首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
Only recently, medium intensity inflow events into the Baltic Sea have gained more awareness because of their potential to ventilate intermediate layers in the Southern Baltic Sea basins. With the present high-resolution model study of the Western Baltic Sea a first attempt is made to obtain model based realistic estimates of turbulent mixing in this area where dense bottom currents resulting from medium intensity inflow events are weakened by turbulent entrainment. The numerical model simulation which is carried out using the General Estuarine Transport Model (GETM) during nine months in 2003 and 2004 is first validated by means of three automatic stations at the Drogden and Darss Sills and in the Arkona Sea. In order to obtain good agreement between observations and model results, the 0.5×0.50.5×0.5 nautical mile bathymetry had to be adjusted in order to account for the fact that even at that scale many relevant topographic features are not resolved. Current velocity, salinity and turbulence observations during a medium intensity inflow event through the Øresund are then compared to the model results. Given the general problems of point to point comparisons between observations and model simulations, the agreement is fairly good with the characteristic features of the inflow event well represented by the model simulations. Two different bulk measures for mixing activity are then introduced, the vertically integrated decay of salinity variance, which is equal to the production of micro-scale salinity variance, and the vertically integrated turbulent salt flux, which is related to an increase of potential energy due to vertical mixing of stably stratified flow. Both measures give qualitatively similar results and identify the Drogden and Darss Sills as well as the Bornholm Channel as mixing hot spots. Further regions of strong mixing are the dense bottom current pathways from these sills into the Arkona Sea, areas around Kriegers Flak (a shoal in the western Arkona Sea) and north–west of the island of Rügen.  相似文献   

2.
The Gulf of Kachchh (GoK) is situated in the northeastern Arabian Sea. The presence of several industries along its coastal belt makes GoK a highly sensitive coastal ecosystem. In the present study, an attempt is made for the first time to study GoK thermohaline structure and its variability, based on field measurements and model simulations. Though GoK is considered as a well-mixed system, the study reveals that only the central Gulf is well mixed. Vertical gradients in temperature and salinity fields are noticed in the eastern Gulf, where a cold and high saline tongue is observed in the subsurface layers. Salinity indicates the characteristic feature of an inverse estuary with low values (37.20 psu) near the mouth and high values (>40.0 psu) near the head of the Gulf. The model simulated temperature and salinity fields exhibit semidiurnal oscillations similar to that of field observations. Model results show cold, high saline waters advecting from the east during ebb forming a transition zone, which oscillates with tides. A high salinity tongue is seen in the bottom layer, indicating a westward flowing bottom current. The transient zone acts as an dynamic barrier, and plays a vital role in the pollutant transport.  相似文献   

3.
Globally coupled climate models are generally capable of reproducing the observed trends in the globally averaged atmospheric temperature. However, the global models do not perform as well on regional scales. Here, we present results from four 100-year, high-resolution ocean model experiments (resolution less than 1 km) for the western Baltic Sea. The forcing is taken from a regional atmospheric model and a regional ocean model, imbedded into two global greenhouse gas emission scenarios, A1B and B1, for the period of 2000 to 2100 with each two realisations. Two control runs from 1960 to 2000 are used for validation. For both scenarios, the results show a warming with an increase of 0.5–2.5 K at the sea surface and 0.7–2.8 K below 40 m. The simulations further indicate a decrease in salinity by 1.5–2 practical salinity units. The increase in water temperature leads to a prolongation of heat waves based on present-day thresholds. This amounts to a doubling or even tripling of the heat wave duration. The simulations show a decrease in inflow events (barotropic/baroclinic), which will affect the deepwater generation and ventilation of the central Baltic Sea. The high spatial resolution allows us to diagnose the inflow events and the mechanism that will cause future changes. The reduction in barotropic inflow events correlates well with the increase in westerly winds. The changes in the baroclinic inflows can be consistently explained by the reduction of calm wind periods and thus a weakening of the necessary stratification in the western Baltic Sea and the Danish Straits.  相似文献   

