首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Snow pack in the Romanian Carpathians under changing climatic conditions   总被引:2,自引:0,他引:2  
Snow pack characteristics and duration are considered to be key indicators of climate change in mountain regions, especially during the winter season (herein considered to last from the 1st of November to the 30th of April). Deviations recorded in the regime of the main explanatory variables of snow pack changes (i.e. temperature and precipitation) offer useful information on winter climate variability, in the conditions of the winter warming trend already seen in some areas of the Romanian Carpathians. The present work focuses on changes and trends in snow pack characteristics and its related parameters, registered at the 15 weather stations located in the alpine, sub-alpine and forest belts in all the three Romanian Carpathian branches (>1,000 m) over the 1961–2003 period. Changes in the snow pack regime were investigated in relation with the modifications of winter temperature and precipitation having been detected mostly at the end of the twentieth century. A winter standardized index was calculated to group winters over the 43-year period into severity classes and detect the respective changes. Links between the number of snow cover days and seasonal NAO index were also statistically analysed in this study. The general results show large regional and altitudinal variations and the complex character of the climate in the Romanian Carpathians, leading to the idea of an ongoing warming process associated with a lower incidence of snow cover, affecting to a large extent the forested mountain areas located below 1,600–1,700 m altitude. Also negative and weak correlations were found, particularly over the December–March interval, between the number of snow cover days and seasonal NAO index values.  相似文献   

2.
利用耦合了陆面过程模式(CLM4.5)的区域气候模式(RegCM4)分别对青藏高原的一个多雪年和少雪年进行了数值模拟.通过对比模拟雪深与遥感雪深、土壤温湿度的模拟值与观测值、多雪年与少雪年的土壤温湿度模拟值,结果表明,RegCM4-CLM4.5可以有效模拟出高原的多雪年与少雪年特征,模拟雪深大值中心比遥感雪深高10~2...  相似文献   

3.
This study quantitatively evaluated how insulation by snow depth (SND) affected the soil thermal regime and permafrost degradation in the pan-Arctic area, and more generally defined the characteristics of soil temperature (TSOIL) and SND from 1901 to 2009. This was achieved through experiments performed with the land surface model CHANGE to assess sensitivity to winter precipitation as well as air temperature. Simulated TSOIL, active layer thickness (ALT), SND, and snow density were generally comparable with in situ or satellite observations at large scales and over long periods. Northernmost regions had snow that remained relatively stable and in a thicker state during the past four decades, generating greater increases in TSOIL. Changes in snow cover have led to changes in the thermal state of the underlying soil, which is strongly dependent on both the magnitude and the timing of changes in snowfall. Simulations of the period 2001–2009 revealed significant differences in the extent of near-surface permafrost, reflecting differences in the model’s treatment of meteorology and the soil bottom boundary. Permafrost loss was greater when SND increased in autumn rather than in winter, due to insulation of the soil resulting from early cooling. Simulations revealed that TSOIL tended to increase over most of the pan-Arctic from 1901 to 2009, and that this increase was significant in northern regions, especially in northeastern Siberia where SND is responsible for 50 % or more of the changes in TSOIL at a depth of 3.6 m. In the same region, ALT also increased at a rate of approximately 2.3 cm per decade. The most sensitive response of ALT to changes in SND appeared in the southern boundary regions of permafrost, in contrast to permafrost temperatures within the 60°N–80°N region, which were more sensitive to changes in snow cover. Finally, our model suggests that snow cover contributes to the warming of permafrost in northern regions and could play a more important role under conditions of future Arctic warming.  相似文献   

4.
Abstract

Trends in Canadian temperature and precipitation during the 20th century are analyzed using recently updated and adjusted station data. Six elements, maximum, minimum and mean temperatures along with diurnal temperature range (DTR), precipitation totals and ratio of snowfall to total precipitation are investigated. Anomalies from the 1961–1990 reference period were first obtained at individual stations, and were then used to generate gridded datasets for subsequent trend analyses. Trends were computed for 1900–1998 for southern Canada (south of 60°N), and separately for 1950–1998 for the entire country, due to insufficient data in the high arctic prior to the 1950s.

