首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prediction of global stability in room and pillar coal mines   总被引:1,自引:0,他引:1  
Global stability is a necessary prerequisite for safe retreat mining and one of the crucial and complex problems in room and pillar mining, so its prediction plays an important role in the safety of retreat mining and the reduction of pillar failure risk. In this study, we have tried to develop predictive models for anticipating global stability. For this purpose, two of the most popular techniques, logistic regression analysis and fuzzy logic, were taken into account and a predictive model was constructed based on each. For training and testing of these models, a database including 80 retreat mining case histories from 18 room and pillar coal mines, located in West Virginia State, USA, was used. The models predict global stability based on the major contributing parameters of pillar stability. It was found that both models can be used to predict the global stability, but the comparison of two models, in terms of statistical performance indices, shows that the fuzzy logic model provides better results than the logistic regression. These models can be applied to identify the susceptibility of pillar failure in panels of coal mines, and this may help to reduce the casualties resulting from pillar instability. Finally, the sensitivity analysis was performed on database to determine the most important parameters on global stability. The results revealed that the pillar width is the most important parameter, whereas the depth of cover is the least important one.  相似文献   

2.
滑坡灾害空间预测支持向量机模型及其应用   总被引:5,自引:1,他引:4  
戴福初  姚鑫  谭国焕 《地学前缘》2007,14(6):153-159
随着GIS技术在滑坡灾害空间预测研究中的广泛应用,滑坡灾害空间预测模型成为研究的热点问题。在总结滑坡灾害空间预测研究现状的基础上,简要介绍了两类和单类支持向量机的基本原理。以香港自然滑坡空间预测为例,采用两类和单类支持向量机进行滑坡灾害空间预测,并与Logistic回归模型进行了比较。结果表明,两类支持向量机模型优于Logistic回归模型,而Logistic回归模型优于单类支持向量机模型。  相似文献   

3.
The purpose of the current study is to produce landslide susceptibility maps using different data mining models. Four modeling techniques, namely random forest (RF), boosted regression tree (BRT), classification and regression tree (CART), and general linear (GLM) are used, and their results are compared for landslides susceptibility mapping at the Wadi Tayyah Basin, Asir Region, Saudi Arabia. Landslide locations were identified and mapped from the interpretation of different data types, including high-resolution satellite images, topographic maps, historical records, and extensive field surveys. In total, 125 landslide locations were mapped using ArcGIS 10.2, and the locations were divided into two groups; training (70 %) and validating (25 %), respectively. Eleven layers of landslide-conditioning factors were prepared, including slope aspect, altitude, distance from faults, lithology, plan curvature, profile curvature, rainfall, distance from streams, distance from roads, slope angle, and land use. The relationships between the landslide-conditioning factors and the landslide inventory map were calculated using the mentioned 32 models (RF, BRT, CART, and generalized additive (GAM)). The models’ results were compared with landslide locations, which were not used during the models’ training. The receiver operating characteristics (ROC), including the area under the curve (AUC), was used to assess the accuracy of the models. The success (training data) and prediction (validation data) rate curves were calculated. The results showed that the AUC for success rates are 0.783 (78.3 %), 0.958 (95.8 %), 0.816 (81.6 %), and 0.821 (82.1 %) for RF, BRT, CART, and GLM models, respectively. The prediction rates are 0.812 (81.2 %), 0.856 (85.6 %), 0.862 (86.2 %), and 0.769 (76.9 %) for RF, BRT, CART, and GLM models, respectively. Subsequently, landslide susceptibility maps were divided into four classes, including low, moderate, high, and very high susceptibility. The results revealed that the RF, BRT, CART, and GLM models produced reasonable accuracy in landslide susceptibility mapping. The outcome maps would be useful for general planned development activities in the future, such as choosing new urban areas and infrastructural activities, as well as for environmental protection.  相似文献   