4.
The exceptional Oder flood in summer 1997 was a unique event in order to investigate the impacts on and the consequences for the ecosystem of the Baltic Sea of about 6.5 km3 additional water loaded with nutrients and contaminants and discharged within only 5 weeks. About 15 institutions participated in this investigation in both the Szczecin Lagoon and the Pomeranian Bight. The Baltic Sea Research Institute Warnemünde studied the water and nutrient inflow, the spreading of the Oder discharge, and the impact of the discharge on the ecosystem. The main topic of the presented investigations is a detailed study of the spatial and temporal spreading of the extreme river discharge in the Pomeranian Bight and the southern Baltic Sea by satellite data, ship observations and continuous buoy measurements as well as numerical modelling. The meteorological conditions were characterized by mainly easterly winds which guided the outflowing riverine water along the German coast into the Arkona Sea. The spatial and temporal development of the distribution patterns of the Oder discharge was monitored by about 80 Sea Surface Temperature (SST) images of NOAA satellites. Shipborne measurements showed that the vertical extent of the Oder plume ranged between 5 and 7 metres. The concentrations of inorganic nutrients, except higher silicate, were comparable to typical winter/early spring values (seasonal maximum) in this region. The high dilution effect of the flood water reduced the concentration of contaminants and thus, prevented a direct negative impact of trace metals and chlorinated organic compounds on the marine environment. Coupled physical-biochemical modelling in combination with SST-images demonstrated the temporal development and satellite data in the visible spectral range delivered the maximum extent of discharged river water into the southern Arkona Sea where a further western transport was limited by the upwelling region off Hiddensee. Thus, all detected effects of the Oder flood were confined to the Pomeranian Bight and the southern Arkona Sea, without long-term consequences for the ecosystem.  相似文献   

5.
To investigate how salinity changes with abrupt increases and decreases in river discharge, three surveys were conducted along six sections around the Yellow River mouth before, during and after a water regulation event during which the river discharge was increased from ∼200 to >3000 m3 s−1 for the first 3 days, was maintained at >3000 m3 s−1 for the next 9 days and was decreased to <1000 m3 s−1 for the final 4 days. The mean salinity in the Yellow River estuary area during the event varied ∼1.21, which is much larger than its seasonal variation (∼0.50) and interannual variation (∼0.05). Before the event, a small plume was observed near the river mouth. During the event, the plume extended over 24 km offshore in the surface layer in the direction of river water outflow. After the event, the plume diminished in size but remained larger than before the event. The downstream propagation of the plume (as in a Kelvin wave sense) was apparent in the bottom layer during the second survey and in both the surface and bottom layers during the third survey. The plume sizes predicted by the formulas from theoretical studies are larger than those we observed, indicating that factors neglected by theoretical studies such as the temporal variation in river discharge and vertical mixing in the sea could be very important for plume evolution. In addition to the horizontal variation of the plume, we also observed the penetration of freshwater from the surface layer into the bottom layer. A comparison of two vertical processes, wind mixing and tidal mixing, suggests that the impact of wind mixing may be comparable with that of tidal mixing in the area close to the river mouth and may be dominant over offshore areas. The change in Kelvin number indicates an alteration of plume dynamics due to the abrupt change in river discharge during the water regulation event.  相似文献   

