首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The commonly used classical equipartition or minimum‐energy estimate of total magnetic fields strengths from radio synchrotron intensities is of limited practical use because it is based on the hardly known ratio K of the total energies of cosmic ray protons and electrons and also has inherent problems. We present a revised formula, using the number density ratio K for which we give estimates. For particle acceleration in strong shocks K is about 40 and increases with decreasing shock strength. Our revised estimate for the field strength gives larger values than the classical estimate for flat radio spectra with spectral indices of about 0.5–0.6, but smaller values for steep spectra and total fields stronger than about 10 µG. In very young supernova remnants, for example, the classical estimate may be too large by up to 10×. On the other hand, if energy losses of cosmic ray electrons are important, K increases with particle energy and the equipartition field may be underestimated significantly. Our revised larger equipartition estimates in galaxy clusters and radio lobes are consistent with independent estimates from Faraday rotation measures, while estimates from the ratio between radio synchrotron and X‐ray inverse Compton intensities generally give much weaker fields. This may be explained e.g. by a concentration of the field in filaments. Our revised field strengths may also lead to major revisions of electron lifetimes in jets and radio lobes estimated from the synchrotron break frequency in the radio spectrum. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
We present images of the jets in the nearby radio galaxy NGC 315 made with the Very Large Array at five frequencies between 1.365 and 5 GHz with resolutions between 1.5 and 45 arcsec. Within 15 arcsec of the nucleus, the spectral index of the jets is  α= 0.61  . Further from the nucleus, the spectrum is flatter, with significant transverse structure. Between 15 and 70 arcsec from the nucleus, the spectral index varies from ≈0.55 on-axis to ≈0.44 at the edge. This spectral structure suggests a change of dominant particle acceleration mechanism with distance from the nucleus and the transverse gradient may be associated with shear in the jet velocity field. Further from the nucleus, the spectral index has a constant value of 0.47. We derive the distribution of Faraday rotation over the inner ±400 arcsec of the radio source and show that it has three components: a constant term, a linear gradient (both probably due to our Galaxy) and residual fluctuations at the level of 1–2 rad m−2. These residual fluctuations are smaller in the brighter (approaching) jet, consistent with the idea that they are produced by magnetic fields in a halo of hot plasma that surrounds the radio source. We model this halo, deriving a core radius of ≈225 arcsec and constraining its central density and magnetic field strength. We also image the apparent magnetic field structure over the first ±200 arcsec from the nucleus.  相似文献   

3.
We investigate the process of synchrotron radiation from thermal electrons at semirelativistic and relativistic temperatures. We find an analytic expression for the emission coefficient for random magnetic fields with an accuracy significantly higher than those derived previously. We also present analytic approximations to the synchrotron turnover frequency, treat Comptonization of self-absorbed synchrotron radiation, and give simple expressions for the spectral shape and the emitted power. We also consider modifications of the above results by bremsstrahlung.
We then study the importance of Comptonization of thermal synchrotron radiation in compact X-ray sources. We first consider emission from hot accretion flows and active coronae above optically thick accretion discs in black hole binaries and active galactic nuclei (AGNs). We find that for plausible values of the magnetic field strength, this radiative process is negligible in luminous sources, except for those with hardest X-ray spectra and stellar masses. Increasing the black hole mass results in a further reduction of the maximum Eddington ratio from this process. Then, X-ray spectra of intermediate-luminosity sources, e.g. low-luminosity AGNs, can be explained by synchrotron Comptonization only if they come from hot accretion flows, and X-ray spectra of very weak sources are always dominated by bremsstrahlung. On the other hand, synchrotron Comptonization can account for power-law X-ray spectra observed in the low states of sources around weakly magnetized neutron stars.  相似文献   

