune. Our results show that mean motion and corotation resonances are possible and trapping into both the 3:2 and 2:1 resonances as well as other resonances is observed. The associated corotation centres may easily form larger planetesimals from smaller ones. Corotation resonances evolve into pure Lindblad resonances in a time-scale of 0.5 Myr. The non-linear corotation and mean motion resonances produced are very size selective. The 3:2 resonance is dominant for submetric particles but for larger particles the 2:1 resonance is stronger. In summary, our calculations show that confined chaotic motion around the resonances not only increases trapping efficiency but also the orbital eccentricities of the trapped material, modifying the relative abundance of trapped particles in different resonances. If we assume a more compact planetary system, instead of using the present-day values of the orbital elements of Uranus and Neptune, our results remain largely unchanged.  相似文献   

6.
We consider a belt of small bodies (planetesimals, asteroids, dust particles) around a star, captured in one of the external or 1:1 mean-motion resonances with a massive perturber (protoplanet, planet). The objects in the belt collide with each other. Combining methods of celestial mechanics and statistical physics, we calculate mean collisional velocities and mean collisional rates, averaged over the belt. The results are compared to collisional velocities and rates in a similar, but non-resonant belt, as predicted by the particle-in-a-box method. It is found that the effect of the resonant lock on the velocities is rather small, while on the rates more substantial. At low to moderate eccentricities and libration amplitudes of tens of degrees, which are typical of many astrophysical applications, the collisional rates between objects in an external resonance are by about a factor of two higher than those in a similar belt of objects not locked in a resonance. For Trojans under the same conditions, the collisional rates may be enhanced by up to an order of magnitude. The collisional rates increase with the decreasing libration amplitude of the resonant argument, depend on the eccentricity distribution of objects, and vary from one resonance to another. Our results imply, in particular, shorter collisional lifetimes of resonant Kuiper belt objects in the solar system and higher efficiency of dust production by resonant planetesimals in debris disks around other stars.  相似文献   

7.
Stephen J. Kortenkamp 《Icarus》2005,175(2):409-418
Numerical simulations of the gravitational scattering of planetesimals by a protoplanet reveal that a significant fraction of scattered planetesimals can become trapped as so-called quasi-satellites in heliocentric 1:1 co-orbital resonance with the protoplanet. While trapped, these resonant planetesimals can have deep low-velocity encounters with the protoplanet that result in temporary or permanent capture onto highly eccentric prograde or retrograde circumplanetary orbits. The simulations include solar nebula gas drag and use planetesimals with diameters ranging from ∼1 to ∼1000 km. Initial protoplanet eccentricities range from ep=0 to 0.15 and protoplanet masses range from 300 Earth-masses (M) down to 0.1M. This mass range effectively covers the final masses of all planets currently thought to be in possession of captured satellites—Jupiter, Saturn, Neptune, Uranus, and Mars. For protoplanets on moderately eccentric orbits (ep?0.1) most simulations show from 5-20% of all scattered planetesimals becoming temporarily trapped in the quasi-satellite co-orbital resonance. Typically, 20-30% of the temporarily trapped quasi-satellites of all sizes came within half the Hill radius of the protoplanet while trapped in the resonance. The efficiency of the resonance trapping combined with the subsequent low-velocity circumplanetary capture suggests that this trapped-to-captured transition may be important not only for the origin of captured satellites but also for continued growth of protoplanets.  相似文献   

8.
We review here some relevant problems connected to the evolution of circumstellar dust grains, subjected to Poynting-Robertson (PR) drag, and perturbed by first-order resonances with a planet on a circular orbit. We show that only outer mean motion resonances are able to counteract the damping effect of PR drag. However, the high orbital eccentricities reached by the particle lead to orbit crossings with the planet. This is a serious difficulty for a permanent trapping to be achieved. In any case, we show that the time spent in the resonance is long enough for statistical effects (accumulation at the resonant radius) to be significant. We underline some difficulties associated with this problem, namely, the non-adiabaticity of motion in the resonance phase space and the existence of close encounters with the planet at high eccentricities.  相似文献   