From 1900–1998, the annual mean temperature has increased between 0.5 and 1.5°C in the south. The warming is greater in minimum temperature than in maximum temperature in the first half of the century, resulting in a decrease of DTR. The greatest warming occurred in the west, with statistically significant increases mostly seen during spring and summer periods. Annual precipitation has also increased from 5% to 35% in southern Canada over the same period. In general, the ratio of snowfall to total precipitation has been increasing due mostly to the increase in winter precipitation which generally falls as snow and an increase of ratio in autumn. Negative trends were identified in some southern regions during spring. From 1950–1998, the pattern of temperature change is distinct: warming in the south and west and cooling in the northeast, with similar magnitudes in both maximum and minimum temperatures. This pattern is mostly evident in winter and spring. Across Canada, precipitation has increased by 5% to 35%, with significant negative trends found in southern regions during winter. Overall, the ratio of snowfall to total precipitation has increased, with significant negative trends occurring mostly in southern Canada during spring.

Indices of abnormal climate conditions are also examined. These indices were defined as areas of Canada for 1950–1998, or southern Canada for 1900–1998, with temperature or precipitation anomalies above the 66th or below the 34th percentiles in their relevant time series. These confirmed the above findings and showed that climate has been becoming gradually wetter and warmer in southern Canada throughout the entire century, and in all of Canada during the latter half of the century.  相似文献   

5.
The Mediterranean region has been identified as a global warming hotspot, where future climate impacts are expected to have significant consequences on societal and ecosystem well-being. To put ongoing trends of summer climate into the context of past natural variability, we reconstructed climate from maximum latewood density (MXD) measurements of Pinus heldreichii (1521–2010) and latewood width (LWW) of Pinus nigra (1617–2010) on Mt. Olympus, Greece. Previous research in the northeastern Mediterranean has primarily focused on inter-annual variability, omitting any low-frequency trends. The present study utilizes methods capable of retaining climatically driven long-term behavior of tree growth. The LWW chronology corresponds closely to early summer moisture variability (May–July, r = 0.65, p < 0.001, 1950–2010), whereas the MXD-chronology relates mainly to late summer warmth (July–September, r = 0.64, p < 0.001; 1899–2010). The chronologies show opposing patterns of decadal variability over the twentieth century (r = ?0.68, p < 0.001) and confirm the importance of the summer North Atlantic Oscillation (sNAO) for summer climate in the northeastern Mediterranean, with positive sNAO phases inducing cold anomalies and enhanced cloudiness and precipitation. The combined reconstructions document the late twentieth—early twenty-first century warming and drying trend, but indicate generally drier early summer and cooler late summer conditions in the period ~1700–1900 CE. Our findings suggest a potential decoupling between twentieth century atmospheric circulation patterns and pre-industrial climate variability. Furthermore, the range of natural climate variability stretches beyond summer moisture availability observed in recent decades and thus lends credibility to the significant drying trends projected for this region in current Earth System Model simulations.  相似文献   

6.
Climate change in the European region during the twentieth and twenty-first centuries is analyzed according to Feddema’s method. Precipitation and air temperature data from the twentieth century are taken from the Climatic Research Unit, while data for the twenty-first century are taken from the ENSEMBLES climate change project. The latter were bias-corrected to ensure homogeneity across the twentieth and twenty-first centuries. Climate classes based on monthly and annual values of potential evapotranspiration, precipitation and their ratio, are defined for 30-year averages, from which trend and spatial agreement analysis are calculated. There are separate classes for annual values and for intra-annual variation. The results indicate that the change of annual climate characteristics will be much more intense in the twenty-first than it was in the twentieth century. The dominant process in the projections is warming, mostly via cold to cool (about 45% of grid points) in north Europe and cool to warm (about 8% of grid points) transformations. The second most important process is the drying of moderately moist classes affecting about 10% of the grid points in south Europe. Changes in intra-annual variability classes are more common than changes in the annual ones during the twentieth century. The chance of increase in intra-annual temperature variation from high to extreme is about 5% during the course of the twentieth century, and about 10% in the following century.  相似文献   