4.
Preparation of landslide susceptibility maps is considered as the first important step in landslide risk assessments, but these maps are accepted as an end product that can be used for land use planning. The main objective of this study is to explore some new state-of-the-art sophisticated machine learning techniques and introduce a framework for training and validation of shallow landslide susceptibility models by using the latest statistical methods. The Son La hydropower basin (Vietnam) was selected as a case study. First, a landslide inventory map was constructed using the historical landslide locations from two national projects in Vietnam. A total of 12 landslide conditioning factors were then constructed from various data sources. Landslide locations were randomly split into a ratio of 70:30 for training and validating the models. To choose the best subset of conditioning factors, predictive ability of the factors were assessed using the Information Gain Ratio with 10-fold cross-validation technique. Factors with null predictive ability were removed to optimize the models. Subsequently, five landslide models were built using support vector machines (SVM), multi-layer perceptron neural networks (MLP Neural Nets), radial basis function neural networks (RBF Neural Nets), kernel logistic regression (KLR), and logistic model trees (LMT). The resulting models were validated and compared using the receive operating characteristic (ROC), Kappa index, and several statistical evaluation measures. Additionally, Friedman and Wilcoxon signed-rank tests were applied to confirm significant statistical differences among the five machine learning models employed in this study. Overall, the MLP Neural Nets model has the highest prediction capability (90.2 %), followed by the SVM model (88.7 %) and the KLR model (87.9 %), the RBF Neural Nets model (87.1 %), and the LMT model (86.1 %). Results revealed that both the KLR and the LMT models showed promising methods for shallow landslide susceptibility mapping. The result from this study demonstrates the benefit of selecting the optimal machine learning techniques with proper conditioning selection method in shallow landslide susceptibility mapping.  相似文献   

5.
Forward logistic regression has allowed us to derive an earth-flow susceptibility model for the Tumarrano river basin, which was defined by modeling the statistical relationships between an archive of 760 events and a set of 20 predictors. For each landslide in the inventory, a landslide identification point (LIP) was automatically produced as corresponding to the highest point along the boundary of the landslide polygons, and unstable conditions were assigned to cells at a distance up to 8 m. An equal number of stable cells (out of landslides) was then randomly extracted and appended to the LIPs to prepare the dataset for logistic regression. A model building strategy was applied to enlarge the area included in training the model and to verify the sensitivity of the regressed models with respect to the locations of the selected stable cells. A suite of 16 models was prepared by randomly extracting different unoverlapping stable cell subsets that have been appended to the unstable ones. Models were finally submitted to forward logistic regression and validated. The results showed satisfying and stable error rates (0.236 on average, with a standard deviation of 0.007) and areas under the receiver operating characteristic (ROC) curve (AUCs) (0.839 for training and 0.817 for test datasets) as well as factor selections (ranks and coefficients). As regards the predictors, steepness and large-profile and local-plan topographic curvatures were systematically selected. Clayey outcropping lithology, midslope drainage, local and midslope ridges, and canyon landforms were also very frequently (from eight to 15 times) included in the models by the forward selection procedures. The model-building strategy allowed us to produce a performing earth-flow susceptibility model, whose model fitting, prediction skill, and robustness were estimated on the basis of validation procedures, demonstrating the independence of the regressed model on the specific selection of the stable cells.  相似文献   

6.
Ensemble-based landslide susceptibility maps in Jinbu area, Korea   总被引:2,自引:2,他引:0  
Ensemble techniques were developed, applied and validated for the analysis of landslide susceptibility in Jinbu area, Korea using the geographic information system (GIS). Landslide-occurrence areas were detected in the study by interpreting aerial photographs and field survey data. Landslide locations were randomly selected in a 70/30 ratio for training and validation of the models, respectively. Topography, geology, soil and forest databases were also constructed. Maps relevant to landslide occurrence were assembled in a spatial database. Using the constructed spatial database, 17 landslide-related factors were extracted. The relationships between the detected landslide locations and the factors were identified and quantified by frequency ratio, weight of evidence, logistic regression and artificial neural network models and their ensemble models. The relationships were used as factor ratings in the overlay analysis to create landslide susceptibility indexes and maps. Then, the four landslide susceptibility maps were used as new input factors and integrated using the frequency ratio, weight of evidence, logistic regression and artificial neural network models as ensemble methods to make better susceptibility maps. All of the susceptibility maps were validated by comparison with known landslide locations that were not used directly in the analysis. As the result, the ensemble-based landslide susceptibility map that used the new landslide-related input factor maps showed better accuracy (87.11% in frequency ratio, 83.14% in weight of evidence, 87.79% in logistic regression and 84.54% in artificial neural network) than the individual landslide susceptibility maps (84.94% in frequency ratio, 82.82% in weight of evidence, 87.72% in logistic regression and 81.44% in artificial neural network). All accuracy assessments showed overall satisfactory agreement of more than 80%. The ensemble model was found to be more effective in terms of prediction accuracy than the individual model.  相似文献   