4.
Our Chandra observation of the FR I radio galaxy 3C 66B has resulted in the first detection of an X-ray counterpart to the previously known radio, infrared and optical jet. The X-ray jet is detected up to 7 arcsec from the core and has a steep X-ray spectrum, α ≈1.3±0.1 . The overall X-ray flux density and spectrum of the jet are consistent with a synchrotron origin for the X-ray emission. However, the inner knot in the jet has a higher ratio of X-ray to radio emission than the others. This suggests that either two distinct emission processes are present or differences in the acceleration mechanism are required; there may be a contribution to the emission from the inner knot from an inverse Compton process or it may be the site of an early strong shock in the jet. The peak of the brightest radio and X-ray knot is significantly closer to the nucleus in the X-ray than in the radio, which may suggest that the knots are privileged sites for high-energy particle acceleration. 3C 66B's jet is similar both in overall spectral shape and in structural detail to those in more nearby sources such as M87 and Centaurus A.  相似文献   

5.
Future radio observations with the Square Kilometre Array (SKA) and its precursors will be sensitive to trace spiral galaxies and their magnetic field configurations up to redshift z ≈ 3. We suggest an evolutionary model for the magnetic configuration in star‐forming disk galaxies and simulate the magnetic field distribution, the total and polarized synchrotron emission, and the Faraday rotation measures for disk galaxies at z ≲ 3. Since details of dynamo action in young galaxies are quite uncertain, we model the dynamo action heuristically relying only on well‐established ideas of the form and evolution of magnetic fields produced by the mean‐field dynamo in a thin disk. We assume a small‐scale seed field which is then amplified by the small‐scale turbulent dynamo up to energy equipartition with kinetic energy of turbulence. The large‐scale galactic dynamo starts from seed fields of 100 pc and an averaged regular field strength of 0.02 μG, which then evolves to a “spotty” magnetic field configuration in about 0.8 Gyr with scales of about one kpc and an averaged regular field strength of 0.6 μG. The evolution of these magnetic spots is simulated under the influence of star formation, dynamo action, stretching by differential rotation of the disk, and turbulent diffusion. The evolution of the regular magnetic field in a disk of a spiral galaxy, as well as the expected total intensity, linear polarization and Faraday rotation are simulated in the rest frame of a galaxy at 5GHz and 150 MHz and in the rest frame of the observer at 150 MHz. We present the corresponding maps for several epochs after disk formation. Dynamo theory predicts the generation of large‐scale coherent field patterns (“modes”). The timescale of this process is comparable to that of the galaxy age. Many galaxies are expected not to host fully coherent fields at the present epoch, especially those which suffered from major mergers or interactions with other galaxies. A comparison of our predictions with existing observations of spiral galaxies is given and discussed (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
Magnetic fields are observed everywhere in the universe. In this review, we concentrate on the observational aspects of the magnetic fields of Galactic and extragalactic objects. Readers can follow the milestones in the observations of cosmic magnetic fields obtained from the most important tracers of magnetic fields, namely, the star-light polarization, the Zeeman effect, the rotation measures (RMs, hereafter) of extragalactic radio sources, the pulsar RMs, radio polarization observations, as well as the newly implemented sub-mm and mm polarization capabilities. The magnetic field of the Galaxy was first discovered in 1949 by optical polarization observations. The local magnetic fields within one or two kpc have been well delineated by starlight polarization data. The polarization observations of diffuse Galactic radio background emission in 1962 confirmed unequivocally the existence of a Galactic magnetic field. The bulk of the present information about the magnetic fields in the Galaxy comes from anal  相似文献   

7.
We present new observations at three frequencies (326, 615 and 1281 MHz) of the radio lobe spiral galaxy, NGC 3079, using the Giant Metrewave Radio Telescope. These observations are consistent with previous data obtained at other telescopes and reveal the structure of the nuclear radio lobes in exquisite detail. In addition, new features are observed, some with H  i counterparts, showing broad-scale radio continuum emission and extensions. The galaxy is surrounded by a radio halo that is at least 4.8 kpc in height. Two giant radio extensions/loops are seen on either side of the galaxy out to ∼11 kpc from the major axis, only slightly offset from the direction of the smaller nuclear radio lobes. If these are associated with the nuclear outflow, then the galaxy has experienced episodic nuclear activity. Emission along the southern major axis suggests motion through a local intergalactic medium (not yet detected), and it may be that NGC 3079 is itself creating this local intergalactic gas via outflows. We also present maps of the minimum energy parameters for this galaxy, including cosmic ray energy density, electron diffusion length, magnetic field strength, particle lifetime and power.  相似文献   