7.
Changes in snowfall in northern Europe (55–71°N, 5–35°E) are analysed from 12 regional model simulations of twenty-first century climate under the Special Report on Emissions Scenarios A1B scenario. As an ensemble mean, the models suggest a decrease in the winter total snowfall in nearly all of northern Europe. In the middle of the winter, however, snowfall generally increases in the coldest areas. The borderline between increasing and decreasing snowfall broadly coincides with the ?11 °C isotherm in baseline (1980–2010) monthly mean temperature, although with variation between models and grid boxes. High extremes of daily snowfall remain nearly unchanged, except for decreases in the mildest areas, where snowfall as a whole becomes much less common. A smaller fraction of the snow in the simulated late twenty-first century climate falls on severely cold days and a larger fraction on days with near-zero temperatures. Not only do days with low temperatures become less common, but they also typically have more positive anomalies of sea level pressure and less snowfall for the same temperature than in the present-day climate.  相似文献   

8.
The presence of snow along a portion of the Croatian highlands has enabled the development of winter tourism that is primarily oriented toward snow-related activities. Snow is more abundant and stays on the ground longer in the mountainous district of Gorski kotar (south eastern edge of the Alps) and on Mount Velebit (Dinaric Alps), which have elevations of up to 1,600?m and are close to the Adriatic coast than over the inland hilly region of north western Croatia where the summits are not more than approximately 1,000?m high. Basic information about the snow conditions at these locations was gathered for this study, including the annual cycle and probabilities for various snow parameters at different altitudes. As requested by the Croatian Ski Association, the relation between the air temperature and the relative humidity was investigated to determine the feasibility of artificial snowmaking. The snow parameters are highly correlated to air temperature, surface air pressure and precipitation, with certain differences occurring as a result of the altitude. Since the beginning of the second half of the twentieth century, winter warming and a significant increase in the mean air pressure (more anticyclonic situations) have been detected at all sites. Winter precipitation totals decreased at medium altitudes and increased at the summit of Mount Velebit, but these trends were not significant. The frequency of precipitation days and of snowfall decreased whereas an increasing fraction of the precipitation days at high altitudes involved solid precipitation. In contrast, a decreasing fraction of the precipitation days at medium altitudes involved solid precipitation, probably because of the different warming intensities at different altitudes. The mean daily snow depth and the duration of snow cover both slightly decreased at medium altitudes whereas the snow cover duration slightly increased at the mountainous summit of Mount Velebit.  相似文献   

9.
We examine trends in climate variables and their interrelationships over the Tibetan Plateau using global climate model simulations to elucidate the mechanisms for the pattern of warming observed over the plateau during the latter half of the twentieth century and to investigate the warming trend during the twenty-first century under the SRES A1B scenario. Our analysis suggests a 4°C warming over the plateau between 1950 and 2100. The largest warming rates occur during winter and spring. For the 1961–2000 period, the simulated warming is similar to the observed trend over the plateau. Moreover, the largest warming occurs at the highest elevation sites between 1950 and 2100. We find that increases in (1) downward longwave radiation (DLR) influenced by increases in surface specific humidity (q), and (2) absorbed solar radiation (ASR) influenced by decreases in snow cover extent are, in part, the reason for a large warming trend over the plateau, particularly during winter and spring. Furthermore, elevation-based increases in DLR (influenced by q) and ASR (influenced by snow cover and atmospheric aerosols) appear to affect the elevation dependent warming trend simulated in the model.  相似文献   