7.
The objective of this study is to explore and compare the least square support vector machine (LSSVM) and multiclass alternating decision tree (MADT) techniques for the spatial prediction of landslides. The Luc Yen district in Yen Bai province (Vietnam) has been selected as a case study. LSSVM and MADT are effective machine learning techniques of classification applied in other fields but not in the field of landslide hazard assessment. For this, Landslide inventory map was first constructed with 95 landslide locations identified from aerial photos and verified from field investigations. These landslide locations were then divided randomly into two parts for training (70 % locations) and validation (30 % locations) processes. Secondly, landslide affecting factors such as slope, aspect, elevation, curvature, lithology, land use, distance to roads, distance to faults, distance to rivers, and rainfall were selected and applied for landslide susceptibility assessment. Subsequently, the LSSVM and MADT models were built to assess the landslide susceptibility in the study area using training dataset. Finally, receiver operating characteristic curve and statistical index-based evaluations techniques were employed to validate the predictive capability of these models. As a result, both the LSSVM and MADT models have high performance for spatial prediction of landslides in the study area. Out of these, the MADT model (AUC = 0.853) outperforms the LSSVM model (AUC = 0.803). From the landslide study of Luc Yen district in Yen Bai province (Vietnam), it can be conclude that the LSSVM and MADT models can be applied in other areas of world also for and spatial prediction. Landslide susceptibility maps obtained from this study may be helpful in planning, decision making for natural hazard management of the areas susceptible to landslide hazards.  相似文献   

8.
A model building strategy is tested to assess the susceptibility for extreme climatic events driven shallow landslides. In fact, extreme climatic inputs such as storms typically are very local phenomena in the Mediterranean areas, so that with the exception of recently stricken areas, the landslide inventories which are required to train any stochastic model are actually unavailable. A solution is here proposed, consisting in training a susceptibility model in a source catchment, which was implemented by applying the binary logistic regression technique, and exporting its predicting function (selected predictors regressed coefficients) in a target catchment to predict its landslide distribution. To test the method, we exploit the disaster that occurred in the Messina area (southern Italy) on 1 October 2009 where, following a 250-mm/8-h storm, approximately two thousand debris flow/debris avalanches landslides in an area of 21 km2 triggered, killing 37 people and injuring more than 100, and causing 0.5 M € worth of structural damage. The debris flows and debris avalanches phenomena involved the thin weathered mantle of the Varisican low to high-grade metamorphic rocks that outcrop in the eastern slopes of the Peloritani Mounts. Two 10-km2-wide stream catchments, which are located inside the storm core area, were exploited: susceptibility models trained in the Briga catchment were tested when exported to predict the landslides distribution in the Giampilieri catchment. The prediction performance (based on goodness of fit, prediction skill, accuracy and precision assessment) of the exported model was then compared with that of a model prepared in the Giampilieri catchment exploiting its landslide inventory. The results demonstrate that the landslide scenario observed in the Giampilieri catchment can be predicted with the same high performance without knowing its landslide distribution: we obtained, in fact, a very poor decrease in predictive performance when comparing the exported model to the native random partition-based model.  相似文献   

9.
随机森林与GIS的泥石流易发性及可靠性   总被引:3,自引:0,他引:3       下载免费PDF全文
张书豪  吴光 《地球科学》2019,44(9):3115-3134
目前基于GIS的泥石流易发性(简称DFS)评价模型中,统计类型模型的因子须保证独立性,且权重受区间划分控制;线性机器学习难以处理非线性问题、而常用非线性模型调试效率低.鉴于随机森林(RF)能有效克服常用模型的诸多不足,且在DFS评价中的应用极少,首先展开基于RF的DFS评价,采用线性、RBF支持向量机、二次判别分析、RF等经贝叶斯优化的模型和26种泥石流影响因子;然后,分别以RF的相对权重排序和蒙特卡洛方法研究因子组合和建模样本变化下DFS评价的可靠性.结果表明:RF不易发和较易发区中有21个因子可指示泥石流孕育环境差异;RF的相对权重排序能有效确定易发模型的局部最优因子组合;随机样本划分导致的评价不确定性在中易发区最大,应通过提高建模样本比例和改善模型降低;RF的预测能力指标AUC为0.86、全局预测精度为0.79、F1分数为0.66、brier分数为0.14,以及它们的可靠度最优,可作为DFS定量评估的优先选择.   相似文献   

