首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ocean heat transport into the Arctic and the heat budget of the Barents Sea are analyzed in an ensemble of historical and future climate simulations performed with the global coupled climate model EC-Earth. The zonally integrated northward heat flux in the ocean at 70°N is strongly enhanced and compensates for a reduction of its atmospheric counterpart in the twenty first century. Although an increase in the northward heat transport occurs through all of Fram Strait, Canadian Archipelago, Bering Strait and Barents Sea Opening, it is the latter which dominates the increase in ocean heat transport into the Arctic. Increased temperature of the northward transported Atlantic water masses are the main reason for the enhancement of the ocean heat transport. The natural variability in the heat transport into the Barents Sea is caused to the same extent by variations in temperature and volume transport. Large ocean heat transports lead to reduced ice and higher atmospheric temperature in the Barents Sea area and are related to the positive phase of the North Atlantic Oscillation. The net ocean heat transport into the Barents Sea grows until about year 2050. Thereafter, both heat and volume fluxes out of the Barents Sea through the section between Franz Josef Land and Novaya Zemlya are strongly enhanced and compensate for all further increase in the inflow through the Barents Sea Opening. Most of the heat transported by the ocean into the Barents Sea is passed to the atmosphere and contributes to warming of the atmosphere and Arctic temperature amplification. Latent and sensible heat fluxes are enhanced. Net surface long-wave and solar radiation are enhanced upward and downward, respectively and are almost compensating each other. We find that the changes in the surface heat fluxes are mainly caused by the vanishing sea ice in the twenty first century. The increasing ocean heat transport leads to enhanced bottom ice melt and to an extension of the area with bottom ice melt further northward. However, no indication for a substantial impact of the increased heat transport on ice melt in the Central Arctic is found. Most of the heat that is not passed to the atmosphere in the Barents Sea is stored in the Arctic intermediate layer of Atlantic water, which is increasingly pronounced in the twenty first century.  相似文献   

2.
Analyses of a 500-year control integration of the global coupled atmosphere–sea ice–ocean model ECHAM5.0/MPI-OM show a high variability in the ice export through Fram Strait on interannual to decadal timescales. This variability is mainly determined by variations in the sea level pressure gradient across Fram Strait and thus geostrophic wind stress. Ice thickness anomalies, formed at the Siberian coast and in the Chukchi Sea, propagate across the Arctic to Fram Strait and contribute to the variability of the ice export on a timescale of about 9 years. Large anomalies of the ice export through Fram Strait cause fresh water signals, which reach the Labrador Sea after 1–2 years and lead to significant changes in the deep convection. The associated anomalies in ice cover and ocean heat release have a significant impact on air temperature in the Labrador Sea and on the large-scale atmospheric circulation. This affects the sea ice transport and distribution in the Arctic again. Sensitivity studies, simulating the effect of large ice exports through Fram Strait, show that the isolated effect of a prescribed ice/fresh water anomaly is very important for the climate variability in the Labrador Sea. Thus, the ice export through Fram Strait can be used for predictability of Labrador Sea climate up to 2 years in advance.  相似文献   

3.
The interannual atmosphere-ocean-sea ice interaction (AOSI) in high northern latitudes is studied with a global atmosphere-ocean-sea ice coupled model system, in which the model components of atmosphere and land surface are from China National Climate Center and that of ocean and sea ice are from LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences. A daily flux anomaly correction scheme is employed to couple the atmosphere model and the ocean model with the effect of inhomogenity of sea ice in high latitudes is considered. The coupled model system has been run for 50 yr and the results of the last 30 years are analyzed. After the sea level pressure (SLP), surface air temperature (SAT), sea surface temperature (SST), sea ice concentration (SIC), and sea surface sensible heat flux (SHF) are filtered with a digital filter firstly, their normalized anomalies are used to perform the decomposition of combined complex empirical orthogonal function (CCEOF) and then they are reconstructed with the leading mode. The atmosphere-ocean-sea ice interactions in high northern latitudes during a periodical cycle (approximately 4 yr) are analyzed. It is shown that: (1) When the North Atlantic Oscillation (NAO) is in its positive phase, the southerly anomaly appears in the Greenland Sea, SAT increases, the sea loses less SHF, SST increases and SIC decreases accordingly; when the NAO is in its negative phase, the northerly anomaly appears in the Greenland Sea, SAT decreases, the sea loses more SHF, SST decreases and SIC increases accordingly. There are similar features in the Barents Sea, but the phase of evolution in the Barents Sea is different from that in the Greenland Sea. (2) For an average of multi-years, there is a cold center in the inner part of the Arctic Ocean near the North Pole. When there is an anomaly of low pressure, which is closer to the Pacific Ocean, in the inner part of the Arctic Ocean, anomalies of warm advection appear in the region near the Pacif  相似文献   