10.
The 2m temperature (T2m) and precipitation from five regional climate models (RCMs), which participated in the ENSEMBLES project and were integrated at a 25-km horizontal resolution, are compared with observed climatological data from 13 stations located in the Croatian coastal zone. The twentieth century climate was simulated by forcing RCMs with identical boundary conditions from the ERA-40 reanalysis and the ECHAM5/MPI-OM global climate model (GCM); climate change in the twenty-first century is based on the A1B scenario and assessed from the GCM-forced RCMs’ integrations. When forced by ERA-40, most RCMs exhibit cold bias in winter which contributes to an overestimation of the T2m annual cycle amplitude and the errors in interannual variability are in all RCMs smaller than those in the climatological mean. All models underestimate observed warming trends in the period 1951–2010. The largest precipitation biases coincide with locations/seasons with small observed amounts but large precipitation amounts near high orography are relatively well reproduced. When forced by the same GCM all RCMs exhibit a warming in the cold half-year and a cooling (or weak warming) in the warm period, implying a strong impact of GCM boundary forcing. The future eastern Adriatic climate is characterised by a warming, up to +5 °C towards the end of the twenty-first century; for precipitation, no clear signal is evident in the first half of the twenty-first century, but a reduction in precipitation during summer prevails in the second half. It is argued that land-sea contrast and complex coastal configuration of the Croatian coast, i.e. multitude of island and well indented coastline, have a major impact on small-scale variability. Orography plays important role only at small number of coastal locations. We hypothesise that the parameterisations related to land surface processes and soil hydrology have relatively stronger impact on variability than orography at those locations that include a relatively large fraction of land (most coastal stations), but affecting less strongly locations at the Adriatic islands.  相似文献   

11.
An analysis is presented of an ensemble of regional climate model (RCM) experiments from the ENSEMBLES project in terms of mean winter snow water equivalent (SWE), the seasonal evolution of snow cover, and the duration of the continuous snow cover season in the European Alps. Two sets of simulations are considered, one driven by GCMs assuming the SRES A1B greenhouse gas scenario for the period 1951–2099, and the other by the ERA-40 reanalysis for the recent past. The simulated SWE for Switzerland for the winters 1971–2000 is validated against an observational data set derived from daily snow depth measurements. Model validation shows that the RCMs are capable of simulating the general spatial and seasonal variability of Alpine snow cover, but generally underestimate snow at elevations below 1,000 m and overestimate snow above 1,500 m. Model biases in snow cover can partly be related to biases in the atmospheric forcing. The analysis of climate projections for the twenty first century reveals high inter-model agreement on the following points: The strongest relative reduction in winter mean SWE is found below 1,500 m, amounting to 40–80 % by mid century relative to 1971–2000 and depending upon the model considered. At these elevations, mean winter temperatures are close to the melting point. At higher elevations the decrease of mean winter SWE is less pronounced but still a robust feature. For instance, at elevations of 2,000–2,500 m, SWE reductions amount to 10–60 % by mid century and to 30–80 % by the end of the century. The duration of the continuous snow cover season shows an asymmetric reduction with strongest shortening in springtime when ablation is the dominant factor for changes in SWE. We also find a substantial ensemble-mean reduction of snow reliability relevant to winter tourism at elevations below about 1,800 m by mid century, and at elevations below about 2,000 m by the end of the century.  相似文献   

12.
Li  Yana  Lau  Ngar-Cheung  Tam  Chi-Yung  Cheung  Ho-Nam  Deng  Yi  Zhang  Henian 《Climate Dynamics》2021,56(11):4013-4026

Summer monsoonal rainfall over East Asia is dominated by precipitation associated with the East Asian summer monsoonal front (EASMF). A Community Atmospheric Model (CAM5.1) with a high horizontal resolution of 50 km is employed in this study to investigate the interannual variability as well as projected future trends in the EASMF under the Representative Concentration Pathway 8.5 scenario. Seasonal march of the EASMF is reproduced reasonably well in the model’s present-day simulation despite a northward shift of the simulated front from its observed position. Based upon a suite of objectively-defined daily indices of the EASMF, we show that the EASMF in the late twenty-first century will be more intense and displaced eastward and southward from its present-day mean location. Moreover, EASMF events will exhibit a wider meridional expansion and a longer duration. Monsoonal precipitation over East Asia is particularly sensitive to the meridional displacements of EASMF. In conjunction with the projected southward shift of EASMF, an enhanced rain band is seen to extend northeastward from southern China to the northwestern Pacific south of Japan. This precipitation feature is associated with strengthened and southward-shifted westerly jet streams at 250 and 700 hPa, which are respectively linked to tropical warming in the upper troposphere and warming over the South China Sea in the lower troposphere during the twenty-first century. Within the latitudinal “gap” south of the upper-level jet and north of the lower-level jet, the local vorticity tendencies are maintained by upper-level divergence and lower-level convergence, thus accompanied by enhanced upward motion and precipitation. The site at which this “jet stream-precipitation” relationship prevails is notably modulated by long-term trends in the temperature and circulation patterns associated with climate change.