6.
A project to link the Dead Sea to the Red Sea via a canal is undergoing extensive study. In previous works, a generalized mathematical model describing the state of the Dead Sea and a simulation model to implement it have been developed. The model is extended to include the proposed canal project and investigates two alternative modelling canal scenarios: (1) introducing the canal water inflow into the bottom layer or (2) the top layer of the sea. The predicted general effects of the canal are the restoration of the water level of the sea to pre‐1970s level; an increase in the total evaporation rate and a decrease in the top layer salinity. Implementing scenario 1, the model predicts that: the water level of the Dead Sea will exceed the desired level design value and therefore shorter filling time can be used; seasonal stratification will persist; total evaporation rate will increase Modestly; there will a small decrease in the salinity of the top layer but a substantial decrease in the salinity of the bottom layer, which will hurt industries severely; there will be a continuation of seasonal crystallization of aragonite and gypsum. Implementing scenario 2 the model predicts that: the water level of the Dead Sea will be maintained at the desired level design value; stratification will be re‐established, with the formation of a permanent two‐layer system; there will be a substantial increase in the total evaporation rate; the salinity of the top layer will decrease significantly but there will be continuous slower salinity increase in the bottom layer; the crystallization of aragonite will cease, but seasonal gypsum crystallization can be expected to continue as soon as the filling period ends and the canal shifts into normal operation. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
Huijie Xue  Yi Du 《Ocean Dynamics》2010,60(2):341-357
A high-resolution coastal ocean model was developed to simulate the temporal/spatial variability of the Kennebec–Androscoggin (K–A) river plume and the circulation in Casco Bay. The model results agree favorably with the moored and shipboard observations of velocity, temperature, and salinity. The surface salinity gradient was used to distinguish the plume from the ambient coastal water. The calculated plume thickness suggests that the K–A plume is surface trapped. Its horizontal scales correlate well with Q 0.25, where Q is the volume discharge of the rivers. Directional spreading is affected by the wind with the upwelling favorable wind transporting the plume water offshore. Both the wind and the tide also enhance mixing in the plume. The inclusion of a wetting-and-drying (WAD) scheme appears to enhance the mixing and entrainment processes near the estuary. The plume becomes thicker near the mouth of the estuary, the outflow velocity of the plume is weaker, and the radius of the river plume shrinks. The flow field in the model run with the WAD is noisier, not only in shallow areas of Casco Bay but also in the plume and even on the shelf. We speculate that the WAD processes can affect much larger areas than the intertidal zones, especially via a river plume that feeds into a coastal current.  相似文献   

8.
Sea surface temperature satellite imagery and a regional hydrodynamic model are used to investigate the variability and structure of the Liverpool Bay thermohaline front. A statistically based water mass classification technique is used to locate the front in both data sets. The front moves between 5 and 35 km in response to spring–neap changes in tidal mixing, an adjustment that is much greater than at other shelf-sea fronts. Superimposed on top of this fortnightly cycle are semi-diurnal movements of 5–10 km driven by flood and ebb tidal currents. Seasonal variability in the freshwater discharge and the density difference between buoyant inflow and more saline Irish Sea water give rise to two different dynamical regimes. During winter, when cold inflow reduces the buoyancy of the plume, a bottom-advected front develops. Over the summer, when warm river water provides additional buoyancy, a surface-advected plume detaches from the bottom and propagates much larger distances across the bay. Decoupled from near-bed processes, the position of the surface front is more variable. Fortnightly stratification and re-mixing over large areas of Liverpool Bay is a potentially important mechanism by which freshwater, and its nutrient and pollutant loads, are exported from the coastal plume system. Based on length scales estimated from model and satellite data, the erosion of post-neap stratification is estimated to be responsible for exporting approximately 19% of the fresh estuarine discharge annually entering the system. Although the baroclinic residual circulation makes a more significant contribution to freshwater fluxes, the episodic nature of the spring–neap cycle may have important implications for biogeochemical cycles within the bay.  相似文献   

9.
Decadal-scale variations of water mass properties in the deep Weddell Sea   总被引:2,自引:0,他引:2  
Data from cruises between 1989 and 2003 with FS Polarstern were used to construct section-wide potential temperature and salinity time series of the main water masses in the Weddell Gyre. In tandem with these CTD data, two time series between 1989 and 1995 are presented from moored instruments in the central Weddell Sea. The regional and methodological consistency of the dataset allows us to quantify variations which are not visible in less homogeneous datasets. The data reveal significant temperature and salinity variations of the Warm Deep Water and the Weddell Sea Bottom Water on a decadal time scale. The longest time series were obtained at the prime meridian. Here warming is observed in the Warm Deep Water from 1992 to 1998 followed by cooling. In the Weddell Sea proper, measurements of instruments moored in the Weddell Sea Bottom Water layer recorded a temperature increase over 6 years at a rate of 0.01 °C a–1. After the mooring period, CTD casts in 1998 point to a weakening of the trend. The warming trend in the bottom water occurs over most of the Weddell Sea, as detected in the additional CTD surveys. The variations are close to the detection level in the voluminous Weddell Sea Deep Water. The initial warming trend of the Warm Deep Water is consistent with warming trends reported in literature of subsurface waters of the Antarctic Circumpolar Current. The reversal of the trend in the Weddell Sea seems to be related to variations of the atmospheric conditions which can affect both the intrusion of Circumpolar Deep Water from the north and the circulation of the Weddell Gyre. Because the Warm Deep Water is the major source water for the formation of deep and bottom water in the Weddell Sea, it is suggested that its increase in temperature and salinity is likely to at least partly cause the variations which were observed in the bottom water.Responsible Editor: Jörg-Olaf Wolff  相似文献   