4.
Sea ice variability in the Barents Sea and its impact on climate are analyzed using a 465-year control integration of a global coupled atmosphere–ocean–sea ice model. Sensitivity simulations are performed to investigate the response to an isolated sea ice anomaly in the Barents Sea. The interannual variability of sea ice volume in the Barents Sea is mainly determined by variations in sea ice import into Barents Sea from the Central Arctic. This import is primarily driven by the local wind field. Horizontal oceanic heat transport into the Barents Sea is of minor importance for interannual sea ice variations but is important on longer time scales. Events with strong positive sea ice anomalies in the Barents Sea are due to accumulation of sea ice by enhanced sea ice imports and related NAO-like pressure conditions in the years before the event. Sea ice volume and concentration stay above normal in the Barents Sea for about 2 years after an event. This strongly increases the albedo and reduces the ocean heat release to the atmosphere. Consequently, air temperature is much colder than usual in the Barents Sea and surrounding areas. Precipitation is decreased and sea level pressure in the Barents Sea is anomalously high. The large-scale atmospheric response is limited with the main impact being a reduced pressure over Scandinavia in the year after a large ice volume occurs in the Barents Sea. Furthermore, high sea ice volume in the Barents Sea leads to increased sea ice melting and hence reduced surface salinity. Generally, the climate response is smallest in summer and largest in winter and spring.  相似文献   

5.
基于一个全球气-海-冰耦合模式数值模拟结果,对北半球高纬度地区年际尺度的气-海-冰相互作用进行了分析。在所使用的全球气-海-冰耦合模式中,大气环流模式和陆面过程模式来自国家气候中心,海洋环流模式和海冰模式来自中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室。采用一种逐日通量距平耦合方案实现次网格尺度海冰非均匀条件下大气环流模式和海洋环流模式在高纬地区的耦合。只对50 a模拟结果中的后30 a结果进行了分析。在分析中,首先对滤波后的北半球高纬度地区海平面气压、表面大气温度、海表面温度、海冰密集度及海表面感热通量的标准化距平做联合复经验正交函数分解,取第一模进行重建,然后讨论了在一个循环周期(约4 a)中北半球高纬度地区气-海-冰的作用关系。结果表明:(1)当北大西洋涛动处于正位相时,格陵兰海出现南风异常,使表面大气温度升高,海洋失去感热通量减少,海洋表面温度升高,海冰密集度减小;当北大西洋涛动处于负位相时,格陵兰海出现北风异常,使表面大气温度降低,海洋失去感热通量增多,海洋表面温度降低,海冰密集度增加。巴伦支海变化特点与格陵兰海相似,但在时间上并不完全一致。(2)多年平均而言,北冰洋内部靠近极点区域为冷中心。当北冰洋内部为低压异常时,因异常中心偏向太平洋一侧,使北冰洋内部靠近太平洋部分为暖平流异常,靠近大西洋一侧为冷平流异常。伴随着暖、冷平流异常,这两侧分别出现暖异常和冷异常,海表面给大气的感热通量分别偏少和偏多,上述海区海表面温度分别偏高和偏低,海冰密集度分别偏小和偏大。当北冰洋内部为高压异常时特点正好与上述相反。由上述分析结果可知,在海洋、大气年际循环中,大尺度大气环流变率起主导作用,海洋表面温度和海冰密集度变化主要是对大气环流变化的响应。  相似文献   