  相似文献   

13.
Snow cover changes in the middle (2040–2059) and end (2080–2099) of the twenty-first century over China were investigated with a regional climate model, nested within the global model BCC_CSM1.1. The simulations had been conducted for the period of 1950–2099 under the RCP4.5 and RCP8.5 scenarios. Results show that the model perform well in representing contemporary (1986–2005) spatial distributions of snow cover days (SCDs) and snow water equivalent (SWE). However, some differences between observation and simulation were detected. Under the RCP4.5 scenarios, SCDs are shortened by 10–20 and 20–40 days during the middle and end of the twenty-first century, respectively. Whereas simulated SWE is lowered by 0.1–10 mm in most areas over the Tibetan Plateau (TP). On the other hand, the spatial distributions of SWE are reversed between the middle and end terms in the northeast China. Furthermore, compared with the changes of RCP4.5 scenario, SCDs are reduced by 5–20 days in the middle period under RCP8.5 scenario with even larger decreasing amplitude in the end term. SWE was lowered by 0.1–2.5 mm in most areas except the northeast of China in middle term under RCP8.5 scenario. The great center of SCDs and SWE changes are always located over TP. The regional mean of SCDs and SWE for the TP and for China display a declining trend from 2006 to 2099 with more pronounced changes in the TP than in China as a whole. Under the RCP8.5 scenario, the changes are enhanced compared to those under RCP4.5.  相似文献   

14.
Climate fluctuations in the North Atlantic Ocean have wide-spread implications for Europe, Africa, and the Americas. This study assesses the relative contribution of the long-term trend and variability of North Atlantic warming using EOF analysis of deep-ocean and near-surface observations. Our analysis demonstrates that the recent warming over the North Atlantic is linked to both long-term (including anthropogenic and natural) climate change and multidecadal variability (MDV, ~50–80 years). Our results suggest a general warming trend of 0.031 ± 0.006°C/decade in the upper 2,000 m North Atlantic over the last 80 years of the twentieth century, although during this time there are periods in which short-term trends were strongly amplified by MDV. For example, MDV accounts for ~60% of North Atlantic warming since 1970. The single-sign basin-scale pattern of MDV with prolonged periods of warming (cooling) in the upper ocean layer and opposite tendency in the lower layer is evident from observations. This pattern is associated with a slowdown (enhancement) of the North Atlantic thermohaline overturning circulation during negative (positive) MDV phases. In contrast, the long-term trend exhibits warming in tropical and mid-latitude North Atlantic and a pattern of cooling in regions associated with major northward heat transports, consistent with a slowdown of the North Atlantic circulation as evident from observations and confirmed by selected modeling results. This localized cooling has been masked in recent decades by warming during the positive phase of MDV. Finally, since the North Atlantic Ocean plays a crucial role in establishing and regulating the global thermohaline circulation, the multidecadal fluctuations discussed here should be considered when assessing long-term climate change and variability, both in the North Atlantic and at global scales.  相似文献   