8.
The spiral pattern in the nearby spiral galaxy NGC 6946 has been studied using the wavelet transformation technique, applied to galaxy images in polarized and total non-thermal radio emission at λλ 3.5 and 6.2 cm, in broadband red light, in the λ 21.1 cm H  i line and in the optical Hα line. Well-defined, continuous spiral arms are visible in polarized radio emission and red light, where we can isolate a multi-armed pattern in the range of galactocentric distances 1.5–12 kpc, consisting of four long arms and one short spiral segment. The 'magnetic arms' (visible in polarized radio emission) are localized almost precisely between the optical arms. Each magnetic arm is similar in length and pitch angle to the preceding optical arm (in the sense of galactic rotation) and can be regarded as its phase-shifted image. Even details like a bifurcation of an optical arm have their phase-shifted counterparts in the magnetic arms. The average relative amplitude of the optical spiral arms (the stellar density excess over the azimuthal average) grows with galactocentric radius up to 0.3–0.7 at r ≃5 kpc, decreases by a factor of two at r =5–6 kpc and remains low at 0.2–0.3 in the outer parts of the galaxy. By contrast, the magnetic arms have a constant average relative amplitude (the excess in the regular magnetic field strength over the azimuthal average) of 0.3–0.6 in a wide radial range r =1.5–12 kpc. We briefly discuss implications of our findings for theories of galactic magnetic fields.  相似文献   

9.
We report the first detection of an inverse Compton X-ray emission, spatially correlated with a very steep spectrum radio source (VSSRS), 0038-096, without any detected optical counterpart, in cluster Abell 85. The ROSAT PSPC data and its multiscale wavelet analysis reveal a large-scale (linear diameter of the order of 500 h −150 kpc), diffuse X-ray component, in addition to the thermal bremsstrahlung, overlapping an equally large-scale VSSRS. The primeval 3 K background photons, scattering off the relativistic electrons, can produce the X-rays at the detected level. The inverse Compton flux is estimated to be (6.5 ± 0.5) × 10−13 erg s−1 cm−2 in the 0.5–2.4 keV X-ray band. A new 327-MHz radio map is presented for the cluster field. The synchrotron emission flux is estimated to be (6.6 ± 0.90) × 10−14 erg s−1 cm−2 in the 10–100 MHz radio band. The positive detection of both radio and X-ray emission from a common ensemble of relativistic electrons leads to an estimate of (0.95 ± 0.10) × 10−6 G for the cluster-scale magnetic field strength. The estimated field is free of the 'equipartition' conjecture, the distance, and the emission volume. Further, the radiative fluxes and the estimated magnetic field imply the presence of 'relic' (radiative lifetime ≳ 109 yr) relativistic electrons with Lorentz factors γ ≈ 700–1700; this would be a significant source of radio emission in the hitherto unexplored frequency range ν ≈ 2–10 MHz.  相似文献   

10.
We present high-resolution images of the Faraday rotation measure (RM) structure of the radio galaxy PKS 1246−410 at the centre of the Centaurus cluster. Comparison with Hα-line and soft X-ray emission reveals a correspondence between the line-emitting gas, the soft X-ray emitting gas, regions with an excess in the RM images and signs of depolarization. Magnetic field strengths of 25 μG, organized on scales of ∼1 kpc and intermixed with gas at a temperature of 5 × 106 K with a density of ∼0.1 cm−3, can reproduce the observed RM excess, the depolarization and the observed X-ray surface brightness. This hot gas may be in pressure equilibrium with the optical line-emitting gas, but the magnetic field strength of 25 μG associated with the hot gas provides only 10 per cent of the thermal pressure and is therefore insufficient to account for the stability of the line-emitting filaments.  相似文献   