9.
A migrating planet can capture planetesimals into mean motion resonances. However, resonant trapping can be prevented when the drift or migration rate is sufficiently high. Using a simple Hamiltonian system for first- and second-order resonances, we explore how the capture probability depends on the order of the resonance, drift rate and initial particle eccentricity. We present scaling factors as a function of the planet mass and resonance strength to estimate the planetary migration rate above which the capture probability drops to less than half. Applying our framework to multiple extrasolar planetary systems that have two planets locked in resonance, we estimate lower limits for the outer planet's migration rate, allowing resonance capture of the inner planet.
Mean motion resonances are comprised of multiple resonant subterms. We find that the corotation subterm can reduce the probability of capture when the planet eccentricity is above a critical value. We present factors that can be used to estimate this critical planet eccentricity. Applying our framework to the migration of Neptune, we find that Neptune's eccentricity is near the critical value that would make its 2 : 1 resonance fail to capture twotinos. The capture probability is affected by the separation between resonant subterms and so is also a function of the precession rates of the longitudes of periapse of both planet and particle near resonance.  相似文献   

10.
Resonance occupation of trans-neptunian objects (TNOs) in the scattered disk (>48 AU) was investigated by integrating the orbits of 85 observed members for 4 Gyr. Twenty seven TNOs were locked in the 9:4, 16:7, 7:3, 12:5, 5:2, 8:3, 3:1, 4:1, 11:2, and 27:4 resonances. We then explored mechanisms for the origin of the resonant structure in the scattered disk, in particular the long-term 9:4, 5:2, and 8:3 resonant TNOs (median 4 Gyr), by performing large scale simulations involving Neptune scattering and planetary migration over an initially excited planetesimals disk (wide range of eccentricities and inclinations). To explain the formation of Gyr-resident populations in such distant resonances, our results suggest the existence of a primordial planetesimal disk of at least 45-50 AU radius that suffered a dynamical perturbation leading to 0.1-0.3 or greater eccentricities and a range of inclinations up to ∼20° during early stages of the Solar System history, before planetary migration.  相似文献   

11.
We analyse the global structure of the phase space of the planar planetary 2/1 mean-motion resonance in cases where the outer planet is more massive than its inner companion. Inside the resonant domain, we show the existence of two families of periodic orbits, one associated to the librational motion of resonant angle (σ-family) and the other related to the circulatory motion of the difference in longitudes of pericentre (  Δϖ  -family). The well-known apsidal corotation resonances (ACR) appear as intersections between both families. A complex web of secondary resonances is also detected for low eccentricities, whose strengths and positions are dependent on the individual masses and spatial scale of the system.
The construction of dynamical maps for various values of the total angular momentum shows the evolution of the families of stable motion with the eccentricities, identifying possible configurations suitable for exoplanetary systems. For low–moderate eccentricities, several different stable modes exist outside the ACR. For larger eccentricities, however, all stable solutions are associated to oscillations around the stationary solutions.
Finally, we present a possible link between these stable families and the process of resonance capture, identifying the most probable routes from the secular region to the resonant domain, and discussing how the final resonant configuration may be affected by the extension of the chaotic layer around the resonance region.  相似文献   

12.
In the case of the 2:1 and 3:2 resonances with Jupiter, it has not been yet possible to have a complete identification of all chaotic diffusion processes at work, mainly because the time scale of some of them are of an order still out of the reach of precise integrations. A planar Hadjidemetriou's mapping, using expansions valid for high eccentricities and scaled in order to accelerate the diffusion processes, was derived. The solutions obtained with the mapping show huge eccentricity variations in all orbits starting in the middle of the 2:I resonance, when the main short-period perturbations of Jupiter's orbit are considered. The solutions starting in the middle of the 3:2 resonance do not show any important diffusion.  相似文献   

13.
We present results from a suite of N-body simulations that follow the formation and accretion history of the terrestrial planets using a new parallel treecode that we have developed. We initially place 2000 equal size planetesimals between 0.5 and 4.0 AU and the collisional growth is followed until the completion of planetary accretion (>100 Myr). A total of 64 simulations were carried out to explore sensitivity to the key parameters and initial conditions. All the important effect of gas in laminar disks are taken into account: the aerodynamic gas drag, the disk-planet interaction including Type I migration, and the global disk potential which causes inward migration of secular resonances as the gas dissipates. We vary the initial total mass and spatial distribution of the planetesimals, the time scale of dissipation of nebular gas (which dissipates uniformly in space and exponentially in time), and orbits of Jupiter and Saturn. We end up with 1-5 planets in the terrestrial region. In order to maintain sufficient mass in this region in the presence of Type I migration, the time scale of gas dissipation needs to be 1-2 Myr. The final configurations and collisional histories strongly depend on the orbital eccentricity of Jupiter. If today’s eccentricity of Jupiter is used, then most of bodies in the asteroidal region are swept up within the terrestrial region owing to the inward migration of the secular resonance, and giant impacts between protoplanets occur most commonly around 10 Myr. If the orbital eccentricity of Jupiter is close to zero, as suggested in the Nice model, the effect of the secular resonance is negligible and a large amount of mass stays for a long period of time in the asteroidal region. With a circular orbit for Jupiter, giant impacts usually occur around 100 Myr, consistent with the accretion time scale indicated from isotope records. However, we inevitably have an Earth size planet at around 2 AU in this case. It is very difficult to obtain spatially concentrated terrestrial planets together with very late giant impacts, as long as we include all the above effects of gas and assume initial disks similar to the minimum mass solar nebular.  相似文献   