15.
Beobide-Arsuaga  Goratz  Bayr  Tobias  Reintges  Annika  Latif  Mojib 《Climate Dynamics》2021,56(11):3875-3888

There is a long-standing debate on how the El Niño/Southern Oscillation (ENSO) amplitude may change during the twenty-first century in response to global warming. Here we identify the sources of uncertainty in the ENSO amplitude projections in models participating in the Coupled Model Intercomparison Phase 5 (CMIP5) and Phase 6 (CMIP6), and quantify scenario uncertainty, model uncertainty and uncertainty due to internal variability. The model projections exhibit a large spread, ranging from increasing standard deviation of up to 0.6 °C to diminishing standard deviation of up to − 0.4 °C by the end of the twenty-first century. The ensemble-mean ENSO amplitude change is close to zero. Internal variability is the main contributor to the uncertainty during the first three decades; model uncertainty dominates thereafter, while scenario uncertainty is relatively small throughout the twenty-first century. The total uncertainty increases from CMIP5 to CMIP6: while model uncertainty is reduced, scenario uncertainty is considerably increased. The models with “realistic” ENSO dynamics have been analyzed separately and categorized into models with too small, moderate and too large ENSO amplitude in comparison to instrumental observations. The smallest uncertainties are observed in the sub-ensemble exhibiting realistic ENSO dynamics and moderate ENSO amplitude. However, the global warming signal in ENSO-amplitude change is undetectable in all sub-ensembles. The zonal wind-SST feedback is identified as an important factor determining ENSO amplitude change: global warming signal in ENSO amplitude and zonal wind-SST feedback strength are highly correlated across the CMIP5 and CMIP6 models.

  相似文献   

16.
There is mounting evidence that permafrost degradation has occurred over the past century. However, the amount of permafrost lost is uncertain because permafrost is not readily observable over long time periods and large scales. This paper uses JULES, the land surface component of the Hadley Centre global climate model, driven by different realisations of twentieth century meteorology to estimate the pan-arctic changes in near-surface permafrost. Model simulations of permafrost are strongly dependent on the amount of snow both in the driving meteorology and the way it is treated once it reaches the ground. The multi-layer snow scheme recently adopted by JULES significantly improves its estimates of soil temperatures and permafrost extent. Therefore JULES, despite still having a small cold bias in soil temperatures, can now simulate a near-surface permafrost extent which is comparable to that observed. Changes in snow cover have been shown to contribute to changes in permafrost and JULES simulates a significant decrease in late twentieth century pan-Arctic spring snow cover extent. In addition, large-scale modelled changes in the active layer are comparable with those observed over northern Russia. Simulations over the period 1967–2000 show a significant loss of near-surface permafrost—between 0.55 and 0.81 million km2 per decade with this spread caused by differences in the driving meteorology. These runs also show that, for the grid cells where the active layer has increased significantly, the mean increase is ~10 cm per decade. The permafrost degradation discussed here is mainly caused by an increase in the active layer thickness driven by changes in the large scale atmospheric forcing. However, other processes such as thermokarst development and river and coastal erosion may also occur enhancing permafrost loss.  相似文献   

17.
A regional atmospheric climate model with multi-layer snow module (RACMO2) is forced at the lateral boundaries by global climate model (GCM) data to assess the future climate and surface mass balance (SMB) of the Antarctic ice sheet (AIS). Two different GCMs (ECHAM5 until 2100 and HadCM3 until 2200) and two different emission scenarios (A1B and E1) are used as forcing to capture a realistic range in future climate states. Simulated ice sheet averaged 2 m air temperature (T2m) increases (1.8–3.0 K in 2100 and 2.4–5.3 K in 2200), simultaneously and with the same magnitude as GCM simulated T2m. The SMB and its components increase in magnitude, as they are directly influenced by the temperature increase. Changes in atmospheric circulation around Antarctica play a minor role in future SMB changes. During the next two centuries, the projected increase in liquid water flux from rainfall and snowmelt, together 60–200 Gt year?1, will mostly refreeze in the snow pack, so runoff remains small (10–40 Gt year?1). Sublimation increases by 25–50 %, but remains an order of magnitude smaller than snowfall. The increase in snowfall mainly determines future changes in SMB on the AIS: 6–16 % in 2100 and 8–25 % in 2200. Without any ice dynamical response, this would result in an eustatic sea level drop of 20–43 mm in 2100 and 73–163 mm in 2200, compared to the twentieth century. Averaged over the AIS, a strong relation between $\Updelta$ SMB and $\Updelta\hbox{T}_{2{\rm m}}$ of 98 ± 5 Gt w.e. year?1 K?1 is found.  相似文献   