11.
We use the results from a constrained, cosmological magnetohydrodynamic simulation of the Local Universe to predict the radio halo and the γ-ray flux from the Coma cluster and compare it to current observations. The simulated magnetic field within the Coma cluster is the result of turbulent amplification of the magnetic field during the build-up of the cluster. The magnetic seed field originates from starburst driven, galactic outflows. The synchrotron emission is calculated assuming a hadronic model. We follow four approaches with different distributions for the cosmic ray proton population within galaxy clusters. The radial profile of the radio halo can only be reproduced with a radially increasing energy fraction within the cosmic ray proton population, reaching >100 per cent of the thermal-energy content at ≈1 Mpc, for example the edge of the radio-emitting region. Additionally, the spectral steepening of the observed radio halo in Coma cannot be reproduced, even when accounting for the negative flux from the thermal Sunyaev–Zeldovich effect at high frequencies. Therefore, the hadronic models are disfavoured from the present analysis. The emission of γ-rays expected from our simulated Coma is still below the current observational limits (by a factor of ∼6) but would be detectable by FERMI observations in the near future.  相似文献   

12.
In several merging clusters of galaxies so-called cluster radio relics have been observed. These are extended radio sources which do not seem to be associated with any radio galaxies. Two competing physical mechanisms to accelerate the radio-emitting electrons have been proposed: (i) diffusive shock acceleration and (ii) adiabatic compression of fossil radio plasma by merger shock waves. Here the second scenario is investigated. We present detailed three-dimensional magneto-hydrodynamical simulations of the passage of a radio plasma cocoon filled with turbulent magnetic fields through a shock wave. Taking into account synchrotron, inverse Compton and adiabatic energy losses and gains, we evolved the relativistic electron population to produce synthetic polarization radio maps. On contact with the shock wave the radio cocoons are first compressed and finally torn into filamentary structures, as is observed in several cluster radio relics. In the synthetic radio maps the electric polarization vectors are mostly perpendicular to the filamentary radio structures. If the magnetic field inside the cocoon is not too strong, the initially spherical radio cocoon is transformed into a torus after the passage of the shock wave. Very recent, high-resolution radio maps of cluster radio relics seem to exhibit such toroidal geometries in some cases. This supports the hypothesis that cluster radio relics are fossil radio cocoons that have been revived by a shock wave. For a late-stage relic the ratio of its global diameter to the filament diameter should correlate with the shock strength. Finally, we argue that the total radio polarization of a radio relic should be well correlated with the three-dimensional orientation of the shock wave that produced the relic.  相似文献   

13.
Simulated images of synchrotron intensity and polarization are presented for a simple, semidynamical model of conical shock waves in an astrophysical jet. Earlier work is extended by inclusion of a component of upstream magnetic field parallel to the jet in addition to the tangled (or disordered) component considered in the earlier paper. Results for several cases representing shocks of moderate strength are shown. It is found that the on-axis polarization reflects the upstream magnetic field structure. Off-axis, the electric field of polarization is oblique to the axis and covers a range depending on the shock cone angle and viewing angle. The results are compared with the structure of a bright knot about 0.8 arcsec from the nucleus in the quasar 3C 380, which may be an example of this kind of structure.  相似文献   

14.
We describe a novel technique for probing the statistical properties of cosmic magnetic fields based on radio polarimetry data. Second-order magnetic field statistics like the power spectrum cannot always distinguish between magnetic fields with essentially different spatial structure. Synchrotron polarimetry naturally allows certain fourth-order magnetic field statistics to be inferred from observational data, which lifts this degeneracy and can thereby help us gain a better picture of the structure of the cosmic fields and test theoretical scenarios describing magnetic turbulence. In this work we show that a fourth-order correlator of specific physical interest, the tension force spectrum, can be recovered from the polarized synchrotron emission data. We develop an estimator for this quantity based on polarized emission observations in the Faraday rotation free frequency regime. We consider two cases: a statistically isotropic field distribution, and a statistically isotropic field superimposed on a weak mean field. In both cases the tension force power spectrum is measurable; in the latter case, the magnetic power spectrum may also be obtainable. The method is exact in the idealized case of a homogeneous relativistic electron distribution that has a power-law energy spectrum with a spectral index of   p = 3  , and assumes statistical isotropy of the turbulent field. We carry out numerical tests of our method using synthetic polarized emission data generated from numerically simulated magnetic fields. We show that the method is valid, that it is not prohibitively sensitive to the value of the electron spectral index p , and that the observed tension force spectrum allows one to distinguish between e.g. a randomly tangled magnetic field (a default assumption in many studies) and a field organized in folded flux sheets or filaments.  相似文献   