10.
The accurate prediction of runout distances, velocities and the knowledge of flow rheology can reduce the casualties and property damage produced by debris flows, providing a means to delineate hazard areas, to estimate hazard intensities for input into risk studies and to provide parameters for the design of protective measures. The application of most of models that describe the propagation and deposition of debris flow requires detailed topography, rheological and hydrological data that are not always available for the debris-flow hazard delineation and estimation. In the Cortina d’Ampezzo area, Eastern Dolomites, Italy, most of the slope instabilities are represented by debris flows; 325 debris-flow prone watersheds have been mapped in the geomorphological hazard map of this area. We compared the results of simulations of two well-documented debris flows in the Cortina d’Ampezzo area, carried on with two different single-phase, non-Newtonian models, the one-dimensional DAN-W and the two-dimensional FLO-2D, to test the possibility to simulate the dynamic behaviour of a debris flow with a model using a limited range of input parameters. FLO-2D model creates a more accurate representation of the hazard area in terms of flooded area, but the results in terms of runout distances and deposits thickness are similar to DAN-W results. Using DAN-W, the most appropriate rheology to describe the debris-flow behaviour is the Voellmy model. When detailed topographical, rheological and hydrological data are not available, DAN-W, which requires less detailed data, is a valuable tool to predict debris-flow hazard. Parameters obtained through back-analysis with both models can be applied to predict hazard in other areas characterized by similar geology, morphology and climate.  相似文献   

11.
The aim of this study is the application of support vector machines (SVM) to landslide susceptibility mapping. SVM are a set of machine learning methods in which model capacity matches data complexity. The research is based on a conceptual framework targeted to apply and test all the procedural steps for landslide susceptibility modeling from model selection, to investigation of predictive variables, from empirical cross-validation of results, to analysis of predicted patterns. SVM were successfully applied and the final susceptibility map was interpreted via success and prediction rate curves and receiver operating characteristic (ROC) curves, to support the modeling results and assess the robustness of the model. SVM appeared to be very specific learners, able to discriminate between the informative input and random noise. About 78% of occurrences was identified within the 20% of the most susceptible study area for the cross-validation set. Then the final susceptibility map was compared with other maps, addressed by different statistical approaches, commonly used in susceptibility mapping, such as logistic regression, linear discriminant analysis, and naive Bayes classifier. The SVM procedure was found feasible and able to outperform other techniques in terms of accuracy and generalization capacity. The over-performance of SVM against the other techniques was around 18% for the cross-validation set, considering the 20% of the most susceptible area. Moreover, by analyzing receiver operating characteristic (ROC) curves, SVM appeared to be less prone to false positives than the other models. The study was applied in the Staffora river basin (Lombardy, Northern Italy), an area of about 275 km2 characterized by a very high density of landslides, mainly superficial slope failures triggered by intense rainfall events.  相似文献   

12.
Flooding can have catastrophic effects on human lives and livelihoods and thus comprehensive flood management is needed. Such management requires information on the hydrologic, geotechnical, environmental, social, and economic aspects of flooding. The number of flood events that took place in Busan, South Korea, in 2009 exceeded the normal situation for that city. Mapping the susceptible areas helps us to understand flood trends and can aid in appropriate planning and flood prevention. In this study, a combination of bivariate probability analysis and multivariate logistic regression was used to produce flood susceptibility maps of Busan City. The main aim of this research was to overcome the weakness of logistic regression regarding bivariate probability capabilities. A flood inventory map with a total of 160 flood locations was extracted from various sources. Then, the flood inventory was randomly split into a testing dataset 70 % for training the models and the remaining 30 %, which was used for validation. Independent variables datasets included the rainfall, digital elevation model, slope, curvature, geology, green farmland, rivers, slope, soil drainage, soil effect, soil texture, stream power index, timber age, timber density, timber diameter, and timber type. The impact of each independent variable on flooding was evaluated by analyzing each independent variable with the dependent flood layer. The validation dataset, which was not used for model generation, was used to evaluate the flood susceptibility map using the prediction rate method. The results of the accuracy assessment showed a success rate of 92.7 % and a prediction rate of 82.3 %.  相似文献   