18.
It was recently reported a regional warming in the intra-Americas region where sea surface temperature exhibited increases exceeding 0.15 °C/decade and an accelerated air temperature rise that could impact building energy demands per capita (EDC). Reanalysis data is used herein to quantify the impacts of these warming trends on EDC. Results of the analysis depict a Southern Greater Antilles and inland South America with a positive annual EDC rate of 1–5 kWh per year. The Intergovernmental Panel on Climate Change (IPCC) Representative Concentration Pathways (RCP) 2.6 and 4.5 scenarios were selected to analyze energy demand changes in the twenty-first century. A multi-model ensemble forecasts an EDC increase of 9.6 and 23 kWh/month in the RCP2.6 and RCP4.5 at the end of the twenty-first century, which may increase average building cooling loads in the region by 7.57 GW (RCP2.6) and 8.15 GW (RCP4.5), respectively. Furthermore, 4 of 9 (RCP2.6) and 7 of 9 (RCP4.5) of the major countries in this region have EDCs ranging between 1887 and 2252 kWh/year at the end of this century. Therefore, increased energy production and improved energy infrastructure will be required to maintain ideal indoor building conditions at the end of the twenty-first century in these tropical coastal regions as consequence of a warmer climate.  相似文献   

19.
In this study, the ability of a regional climate model, based on MM5, to simulate the climate of the Middle East at the beginning of the twenty-first century is assessed. The model is then used to simulate the changes due to global warming over the twenty-first century. The regional climate model displays a negative bias in temperature throughout the year and over most of the domain. It does a good job of simulating the precipitation for most of the domain, though it performs relatively poorly over the southeast Black Sea and southwest Caspian Sea. Using boundary conditions obtained from CCSM3, the model was run for the first and last 5 years of the twenty-first century. The results show widespread warming, with a maximum of ~10 K in interior Iran during summer. It also found some cooling in the southeast Black Sea region during spring and summer that is related to increases in snowfall in the region, a longer snowmelt season, and generally higher soil moisture and latent heating through the summer. The results also show widespread decreases in precipitation over the eastern Mediterranean and Turkey. Precipitation increases were found over the southeast Black Sea, southwest Caspian Sea, and Zagros mountain regions during all seasons except summer, while the Saudi desert region receives increases during summer and autumn. Changes in the dominant precipitation-triggering mechanisms were also investigated. The general trend in the dominant mechanism reflects a change away from the direct dependence on storm tracks and towards greater precipitation triggering by upslope flow of moist air masses. The increase in precipitation in the Saudi desert region is triggered by changes in atmospheric stability brought about by the intrusion of the intertropical convergence zone into the southernmost portion of the domain.  相似文献   

20.
Snow and weather observations at Weissfluhjoch were initiated in 1936, when a research team set a snow stake and started digging snow pits on a plateau located at 2,540?m asl above Davos, Switzerland. This was the beginning of what is now the longest series of daily snow depth, new snow height and bi-monthly snow water equivalent measurements from a high-altitude research station. Our investigations reveal that the snow depth at Weissfluhjoch with regard to the evolution and inter-annual variability represents a good proxy for the entire Swiss Alps. In order to set the snow and weather observations from Weissfluhjoch in a broader context, this paper also shows some comparisons with measurements from five other high-altitude observatories in the European Alps. The results show a surprisingly uniform warming of 0.8°C during the last three decades at the six investigated mountain stations. The long-term snow measurements reveal no change in mid-winter, but decreasing trends (especially since the 1980s) for the solid precipitation ratio, snow fall, snow water equivalent and snow depth during the melt season due to a strong temperature increase of 2.5°C in the spring and summer months of the last three decades.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号