15.
Many quasars and active galactic nuclei (AGN) appear in radio, optical and X-ray maps as bright nuclear sources from which emerge single or double long, thin jets. When observed with high angular resolution, these jets show evidence of structure, with bright knots separated by relatively dark regions. High percentages of polarization, sometimes more then 50 per cent, indicate the non-thermal nature of the radiation, which is well explained as the synchrotron radiation of the relativistic electrons in an ordered magnetic field.
A strong collimation of jets is probably connected with ordered magnetic fields. The mechanism of magnetic collimation first suggested by Bisnovatyi-Kogan et al. was based on the initial charge separation, which led to the creation of an oscillating electrical current, which in turn produced an azimuthal magnetic field, preventing jet expansion and disappearance. Here we consider magnetic collimation associated with the torsional oscillations of a cylinder with an elongated magnetic field. Instead of initial blobs with charge separation, we consider a cylinder with a periodically distributed initial rotation around the cylinder axis. The stabilizing azimuthal magnetic field is created by torsional oscillations, meaning that charge separation is unnecessary. An approximate simplified model is developed, and an ordinary differential equation is derived and solved numerically, making it possible to estimate quantitatively the range of parameters for which jets may be stabilized by torsional oscillations.  相似文献   

16.
We report on ROSAT HRI observations of the nearby powerful radio galaxies 3C 33 and 111, which both have detected optical hotspots. We find nuclear X-ray sources in both objects, but no X-ray emission from the hotspots. This confirms the presence of a high-energy cut-off in the spectrum of synchrotron-emitting electrons. Since these electrons necessarily scatter the synchrotron photons by the inverse Compton process, our upper limits on the X-ray fluxes of the hotspots allow us to set lower limits of a few nanotesla on their magnetic flux density, close to or greater than the fields implied by equipartition of energy between radiating particles and magnetic field.  相似文献   

17.
We present new observational results that conclude that the nearby radio galaxy B2 0722+30 is one of the very few known disc galaxies in the low-redshift Universe that host a classical double-lobed radio source. In this paper, we use H  i observations, deep optical imaging, stellar population synthesis modelling and emission-line diagnostics to study the host galaxy, classify the active galactic nucleus (AGN) and investigate environmental properties under which a radio-loud AGN can occur in this system. Typical for spiral galaxies, B2 0722+30 has a regularly rotating gaseous disc throughout which star formation occurs. Dust heating by the ongoing star formation is likely responsible for the high infrared luminosity of the system. The optical emission-line properties of the central region identify a Low Ionization Nuclear Emission-line Region (LINER)-type nucleus with a relatively low [O  iii ] luminosity, in particular when compared with the total power of the Fanaroff & Riley type-I radio source that is present in this system. This classifies B2 0722+30 as a classical radio galaxy rather than a typical Seyfert galaxy. The environment of B2 0722+30 is extremely H  i -rich, with several nearby interacting galaxies. We argue that a gas-rich interaction involving B2 0722+30 is a likely cause for the triggering of the radio AGN and/or the fact that the radio source managed to escape the optical boundaries of the host galaxy.  相似文献   