10.
A chronology based on optically stimulated luminescence (OSL) dating is presented for the late- and post-glacial evolution of the southern Baltic Sea (15 ka to present). During this period, large water level and salinity changes occurred in the Baltic Basin due to opening and closing of connections to the North Atlantic. Previous attempts to establish a chronology for these palaeoenvironmental changes have mainly been conducted in coastal settings where organic material for 14C dating is abundant. Many of these records are, however, discontinuous due to the large water level fluctuations. In contrast, in the relatively deep water of the Arkona Basin, the sediment record is expected to be more or less continuous. The single aliquot regenerative dose (SAR) procedure was used to date 32 samples of fine quartz sand from a 10.86 m long sediment core from the centre of this basin (45 m water depth). Tests of luminescence characteristics confirmed the suitability of the material for OSL dating and the ages agree well with the available AMS 14C ages on shells. The Baltic Ice Lake drainage to the North Atlantic appears to occur 11.6 ka, agreeing with other published evidence. However, we suggest that the main marine Littorina transgression appears in the Arkona Basin at about 6.5 ka, rather than at 8.5 ka, as previously thought.  相似文献   

11.
Salinity is an important component of the marine system. Previous studies indicated that the mean salinity in the Bohai Sea had increased by 2.0 psu in the second half of the 20th century, mainly due to a sharp decrease in the Yellow River runoff, and also the effects of large-scale climatic variations and the intrusions of the North Yellow Sea Water (NYSW). Since 2002, the Yellow River Conservancy Commission has carried out the flow regulation at the beginning of every flood season, resulting in more discharge of the Yellow River freshwater into the Bohai Sea. In this study, the variations of salinity in the Bohai Sea during the recent years are investigated using a well-established three-dimensional baroclinic model, HAMburg Shelf Ocean Model (HAMSOM). The simulation results show that the Yellow River diluted water was mainly discharged into the Laizhou Bay, so the remarkable increase in the Yellow River runoff after 2002 led to a regime shift of salinity in the Laizhou Bay. However, in other parts of the Bohai Sea, salinity variation was influenced by the surrounding rivers or the intrusions of NYSW, and has little relation with the Yellow River runoff. As a whole, advection is more important than diffusion in the salinity distribution, and seasonal oscillation is the main feature of salinity variation. Via several case studies, evaporation and precipitation rates are found to be important in the long-term simulation of salinity.  相似文献   

12.
Two surveys were conducted in December, 2008, and August, 2009, in the mud depo-center off the Zhejiang-Fujian coast (MDZFC) in the inner shelf of East China Sea to depict the seasonal variation of the water column structure and analyze the factors responsible for the variation. The results were also used to discuss the sediment transport process and formation mechanism of the MDZFC. The water column structures varied significantly between the two surveys, with respect to the temperature, salinity, and turbidity. The summer water body, with relatively high temperatures and salinities, was evidently stratified with respect to the temperature, whereas the salinity remained constant throughout the water column. The stratification restricts sediment resuspension and transport. From the north to the south, the temperature in the middle-bottom water layer slightly increased, whereas the salinity remained mostly constant. In winter, the water body, with relatively low temperatures and salinities, was well mixed vertically. The temperature and salinity both increased from the surface to the bottom toward the east (deep water) and the south. A wedge-shaped water mass, which appears as a coastal upwelling, with relatively low temperature and high salinity in summer and relatively high temperature and high salinity in winter, spread landward along the sea floor, from the sea deeper than 50 m, whereas the extension was relatively stronger in winter. The water turbidity in winter was clearly higher than in summer. In the surface layer, the turbidity was generally greater than 5 FTU in winter and less than 1 FTU in summer. In the bottom layer, the turbidity was much greater than 200 FTU in winter and slightly greater than 50 FTU in summer. Moreover, the turbid water layer close to the sea floor in winter can reach into an area deeper than 50 m with a thickness of over 10 m; however, it was only limited to only 30-m-deep water with a thickness of 5 m in summer. The differences of marine sedimentary environment in the MDZFC were attributed to the seasonal variations of hydrodynamics environment, weather conditions, sediment supplies, and seasonal circulations. The results suggest that winter is the key season for particle transportation and deposition. The bottom turbid layer is the primarily channel of sediment transport, and the upwelling currents and the oceanic front systems play an important role in the sediment deposit processes and the formation of the MDZFC.  相似文献   