13.
The Paonia-McClure Pass area of Colorado has been recognized as a region highly susceptible to mass movement. Because of the dynamic nature of this landscape, accurate methods are needed to predict susceptibility to movement of these slopes. The area was evaluated by coupling a geographic information system (GIS) with logistic regression methods to assess susceptibility to landslides. We mapped 735 shallow landslides in the area. Seventeen factors, as predictor variables of landslides, were mapped from aerial photographs, available public data archives, ETM + satellite data, published literature, and frequent field surveys. A logistic regression model was run using landslides as the dependent factor and landslide-causing factors as independent factors (covariates). Landslide data were sampled from the landslide masses, landslide scarps, center of mass of the landslides, and center of scarp of the landslides, and an equal amount of data were collected from areas void of discernible mass movement. Models of susceptibility to landslides for each sampling technique were developed first. Second, landslides were classified as debris flows, debris slides, rock slides, and soil slides and then models of susceptibility to landslides were created for each type of landslide. The prediction accuracies of each model were compared using the Receiver Operating Characteristic (ROC) curve technique. The model, using samples from landslide scarps, has the highest prediction accuracy (85 %), and the model, using samples from landslide mass centers, has the lowest prediction accuracy (83 %) among the models developed from the four techniques of data sampling. Likewise, the model developed for debris slides has the highest prediction accuracy (92 %), and the model developed for soil slides has the lowest prediction accuracy (83 %) among the four types of landslides. Furthermore, prediction from a model developed by combining the four models of the four types of landslides (86 %) is better than the prediction from a model developed by using all landslides together (85 %).  相似文献   

14.
Quantitative determination of locations vulnerable to ground subsidence at mining regions is necessary for effective prevention. In this paper, a method of constructing subsidence susceptibility maps based on fuzzy relations is proposed and tested at an abandoned underground coal mine in Korea. An advantage of fuzzy combination operators over other methods is that the operation is mathematically and logically easy to understand and its implementation to GIS software is simple and straightforward. A certainty factor analysis was used for estimating the relative weight of eight major factors influencing ground subsidence. The relative weight of each factor was then converted into a fuzzy membership value and integrated as a subsidence hazard index using fuzzy combination operators, which produced coal mine subsidence susceptibility maps. The susceptibility maps were compared with the reported ground subsidence areas, and the results showed high accuracy between our prediction and the actual subsidence. Based on the root mean square error and accuracy in terms of success rates, fuzzy γ-operator with a low γ value and fuzzy algebraic product operator, specifically, are useful for ground subsidence prediction. Comparing the results of a fuzzy γ-operator and a conventional logistic regression model, the performance of the fuzzy approach is comparative to that of a logistic regression model with improved computational. A field survey done in the area supported the method’s reliability. A combination of certainty factor analysis and fuzzy relations with a GIS is an effective method to determine locations vulnerable to coal mine subsidence.  相似文献   

15.
周超  殷坤龙  曹颖  李远耀 《地球科学》2020,45(6):1865-1876
准确的滑坡易发性评价结果是滑坡风险评价的重要基础.为提升滑坡易发性评价精度,以三峡库区龙驹坝为例,选取坡度等10个因子构建滑坡易发性评价指标体系,应用频率比方法定量分析各指标与滑坡发育的关系.在此基础上,随机选取70%/30%的滑坡数据作为训练/测试样本,应用径向基神经网络和Adaboost集成学习耦合模型(RBNN-Adaboost),径向基神经网络和逻辑回归模型分别开展易发性评价.结果显示:水系距离、坡度等是滑坡发育的主控因素;RBNN-Adaboost耦合模型的预测精度最高(0.820),优于RBNN模型和LR模型的0.781和0.748.Adaboost集成算法能进一步提升模型的预测性能,所提出的耦合模型结合了两者的优点,具有更强的预测能力,是一种可靠的滑坡易发性评价模型.   相似文献   

16.
Over the last three decades, many regional studies in mountain ranges under temperate climate revealed that it is possible to discriminate debris-flow and fluvial fans from morphometric indicators measured at the scale of the catchment and the fan itself. The most commonly used indicators are the Melton index (R), a normalized index of the gravitational energy of the catchment, and the fan slope (S). A wide range of thresholds have been proposed for discriminating purpose, but these are generally based on a small population of catchments and may be highly influenced by ambiguous fans included in the data set. A database of 620 upland catchments from several mountain ranges under temperate climate was compiled from the literature to propose robust discriminant morphometric thresholds for debris-flow versus fluvial responses. Linear discriminant analysis (LDA) and logistic regression (LR) were performed using the whole data set, and a leave-one-out cross-validation was used to evaluate performances of the models. Sensitivity and specificity scores obtained for LDA and LR were 0.96 and 0.73, and 0.95 and 0.75, respectively. It is also shown that the channel slope above which debris-flow is observed decreases with the gravitational energy of the catchment. Limitations of the morphometric discrimination are discussed.  相似文献   