18.
《New Astronomy》2002,7(5):249-277
We report the discovery of large-scale diffuse radio emission from what appears to be a large-scale filamentary network of galaxies in the region of cluster ZwCl 2341.1+0000, and stretching over an area of at least 6 h50−1 Mpc in diameter. Multicolour CCD observations yield photometric redshifts indicating that a significant fraction of the optical galaxies in this region is at a redshift of z=0.3. This is supported by spectroscopic measurements of 4 galaxies in the Sloan Digitized Sky Survey (SDSS) survey at a mean z=0.27. We present VLA images at λ=20 cm (NVSS) and 90 cm, showing the detailed radio structure of the filaments. Comparison with the high resolution FIRST radio survey shows that the diffuse emission is not due to known individual point sources. The diffuse radio-emission has a spectral index α≲−0.5, and is most likely synchrotron emission from relativistic charged particles in an inter-galactic magnetic field. Furthermore, this optical/radio structure is detected in X-rays by the ROSAT all-sky survey. It has a 0.1–2.4 keV luminosity of about 1044 erg s−1 and shows an extended highly non-relaxed morphology. These observations suggest that ZwCl 2341.1+0000 is possibly a proto-cluster of galaxies in which we are witnessing the process of structure formation. We show that the energetics of accretion shocks generated in forming large-scale structures are sufficient to produce enough high energy cosmic-ray (CR) electrons required to explain the observed radio emission, provided a magnetic field of strength B≳0.3 μG is present there. The latter is only a lower limit and the actual magnetic field is likely to be higher depending on the morphology of the emitting region. Finally, we show results from a numerical simulation of large-scale structure formation including acceleration of CR electrons at cosmological shocks and magnetic field evolution. Our results are in accord with the observed radio synchrotron and X-ray thermal bremsstrahlung fluxes. Thus we conclude that the reported radio detection is the first evidence of cosmic-ray particle acceleration taking place at cosmic shocks in a magnetized inter-galactic medium over scales of ≳5 h50−1 Mpc.  相似文献   

19.
A double-double radio galaxy (DDRG) is defined as consisting of a pair of double radio sources with a common centre. In this paper we present an analytical model in which the peculiar radio structure of DDRGs is caused by an interruption of the jet flow in the central AGN. The new jets emerging from the restarted AGN give rise to an inner source structure within the region of the old, outer cocoon. Standard models of the evolution of FRII sources predict gas densities within the region of the old cocoon that are insufficient to explain the observed properties of the inner source structure. Therefore additional material must have passed from the environment of the source through the bow shock surrounding the outer source structure into the cocoon. We propose that this material is warm clouds (∼104 K) of gas embedded in the hot IGM which are eventually dispersed over the cocoon volume by surface instabilities induced by the passage of cocoon material. The derived lower limits for the volume filling factors of these clouds are in good agreement with results obtained from optical observations. The long time-scales for the dispersion of the clouds (∼107 yr) are consistent with the apparently exclusive occurrence of the DDRG phenomenon in large (≳700 kpc) radio sources, and with the observed correlation of the strength of the optical/UV alignment effect in z ∼1 FRII sources with their linear size.  相似文献   

20.
Chandra ACIS observations of PKS 0521−365 find that the X-ray emission of this BL Lac object consists of emission from an unresolved core, a diffuse halo and a 2-arcsec jet feature coincident with the inner radio/optical jet. A comparison with a new ATCA 8.6-GHz map also finds X-ray emission from the bright hotspot south-east of the nucleus. The jet spectrum, from radio to X-ray, is probably synchrotron emission from an electron population with a broken power-law energy distribution, and resembles the spectra seen from the jets of low-power (FR I) radio galaxies. The hotspot X-ray flux is consistent with the expectations of synchrotron self-Compton emission from a plasma close to equipartition, as seen in studies of high-power (FR II) radio galaxies. While the angular structure of the halo is similar to that found by an analysis of the ROSAT High Resolution Imager image, its brightness is seen to be lower with Chandra , and the halo is best interpreted as thermal emission from an atmosphere of similar luminosity to the haloes around FR I radio galaxies. The X-ray properties of PKS 0521−365 are consistent with it being a foreshortened, beamed, radio galaxy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号