13.
The response of the Chesapeake Bay to river discharge under the influence and absence of tide is simulated with a numerical model. Four numerical experiments are examined: (1) response to river discharge only; (2) response to river discharge plus an ambient coastal current along the shelf outside the bay; (3) response to river discharge and tidal forcing; and (4) response to river discharge, tidal forcing, and ambient coastal current. The general salinity distribution in the four cases is similar to observations inside the bay. Observed features, such as low salinity in the western side of the bay, are consistent in model results. Also, a typical estuarine circulation with seaward current in the upper layer and landward current in the lower layer is obtained in the four cases. The two cases without tide produce stronger subtidal currents than the cases with tide owing to greater frictional effects in the cases with tide. Differences in salinity distributions among the four cases appear mostly outside the bay in terms of the outflow plume structure. The two cases without tide produce an upstream (as in a Kelvin wave sense) or northward branch of the outflow plume, while the cases with tide produce an expected downstream or southward plume. Increased friction in the cases with tide changes the vertical structure of outflow at the entrance to the bay and induces large horizontal variations in the exchange flow. Consequently, the outflow from the bay is more influenced by the bottom than in the cases without tide. Therefore, a tendency for a bottom-advected plume appears in the cases with tide, rather than a surface-advected plume, which develops in the cases without tide. Further analysis shows that the tidal current favors a salt balance between the horizontal and vertical advection of salinity around the plume and hinders the upstream expansion of the plume outside the bay.  相似文献   

14.

Physical oceanography measurements reveal a strong salinity (0.18 psu km−1) and temperature (0.07 °C km−1) front off the east coast of India in December 1997. T–S diagrams suggest lateral mixing between the fresh water at the coast and the ambient warmer, saltier water. This front seems to be the result of southward advection of fresh and cool water, formed in the northern Bay of Bengal during the monsoon, by the East Indian Coastal Current, as suggested by the large-scale salinity structure in the SODA re-analysis and the anti-cyclonic gyre in the northwestern Bay of Bengal during winter. The data further reveals an offshore front in January, which appears to be the result of a meso-scale re-circulation around an eddy, bringing cold and freshwater from the northern Bay of Bengal further away from the shore. Our cruise data hence illustrates that very strong salinity fronts can appear in the Bay of Bengal after the monsoon, as a result of intense coastal circulation and stirring by eddies.

  相似文献   

15.
The formation and development of a salt plume (salinity up to 800 mg Cl 1−1) in the inner part of the Coastal Plain aquifer of Israel is analyzed. Massive groundwater exploitation during the 1950s caused a large drop in the water level and formation of a hydrologic depression in the Be'er Toviyya-Kefar Warburg area. The depression reached a maximal depth during the late 1960s; thereafter a reduction in the rate of pumpage led to restoration of water levels and shallowing of the depression, until its complete disappearance towards the end of the 1980s. A spot of high salinity first appeared in 1956, following a deep drawdown in the water levels. This saline plume has been continuously expanding with increasing salinity concentrations (200–800 mg Cl 1−1) in its center. The average rate of radial expansion was about 50 m year−1. The expansion and salinization did not cease as the depression disappeared. Rather, equalization of water levels in wells situated within the plume area with those of situated along its margins resulted in the salinization of the latter within a period of 1 year.

Mass balances for water and chloride contents were made for the period 1967–1990. Taking into consideration the storage change, pumpage, natural replenishment and artificial recharge, the lateral inflow to the depression is estimated as 60 × 106 m3. Upon addition of the chloride balance, and taking into consideration the chloride concentrations of the surrounding fresh water and the apparent possible end-member of the saline source (based on geochemical considerations), the saline inflow is estimated as (40–60) × 106 m3. These estimates indicate that a large amount of saline water penetrated into the aquifer, of about half of the natural replenishment of the study area, with an estimated salinity of 1900–2700 mg Cl 1−1.