6.
A global fine resolution curvilinear ocean model, forced by NCEP Re-Analysis fluxes, is used to study changes in the circulation of the Nordic Seas and surrounding ocean basins during 1994-2001. The model fields exhibit regionally distinct temporal variability, mostly determined by atmospheric forcing but in regions of significant sea-ice longer timescale variability is found. Some abrupt circulation changes accompany the relaxation of the westerlies following the peak North Atlantic Oscillation Index phase of the mid 1990s. The Greenland gyre spins up over the following years, with the increased circulation partially exiting through the Denmark Strait into the northern Atlantic as well as re-circulating within the Nordic Seas. This resulted in a distinct freshening around northern Iceland and an increase in the East Icelandic Current. However, these latter increases steadied after 1998, as the increased Greenland Sea gyre circulation led to a greater proportion of water leaving through the Denmark Strait, rather than re-circulating. The model Denmark Strait Outflow therefore doubles during the latter half of the 1990s. Increased convection in the Icelandic Sea in the model in 1998-2001 acted to obliterate the anomalies that would otherwise have fed into the East Icelandic Current. A fresh, cold anomaly from the Arctic during 1998/1999 is shown to propagate through the system. Model and observations show good agreement generally, but diverge at depth more in the last few years of the simulation. The model shows that density anomalies within the East Greenland Current do not exclusively derive from the Arctic but may also arise from air-sea interaction within the Greenland Sea. Convection is a major means of limiting anomaly propagation within the model. The contrast of climatological with daily forcing shows the inherent strength of the variability in the ocean circulation on sub-decadal timescales.  相似文献   

7.
利用可分辨云模式及中国南海北部试验区加密探空的平均水平风场、位温场和水汽场模拟分析了1998年5月15日至6月11日中国南海北部地区中尺度对流系统(Mesoscal Convective System,简称MCS)中冰相相变潜热对云和降水、辐射传输以及大尺度环境场的影响作用。研究表明,冰相相变潜热总体上不会引起明显的大气辐射通量的变化,但会引起较明显的下垫面热通量的变化。凝华潜热释放显著地增加了大气稳定度,造成对流和下垫面热通量的减弱,从而导致地面降水减小10.11%。碰冻潜热释放也使得大气稳定度增加,不利于中尺度对流系统对流的发展,区域累积降水量减小2.2%。融化潜热的冷却效应,使得融化层以下的大气降温,从而增加了低层大气的不稳定性,有利于海面热通量的输送,导致MCS降水增加4.1%。因此,冰相相变潜热对降水的影响主要是通过影响大气环境稳定,进而影响洋面感热通量和潜热通量的垂直输送和对流的发展,导致区域降水改变。  相似文献   

8.
北半球大气对春季北极海冰异常响应的数值模拟   总被引:2,自引:1,他引:1  
张若楠  武炳义 《大气科学》2011,35(5):847-862
在CAM3.0模式中,通过设计一系列数值模拟试验来研究北半球大气环流对北极海冰密集度(Sea Ice Concentration,简称SIC)强迫的响应.将海冰密集度EOF第二模态(EOF2)的时间系数回归到原场,并把这个空间异常场逐月的加到SIC春季气候态上,作为敏感性试验的外强迫.试验结果表明:在季节尺度上,大气环...  相似文献   