14.
Slow and Fast Diffusion in Asteroid-Belt Resonances: A Review   总被引:1,自引:0,他引:1  
This paper reviews recent advances in several topics of resonant asteroidal dynamics as the role of resonances in the transportation of asteroids and asteroidal debris to the inner and outer solar system; the explanation of the contrast of a depleted 2/1 resonance (Hecuba gap) and a high-populated 3/2 resonance (Hilda group); the overall stochasticity created in the asteroid belt by the short-period perturbations of Jupiter's orbit, with emphasis in the formation of significant three-period resonances, the chaotic behaviour of the outer asteroid belt, and the depletion of the Hecuba gap. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
We present families of symmetric and asymmetric periodic orbits at the 1/1 resonance, for a planetary system consisting of a star and two small bodies, in comparison to the star, moving in the same plane under their mutual gravitational attraction. The stable 1/1 resonant periodic orbits belong to a family which has a planetary branch, with the two planets moving in nearly Keplerian orbits with non zero eccentricities and a satellite branch, where the gravitational interaction between the two planets dominates the attraction from the star and the two planets form a close binary which revolves around the star. The stability regions around periodic orbits along the family are studied. Next, we study the dynamical evolution in time of a planetary system with two planets which is initially trapped in a stable 1/1 resonant periodic motion, when a drag force is included in the system. We prove that if we start with a 1/1 resonant planetary system with large eccentricities, the system migrates, due to the drag force, along the family of periodic orbits and is finally trapped in a satellite orbit. This, in principle, provides a mechanism for the generation of a satellite system: we start with a planetary system and the final stage is a system where the two small bodies form a close binary whose center of mass revolves around the star.  相似文献   

16.
Rodney S Gomes 《Icarus》2003,161(2):404-418
I simulate the orbital evolution of the four major planets and a massive primordial planetesimal disk composed of 104 objects, which perturb the planets but not themselves. As Neptune migrates by energy and angular momentum exchange with the planetesimals, a large number of primordial Neptune-scattered objects are formed. These objects may experience secular, Kozai, and mean motion resonances that induce temporary decrease of their eccentricities. Because planets are migrating, some planetesimals can escape those resonances while in a low-eccentricity incursion, thus avoiding the return path to Neptune close encounter dynamics. In the end, this mechanism produces stable orbits with high inclination and moderate eccentricities. The population so formed together with the objects coming from the classical resonance sweeping process, originates a bimodal distribution for the Kuiper Belt orbits. The inclinations obtained by the simulations can attain values above 30° and their distribution resembles a debiased distribution for the high-inclination population coming from the real classical Kuiper Belt.  相似文献   

17.
We investigate the orbital evolution of planetesimals in a self-gravitating circumstellar disc in the size regime (∼1–5000 km) where the planetesimals behave approximately as test particles in the disc's non-axisymmetric potential. We find that the particles respond to the stochastic, regenerative spiral features in the disc by executing large random excursions (up to a factor of 2 in radius in ∼1000 yr), although typical random orbital velocities are of the order of one tenth of the Keplerian speed. The limited time frame and small number of planetesimals modelled do not permit us to discern any net direction of planetesimal migration. Our main conclusion is that the high eccentricities (∼0.1) induced by interaction with spiral features in the disc is likely to be highly unfavourable to the collisional growth of planetesimals in this size range while the disc is in the self-gravitating regime. Thus if , as recently argued by Rice et al., the production of planetesimals gets under way when the disc is in the self-gravitating regime (either at smaller planetesimal size scales, where gas drag is important, or via gravitational fragmentation of the solid component), the planetesimals thus produced would not be able to grow collisionally until the disc ceases to be self-gravitating. It is unclear, however, given the large amplitude excursions undergone by planetesimals in the self-gravitating disc, whether they would be retained in the disc throughout this period, or whether they would instead be lost to the central star.  相似文献   