It is suggested that the salt plume was formed as a result of a drop in water level combined with a flow of underlying saline water bodies from deeper strata. The chemical composition of the groundwater points to the existence of two saline water bodies of Ca-chloride composition and a marine Br/Cl ratio: (1) saline water with low Na/Cl (0.6), So4/Cl, and B/Cl ratio; (2) saline water with higher Na/Cl (> 0.6), So4/Cl, and B/Cl ratios. These chemical compositions resemble Ca-chloride saline waters found in other locations in the Coastal Plain aquifer and in underlying formations. The saline water bodies may occur in either pockets at the bottom of the aquifer or lumachelle and sandstone layers of high hydraulic conductivity in underlying sediments.  相似文献   


16.
Hervey Bay, a large coastal embayment situated off the central eastern coast of Australia, is a shallow tidal area (average depth = 15 m), close to the continental shelf. It shows features of an inverse estuary, due to the high evaporation rate (approx. 2 m/year), low precipitation (less than 1 m/year) and on average almost no freshwater input from rivers that drain into the bay. The hydro- and thermodynamical structures of Hervey Bay and their variability are presented here for the first time, using a combination of four-dimensional modelling and observations from field studies. The numerical studies are performed with the Coupled Hydrodynamical Ecological Model for Regional Shelf Seas (COHERENS). Due to the high tidal range (>3.5 m), the bay is considered as a vertically well-mixed system, and therefore, only horizontal fronts are likely. Recent field measurements, but also the numerical simulations, indicate characteristic features of an inverse/hypersaline estuary with low salinity (35.5 psu) in the open ocean and peak values (>39.0 psu) in the head water of the bay. The model further predicts a nearly persistent mean salinity gradient of 0.5 psu across the bay (with higher salinities close to the shore). The investigation further shows that air temperature, wind direction and tidal regime are mainly responsible for the stability of the inverse circulation and the strength of the salinity gradient across the bay. Due to an ongoing drying trend, the occurrence of severe droughts at the central east coast of Australia and, therefore, a reduction in freshwater supply, the salinity flux out of the bay has increased, and the inverse circulation has also strengthened.  相似文献   

17.
The salinization process of the Israeli Coastal aquifer has led to an average concentration of about 200 mgCl/l with a significant number of discrete salinity plumes in the middle and southern regions. The salinity of these plumes is high (500–1000 mgCl/l) and is increasing rapidly. Geochemical evidence has suggested that the salinity source in the Be'er Tuvia plume (in the south part of the aquifer) is at the bottom of the aquifer. This paper describes a solution of the source inverse problem and its application in the Be'er Tuvia plume. A transient two-dimensional finite element model was solved and the source terms were computed at each node in a 14×14 km2 area. An error analysis has shown that when no errors are introduced in the input data the reconstruction is perfect. The results of a sensitivity analysis are presented and the actual reconstruction errors are estimated. Applying the model in the Be'er Tuvia region indicates that a salinity source exists about 1 km to the west and 1.5 km to the north of the center of the salinity plume. This source is believed to be the plume source.  相似文献   