17.
It has been recognized that wildfire, followed by large precipitation events, triggers both flooding and debris flows in mountainous regions. The ability to predict and mitigate these hazards is crucial in protecting public safety and infrastructure. A need for advanced modeling techniques was highlighted by re-evaluating existing prediction models from the literature. Data from 15 individual burn basins in the intermountain western United States, which contained 388 instances and 26 variables, were obtained from the United States Geological Survey (USGS). After randomly selecting a subset of the data to serve as a validation set, advanced predictive modeling techniques, using machine learning, were implemented using the remaining training data. Tenfold cross-validation was applied to the training data to ensure nearly unbiased error estimation and also to avoid model over-fitting. Linear, nonlinear, and rule-based predictive models including naïve Bayes, mixture discriminant analysis, classification trees, and logistic regression models were developed and tested on the validation dataset. Results for the new non-linear approaches were nearly twice as successful as those for the linear models, previously published in debris flow prediction literature. The new prediction models advance the current state-of-the-art of debris flow prediction and improve the ability to accurately predict debris flow events in wildfire-prone intermountain western United States.  相似文献   

18.
Estimate of the debris-flow entrainment using field and topographical data   总被引:1,自引:0,他引:1  
The entrainment of material is a common process in debris-flow behaviour and can strongly increase its total volume. However, due to the complex nature of the process, the exact mechanisms of entrainment have not yet been solved. We analysed geomorphological and topographical data collected in 110 reaches of 17 granular debris flows occurred in the Pyrenees and the European Alps. Four governing factors (sediment availability, channel-bed slope, channel cross section shape and upstream-contributing area) were selected and defined for all the 110 reaches. One dataset of the resulting database was used to develop two models to estimate the erosion rates based on the governing factors: a formula derived from multiple linear regression (MLR) analysis and a decision tree (DT) obtained from J48 algorithm. The models obtained using these learning techniques were validated in another independent dataset. In this validation set, the DT model revealed better results. The models were also implemented in a torrent (test set), where the total debris-flow volume was known and two empirical methods (available in literature) were applied. This test revealed that both MLR and DT predict more accurately the final volume of the event than the empirical equations for volume prediction. Finally, a general DT was proposed, which includes three governing factors: sediment availability, channel-bed slope and channel cross section shape. This DT may be applied to other regions after adapting it regarding site-specific characteristics.  相似文献   

19.
Four statistical techniques for modelling landslide susceptibility were compared: multiple logistic regression (MLR), multivariate adaptive regression splines (MARS), classification and regression trees (CART), and maximum entropy (MAXENT). According to the literature, MARS and MAXENT have never been used in landslide susceptibility modelling, and CART has been used only twice. Twenty independent variables were used as predictors, including lithology as a categorical variable. Two sets of random samples were used, for a total of 90 model replicates (with and without lithology, and with different proportions of positive and negative data). The model performance was evaluated using the area under the receiver operating characteristic curve (AUC) statistic. The main results are (a) the inclusion of lithology improves the model performance; (b) the best AUC values for single models are MLR (0.76), MARS (0.76), CART (0.77), and MAXENT (0.78); (c) a smaller amount of negative data provides better results; (d) the models with the highest prediction capability are obtained with MAXENT and CART; and (e) the combination of different models is a way to evaluate the model reliability. We further discuss some key issues in landslide modelling, including the influence of the various methods that we used, the sample size, and the random replicate procedures.  相似文献   

20.
Aykut Akgun 《Landslides》2012,9(1):93-106
The main purpose of this study is to compare the use of logistic regression, multi-criteria decision analysis, and a likelihood ratio model to map landslide susceptibility in and around the city of İzmir in western Turkey. Parameters, such as lithology, slope gradient, slope aspect, faults, drainage lines, and roads, were considered. Landslide susceptibility maps were produced using each of the three methods and then compared and validated. Before the modeling and validation, the observed landslides were separated into two groups. The first group was for training, and the other group was for validation steps. The accuracy of models was measured by fitting them to a validation set of observed landslides. For validation process, the area under curvature (AUC) approach was applied. According to the AUC values of 0.810, 0.764, and 0.710 for logistic regression, likelihood ratio, and multi-criteria decision analysis, respectively, logistic regression was determined to be the most accurate method among the other used landslide susceptibility mapping methods. Based on these results, logistic regression and likelihood ratio models can be used to mitigate hazards related to landslides and to aid in land-use planning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号