9.
Freshwater (FW) leaves the Arctic Ocean through sea-ice export and the outflow of low-salinity upper ocean water. Whereas the variability of the sea-ice export is known to be mainly caused by changes in the local wind and the thickness of the exported sea ice, the mechanisms that regulate the variability of the liquid FW export are still under investigation. To better understand these mechanisms, we present an analysis of the variability of the liquid FW export from the Arctic Ocean for the period 1950–2007, using a simulation from an energy and mass conserving global ocean–sea ice model, coupled to an Energy Moisture Balance Model of the atmosphere, and forced with daily winds from the NCEP reanalysis. Our results show that the simulated liquid FW exports through the Canadian Arctic Archipelago (CAA) and the Fram Strait lag changes in the large-scale atmospheric circulation over the Arctic by 1 and 6 years, respectively. The variability of the liquid FW exports is caused by changes in the cyclonicity of the atmospheric forcing, which cause a FW redistribution in the Arctic through changes in Ekman transport in the Beaufort Gyre. This in turn causes changes in the sea surface height (SSH) and salinity upstream of the CAA and Fram Strait, which affect the velocity and salinity of the outflow. The SSH changes induced by the large-scale atmospheric circulation are found to explain a large part of the variance of the liquid FW export, while the local wind plays a much smaller role. We also show that during periods of increased liquid FW export from the Arctic, the strength of the simulated Atlantic meridional overturning circulation is reduced and the ocean heat transport into the Arctic is increased. These results are particularly relevant in the context of global warming, as climate simulations predict an increase in the liquid FW export from the Arctic during the twenty-first century.  相似文献   

10.
In this study, the effects of volcanic forcing on North Pacific climate variability, on interannual to decadal time scales, are examined using climate model simulations covering the last 600?years. The model used is the Bergen Climate Model, a fully coupled atmosphere–ocean general circulation model. It is found that natural external forcings, such as tropical strong volcanic eruptions (SVEs) and variations in total solar irradiance, play an important role in regulating North Pacific Decadal Variability (NPDV). In response to tropical SVEs the lower stratospheric pole–to–equator temperature gradient is enhanced. The North polar vortex is strengthened, which forces a significant positive Arctic Oscillation. At the same time, dipole zonal wind anomalies associated with strong polar vortex propagate downward from the lower stratosphere. Through positive feedbacks in the troposphere, the surface westerly winds across the central North Pacific are significantly weakened, and positive sea level pressure anomalies are formed in the North Pacific. This anomalous surface circulation results in changes in the net heat fluxes and the oceanic advection across the North Pacific. As a result of this, warm water converges in the subtropical western North Pacific, where the surface waters in addition are heated by significantly reduced latent and sensible heat fluxes from the ocean. In the eastern and high–latitude North Pacific the ocean loses more heat, and large–scale decreases in sea surface temperatures are found. The overall response of this chain of events is that the North Pacific enters a negative phase of the Pacific decadal oscillation (PDO), and this negative phase of the PDO is maintained for several years. It is thus concluded that the volcanic forcing plays a key role in the phasing of the PDO. The model results furthermore highlight the important role of troposphere–stratosphere coupling, tropical–extratropical teleconnections and extratropical ocean–atmosphere interactions for describing NPDV.  相似文献   

11.
南海海域海-气耦合模式及其数值模拟试验   总被引:11,自引:1,他引:10  
在NCAR区域气候模式RegGM2和普林斯顿海洋模式POM基础上发展适用于区域海-气相互作用研究的区域海-气耦合模式,模式采用同步耦合、海洋模式将海表温度提供给大气模式,大气模式为海洋模式提供太阳短波辐射、感热能量、潜热通量。海洋与大气模式每15min交换一次通量。耦合过程没有使用通量校正。使用该模式对中国南海区域1995年5-7月大气和海洋进行了模拟试验,将模拟结果与COADS通量强迫的模拟结果  相似文献   