18.
In this paper, we use the unstructured grid model SCHISM to simulate the thermohydrodynamics in a chain of baroclinic, interconnected basins. The model shows a good skill in simulating the horizontal circulation and vertical profiles of temperature, salinity, and currents. The magnitude and phases of the seasonal changes of circulation are consistent with earlier observations. Among the mesoscale and subbasin-scale circulation features that are realistically simulated are the anticyclonic coastal eddies, the Sebastopol and Batumi eddies, the Marmara Sea outflow around the southern coast of the Limnos Island, and the pathway of the cold water originating from the shelf. The superiority of the simulations compared to earlier numerical studies is demonstrated with the example of model capabilities to resolve the strait dynamics, gravity currents originating from the straits, high-salinity bottom layer on the shallow shelf, as well as the multiple intrusions from the Bosporus Strait down to 700 m depth. The warm temperature intrusions from the strait produce the warm water mass in the intermediate layers of the Black Sea. One novel result is that the seasonal intensification of circulation affects the interbasin exchange, thus allowing us to formulate the concept of circulation-controlled interbasin exchange. To the best of our knowledge, the present numerical simulations, for the first time, suggest that the sea level in the interior part of the Black Sea can be lower than the sea level in the Marmara Sea and even in some parts of the Aegean Sea. The comparison with observations shows that the timings and magnitude of exchange flows are also realistically simulated, along with the blocking events. The short-term variability of the strait transports is largely controlled by the anomalies of wind. The simulations demonstrate the crucial role of the narrow and shallow strait of Bosporus in separating the two pairs of basins: Aegean-Marmara Seas from one side and Azov-Black Seas from the other side. The straits of Kerch and Dardanelles provide sufficient interbasin connectivity that prevents large phase lags of the sea levels in the neighboring basins. The two-layer flows in the three straits considered here show different dependencies upon the net transport, and the spatial variability of this dependence is also quite pronounced. We show that the blocking of the surface flow can occur at different net transports, thus casting doubt on a previous approach of using simple relationships to prescribe (steady) outflow and inflow. Specific attention is paid to the role of synoptic atmospheric forcing for the basin-wide circulation and redistribution of mass in the Black Sea. An important controlling process is the propagation of coastal waves. One major conclusion from this research is that modeling the individual basins separately could result in large inaccuracies because of the critical importance of the cascading character of these interconnected basins.  相似文献   

19.
Oceanographic studies have been carried out in coastal and riverine waters of the area around Timika, West Papua in November 1999, March–April, July and November 2000. The temperature of the seawater along the coast is around 28 °C in winter (November 99), rising to 30.0 °C (November 00). In the open sea, 30 miles off the coast at 40 m water depth, the temperature is >30 °C with no stratification. Water temperature near the coast is consistently lower than in the open sea. This is thought to be due the cooling effect of the land, being densely covered by mangrove forest. In the upper parts of the Kamora, West Tipuka, East Tipuka, Ajkwa, Minajerwi, Mawati and Otakwa Rivers, at salinity zero psu, water temperature varies between 24.6 and 26.2 °C, which is as cold as the temperature in the upwelling Banda Sea to the NW. Some of these rivers are fed by glacial melt water from the high mountains to the east. At mid estuary, warm seawater is found under the cooler river water.Salinity near this coast varied between 24 and 30, and offshore salinity was 31–33 with no stratification. Inshore surface waters were turbid (11–14 ntu), and near bottom waters were generally much more turbid from river sediment supply and tidal resuspension. The Ajkwa River estuary has the highest turbidity (750 ntu) at zero salinity. Offshore waters were very clear (5.0–6.0 ntu), and there was no increase in turbidity near the bottom.  相似文献   

20.
The impact of the Black Sea Water (BSW) inflow on the circulation and the water mass characteristics of the North Aegean Sea is investigated using a high-resolution 3D numerical model. Four climatological numerical experiments are performed exploring the effects of the exchange amplitude at the Dardanelles Straits in terms of the mean annual volume exchanged and the amplitude of its seasonal cycle. Larger inflow of low salinity BSW influences the water characteristics of the whole basin. The largest salinity reduction is encountered in the upper layers of the water column, and the most affected region is the northeastern part of the basin. The winter insulation character of the BSW layer (low-salinity layer) is reduced by the seasonal cycle of the inflow (minimum during winter). The maximum atmospheric cooling coincides with the minimum BSW inflow rate, weakening the vertical density gradients close to the surface and thus facilitating the vertical mixing. The inflow rate of BSW into the North Aegean Sea constitutes an essential factor for the circulation in the basin. Increased inflow rate results into considerably higher kinetic energy, stronger circulation and reinforcement of the mesoscale circulation features. Although the position of the front between BSW and waters of Levantine origin does not vary significantly with the intensity of the BSW inflow rate, the flow along the front becomes stronger and more unstable as the inflow rate increases, forming meanders and rings. The changes in the intensity of BSW inflow rate overpower the wind and thermohaline forcing and largely determine the general circulation of the North Aegean Sea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号