18.
The final stage in the formation of terrestrial planets consists of the accumulation of ∼1000-km “planetary embryos” and a swarm of billions of 1-10 km “planetesimals.” During this process, water-rich material is accreted by the terrestrial planets via impacts of water-rich bodies from beyond roughly 2.5 AU. We present results from five high-resolution dynamical simulations. These start from 1000-2000 embryos and planetesimals, roughly 5-10 times more particles than in previous simulations. Each simulation formed 2-4 terrestrial planets with masses between 0.4 and 2.6 Earth masses. The eccentricities of most planets were ∼0.05, lower than in previous simulations, but still higher than for Venus, Earth and Mars. Each planet accreted at least the Earth's current water budget. We demonstrate several new aspects of the accretion process: (1) The feeding zones of terrestrial planets change in time, widening and moving outward. Even in the presence of Jupiter, water-rich material from beyond 2.5 AU is not accreted for several millions of years. (2) Even in the absence of secular resonances, the asteroid belt is cleared of >99% of its original mass by self-scattering of bodies into resonances with Jupiter. (3) If planetary embryos form relatively slowly, then the formation of embryos in the asteroid belt may have been stunted by the presence of Jupiter. (4) Self-interacting planetesimals feel dynamical friction from other small bodies, which has important effects on the eccentricity evolution and outcome of a simulation.  相似文献   

19.
Third and fourth order mean motion resonances are studied in the model of the restricted three-body problem by numerical methods for mass parameters corresponding approximately to the Sun?CJupiter and Sun?CNeptune systems. In the case of inner resonances, it is shown that there are two regions of libration in the 8:5 and 7:4 resonances, one at low, the other at high eccentricities. In the 9:5 and 7:3 resonances libration can exist only in one region at high eccentricities. The 5:2 and 4:1 resonances are very regular, with one librational zone existing for all eccentricities. There is no visible region of libration at any eccentricities in the 5:1 resonance, the transition between the regions of direct and retrograde circulation is very sharp. In the case of outer resonances, the 8:5 and 7:4 resonances have also two regions of libration, but the 9:5 resonance has three, the 7:3 resonance two librational zones. The 5:2 resonance is again very regular, but it is parted for two regions of libration at high eccentricities. Libration is possible in the 4:1 resonance only at high eccentricities. The 5:1 resonance is very symmetric. In the case of outer resonances, a comparison is made with trans-Neptunian objects (TNO) in higher order mean motion resonances. Several new librating TNOs are identified.  相似文献   

20.
Abstract— Various hypotheses of the origin of asteroids and comets are briefly discussed. Interaction of planetesimals in the asteroid zone (AZ) with the gas, their perturbations by proto-Jupiter, and sweeping them out by more massive Jupiter zone bodies when they penetrated the AZ are considered. If the gas was turbulent, it could prevent a settling of dust particles to the equatorial plane of the disk and formation of dust condensations due to gravitational instability. Then particles grew by sticking upon collision. Gas moved radially due to turbulent viscosity and its dissipation. Small particles moved more-or-less together with the gas. As a result of gas drag, larger particles and bodies moved relative to the gas in the direction of increasing gas pressure. Gas would remove much of the solid material from the AZ if most bodies larger than a few km disintegrated by collisions into fragments smaller than a few tens of meters. Most of these fragments would then move into the Martian zone, and the small mass of Mars would have no explanation. Resonant perturbations of asteroids by Jupiter are discussed. In the model of a small mass disk they could scan through the asteroid belt due to changes in Jupiter's distance from the Sun that occurred when this planet accreted the gas and ejected the bodies from the solar system. Such a scanning considerably accelerated the removal of asteroids from the AZ. Massive Jupiter zone bodies with large orbital eccentricities that crossed the AZ were probably efficient at sweeping out bodies. Larger bodies increased the random velocities of the remaining asteroids at close encounters to the present values ~ 5 km/s. Restrictions on the runaway growth of giant planets, on the relative velocities of bodies and the disk surface density that follow from the consideration of the origin of the asteroid belt and the cometary cloud are considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号