12.
张学洪  俞永强  刘辉 《大气科学》1998,22(4):511-521
利用一个全球海气耦合模式长期积分所给出的资料,分析了冬季北太平洋海表湍流热通量(潜热和感热)异常及其对海表温度(SST)异常的影响,并比较了海表热通量诸分量和海洋内部的动力学过程对SST变化的相对重要性。结果表明,冬季热带外海洋上的湍流热通量是影响SST的主要因子,但在北太平洋中部海水的平流作用也不可忽视。冬季热带外海洋向大气释放的潜热和感热通量与SST倾向(而不是SST本身)之间存在着显著的相关,这同Cayan和Reynolds等利用COADS资料和NCEP资料同化模式分析的结果是一致的。模式诊断的结果支持这样一种看法:和热带海洋不同,冬季热带外海洋上的海气相互作用主要地表现为大气对海洋的强迫作用,而不是相反。模式给出的SST倾向的第一个EOF分量及其与海平面气压场的相关特征同Wallace等从观测资料分析所得到的结果是一致的;进一步的分析表明:在冬季北太平洋的大部分区域(特别是西太平洋),大尺度大气环流异常在很大程度上决定着SST的异常,而这种决定作用正是通过它对湍流热通量的强烈影响来实现的。  相似文献   

13.
 In this study we investigate the role of heat, freshwater and momentum fluxes in changing the oceanic climate and thermohaline circulation as a consequence of increasing atmospheric CO2 concentration. Two baseline integrations with a fully coupled ocean atmosphere general circulation model with either fixed or increasing atmospheric CO2 concentrations have been performed. In a set of sensitivity experiments either freshwater (precipitation, evaporation and runoff from the continents) and/or momentum fluxes were no longer simulated, but prescribed according to one of the fully coupled baseline experiments. This approach gives a direct estimate of the contribution from the individual flux components. The direct effect of surface warming and the associated feedbacks in ocean circulation are the dominant processes in weakening the Atlantic thermohaline circulation in our model. The relative contribution of momentum and freshwater fluxes to the total response turned out to be less than 25%, each. Changes in atmospheric water vapour transport lead to enhanced freshwater input into middle and high latitudes, which weakens the overturning. A stronger export of freshwater from the Atlantic drainage basin to the Indian and Pacific ocean, on the other hand, intensifies the Atlantic overturning circulation. In total the modified freshwater fluxes slightly weaken the Atlantic thermohaline circulation. The contribution of the modified momentum fluxes has a similar magnitude, but enhances the formation of North Atlantic deep water. Salinity anomalies in the Atlantic as a consequence of greenhouse warming stem in almost equal parts from changes in net freshwater fluxes and from changes in ocean circulation caused by the surface warming due to atmospheric heat fluxes. Important effects of the momentum fluxes are a poleward shift of the front between Northern Hemisphere subtropical and subpolar gyres and a southward shift in the position of the Antarctic circumpolar current, with a clear signal in sea level. Received: 3 May 1999 / Accepted: 11 December 1999  相似文献   

14.
Leads and polynyas have a great impact on the energy budget of the polar ocean and atmosphere. Since atmospheric general circulation models are not able to resolve the spatial scales of these inhomogeneities, it is necessary to include the effect of fractional sub-grid scale sea-ice inhomogeneities on climate by a suitable parametrization. In order to do this we have divided each model grid-cell into an ice-covered and an ice-free part. Nevertheless, a numerical model requires effective transports representative for the whole grid-box. A simple procedure would be to use grid averages of the surface parameters for the calculation of the surface fluxes. However, as the surface fluxes are non-linearly dependent on the surface properties, the fluxes over ice and open water should be calculated separately according to the individual surface-layer structure of each surface type. Then these local fluxes should be averaged to obtain representative fluxes. Sensitivity experiments with the Hamburg atmospheric general circulation model ECHAM3 clearly show that a subgrid scale distribution of sea ice is a dominant factor controlling the exchange processes between ocean and atmosphere in the Arctic. The heat and water vapour transports are strongly enhanced leading to a significant warming and moistening of the polar troposphere. This affects the atmospheric circulation in high- and mid-latitudes; e.g. the stationary lows are modified and the transient cyclonic activity over the subpolar oceans is reduced. A pronounced impact of sub-grid scale sea-ice distribution on the model climate can only be obtained when the non-linear behaviour of the surface exchange processes is considered by a proper, physically based, averaging of the surface fluxes. A simple linear averaging of surface parameters is not sufficient. Received: 13 September 1994 / Accepted: 25 July 1995  相似文献   

15.
16.
This study examines pre-industrial control simulations from CMIP5 climate models in an effort to better understand the complex relationships between Arctic sea ice and the stratosphere, and between Arctic sea ice and cold winter temperatures over Eurasia. We present normalized regressions of Arctic sea-ice area against several atmospheric variables at extended lead and lag times. Statistically significant regressions are found at leads and lags, suggesting both atmospheric precursors of, and responses to, low sea ice; but generally, the regressions are stronger when the atmosphere leads sea ice, including a weaker polar stratospheric vortex indicated by positive polar cap height anomalies. Significant positive midlatitude eddy heat flux anomalies are also found to precede low sea ice. We argue that low sea ice and raised polar cap height are both a response to this enhanced midlatitude eddy heat flux. The so-called "warm Arctic, cold continents" anomaly pattern is present one to two months before low sea ice, but is absent in the months following low sea ice, suggesting that the Eurasian cooling and low sea ice are driven by similar processes. Lastly, our results suggest a dependence on the geographic region of low sea ice, with low Barents–Kara Sea ice correlated with a weakened polar stratospheric vortex, whilst low Sea of Okhotsk ice is correlated with a strengthened polar vortex. Overall, the results support a notion that the sea ice, polar stratospheric vortex and Eurasian surface temperatures collectively respond to large-scale changes in tropospheric circulation.  相似文献   

17.
Summary In this paper a simple climate model is presented which is used to perform some sensitivity experiments. The atmospheric part is represented by a vertically and zonally averaged layer in which the surface air temperature, radiative fluxes at the surface and at the top of the atmosphere, the turbulent fluxes between atmosphere and surface and the snow cover are calculated. This atmospheric layer is coupled to a two-dimensional advection-diffusion ocean model in which the zonal overturning pattern is prescribed. The ocean model evaluates the temperature distribution, the amount of sea-ice and the meridional and vertical heat fluxes. The present-day climate simulated by the model compares reasonably well with observations of the seasonal and latitudinal distribution of temperature, radiation, surface alebdo, sea-ice and snow cover and meridional energy fluxes. Then, the sensitivity of the model-simulated present-day climate to perturbations in the incident solar radiation at the top of the atmosphere is investigated. The temperature response displays large latitudinal and seasonal variations, which is in qualitative agreement with results obtained with other climate models. It is found that the seasonal variation of sea-ice cover (and hence, the effective oceanic heat capacity) is one of the most important elements determining seasonal variations in climate sensitivity. Differences in sensitivity between the seasonal and annual mean version of the model are discussed. Finally, the equilibrium response to perturbations in some selected model variables is presented; these variables include meridional diffusion coefficients, drag coefficient, sea-ice thickness, atmospheric CO2-concentration and cloud optical thickness.With 13 Figures  相似文献   

18.
A fast coupled global climate model (CGCM) is used to study the sensitivity of El Ni?o Southern Oscillation (ENSO) characteristics to a new interactive flux correction scheme. With no flux correction applied our CGCM reveals typical bias in the background state: for instance, the cold tongue in the tropical east Pacific becomes too cold, thus degrading atmospheric sensitivity to variations of sea surface temperature (SST). Sufficient atmospheric sensitivity is essential to ENSO. Our adjustment scheme aims to sustain atmospheric sensitivity by counteracting the SST drift in the model. With reduced bias in the forcing of the atmosphere, the CGCM displays ENSO-type variability that otherwise is absent. The adjustment approach employs a one-way anomaly coupling from the ocean to the atmosphere: heat fluxes seen by the ocean are based on full SST, while heat fluxes seen by the atmosphere are based on anomalies of SST. The latter requires knowledge of the model??s climatological SST field, which is accumulated interactively in the spin-up phase (??training??). Applying the flux correction already during the training period (by utilizing the evolving SST climatology) is necessary for efficiently reducing the bias. The combination of corrected fluxes seen by the atmosphere and uncorrected fluxes seen by the ocean implies a restoring mechanism that counteracts the bias and allows for long stable integrations in our CGCM. A suite of sensitivity runs with varying training periods is utilized to study the effect of different levels of bias in the background state on important ENSO properties. Increased duration of training amplifies the coupled sensitivity in our model and leads to stronger amplitudes and longer periods of the Nino3.4 index, increased emphasis of warm events that is reflected in enhanced skewness, and more pronounced teleconnections in the Pacific. Furthermore, with longer training durations we observe a mode switch of ENSO in our model that closely resembles the observed mode switch related to the mid-1970s ??climate shift??.  相似文献   

19.
《大气与海洋》2013,51(2):81-92
Abstract

Evidence based on numerical simulations is presented for a strong correlation between the North Atlantic Oscillation (NAO) and the North Atlantic overturning circulation. Using an ensemble of numerical experiments with a coupled ocean‐atmosphere model including both natural and anthropogenic forcings, it is shown that the weakening of the thermohaline circulation (THC) could be delayed in response to a sustained upward trend in the NAO, which was observed over the last three decades of the twentieth century, 1970–99. Overall warming and enhanced horizontal transports of heat from the tropics to the subpolar North Atlantic overwhelm the NAO‐induced cooling of the upper ocean layers due to enhanced fluxes of latent and sensible heat, so that the net effect of warmed surface ocean temperatures acts to increase the vertical stability of the ocean column. However, the strong westerly winds cause increased evaporation from the ocean surface, which leads to a reduced fresh water flux over the western part of the North Atlantic. Horizontal poleward transport of salinity anomalies from the tropical Atlantic is the major contributor to the increasing salinities in the sinking regions of the North Atlantic. The effect of positive salinity anomalies on surface ocean density overrides the opposing effect of enhanced warming of the ocean surface, which causes an increase in surface density in the Labrador Sea and in the ocean area south of Greenland. The increased density of the upper ocean layer leads to deeper convection in the Labrador Sea and in the western North Atlantic. With a lag of four years, the meridional overturning circulation of the North Atlantic shows strengthening as it adjusts to positive density anomalies and enhanced vertical mixing. During the positive NAO trend, the salinity‐driven density instability in the upper ocean, due to both increased northward ocean transports of salinity and decreased atmospheric freshwater fluxes, results in a strengthening overturning circulation in the North Atlantic when the surface atmospheric temperature increases by 0.3°C and the ocean surface temperature warms by 0.5° to 1°C.  相似文献   

20.
Since the Mediterranean Sea is halfway between subtropical and middle latitudes, and it represents a marginal oceanic region, research has tended to focus on how large-scale modes of atmospheric variability modulate its surface temperature. Conversely, the present study examines the potential influence of the Mediterranean Sea surface temperature (SST) anomalies on the Northern Hemisphere atmospheric circulation. In particular, this work explores the large-scale changes in the global circulation forced/influenced by the eastern Mediterranean summer-autumn SST pattern. To isolate the atmospheric response, AGCM sensitivity experiments with prescribed SST over the Mediterranean Sea and climatology elsewhere are analysed. Observational diagnostics upon the period used to define the boundary conditions (1979–2002) are also interpreted. Our results support the hypothesis of an atmospheric pattern initiated in the Mediterranean basin, pointing out both a local baroclinic response and a barotropic circumglobal anomaly. This atmospheric teleconnection pattern projects onto a hemispheric wave-like structure, reflecting the waveguide effect of the westerly jets. Results suggest, thereby, that the recurrent summer-autumn circumglobal teleconnection pattern can be excited locally by changes in the atmosphere over the Mediterranean region. A linear behaviour is found upon a regional impact over northeastern Africa. The remote impacts present however a nonlinear signature: anomalous warm conditions influencing on northern Europe and Euro–Asia, whereas anomalous cold conditions impacting more on the North Pacific basin. Limitations in our model setup are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号