首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
We have carried out a systematic study involving SEM, EPMA, and TEM analyses to determine the textures and compositions of sulfides and sulfide–metal assemblages in a suite of minimally to weakly altered CM and CR carbonaceous chondrites. We have attempted to constrain the distribution and origin of primary sulfides that formed in the solar nebula, rather than by secondary asteroidal alteration processes. Our study focused primarily on sulfide assemblages associated with chondrules, but also examined some occurrences of sulfides within the matrices of these meteorites. Although sulfides are a minor phase in carbonaceous chondrites, we have determined that primary sulfide grains are actually a major proportion of the sulfide grains in weakly altered CM chondrites and have survived aqueous alteration relatively unscathed. In minimally altered CR chondrites, we have determined that essentially all of the sulfides are of primary origin, confirming the observations of Schrader et al. ( 2015 ). The pyrrhotite–pentlandite intergrowth (PPI) grains formed from crystallization of monosulfide solid solution (mss) melts, while sulfide-rimmed metal (SRM) grains formed from sulfidization of Fe,Ni metal. Micron-sized metal inclusions in some PPI grains may have formed by co-crystallization of metal and sulfide from a sulfide melt that experienced S volatilization during the chondrule formation event, or alternatively, may be a remnant of sulfidization of Fe,Ni metal that also occurred during chondrule formation. Sulfur fugacity for SRM grains ranged from −18 to −10 (log units) largely in agreement with predicted solar nebular values. Our observations show that understanding the formation mechanisms of primary sulfide grains provides clues to solar nebular conditions, such as the sulfur fugacity during chondrule formation.  相似文献   

2.
The importance of experiments: Constraints on chondrule formation models   总被引:1,自引:0,他引:1  
Abstract— We review a number of constraints that have been placed on the formation of chondrules and show how these can be used to test chondrule formation models. Four models in particular are examined: the “X‐wind” model (sudden exposure to sunlight <0.1 AU from the proto‐Sun, with subsequent launching in a magnetocentrifugal outflow); solar nebula lightning; nebular shocks driven by eccentric planetesimals; and nebular shocks driven by diskwide gravitational instabilities. We show that constraints on the thermal histories of chondrules during their melting and crystallization are the most powerful constraints and provide the least ambiguous tests of the chondrule formation models. Such constraints strongly favor melting of chondrules in nebular shocks. Shocks driven by gravitational instabilities are somewhat favored over planetesimal bow shocks.  相似文献   

3.
Small but macroscopic particles—chondrules, higher temperature mineral inclusions, metal grains, and their like—dominate the fabric of primitive meteorites. The properties of these constituents, and their relationship to the fine dust grains which surround them, suggest that they led an extended existence in a gaseous protoplanetary nebula prior to their incorporation into their parent primitive bodies. In this paper we explore in some detail the velocities acquired by such particles in a turbulent nebula. We treat velocities in inertial space (relevant to diffusion), velocities relative to the gas and entrained microscopic dust (relevant to accretion of dust rims), and velocities relative to each other (relevant to collisions). We extend previous work by presenting explicit, closed-form solutions for the magnitude and size dependence of these velocities in this important particle size regime, and we compare these expressions with new numerical calculations. The magnitude and size dependence of these velocities have immediate applications to chondrule and CAI rimming by fine dust and to their diffusion in the nebula, which we explore separately.  相似文献   

4.
Abstract— The 26Al/27Al ratio in a large number of calcium-aluminum inclusions (CAIs) is a rather uniform 5 × 10?5, whereas in chondrules the ratio is either undetectable or has a much lower value; the simplest interpretation of this is that there was an interval of a few million years between the times that these two meteoritic constituents formed stable solids. The present investigation was undertaken as an exploration of the physics of the processes in the solar nebula during and after the accumulation of the Sun. Understanding the time scales of events in this nebular model, to see if this would cast light on this apparent CAI to chondrule time interval, was the major motivation for the exploration. There were four stages in the history of the solar nebula; in stage 1, a fragment of an interstellar molecular cloud collapsed to form the Sun and solar nebula; in stage 2, the nebula was in approximate steady state balance between infall from the cloud and accretion onto the Sun and was in its FU Orionis accumulation stage; in stage 3, the Sun had been mainly accumulated and there was a slow residual mass flow into the Sun while it was in its classical T Tauri stage; and in stage 4, the nebula had finished accreting material onto the Sun (now a weak-lined T Tauri star) and was in a static condition with no significant dissipation or motions, other than removal at the inner edge due to the T Tauri solar wind and photoevaporation beyond 9 astronomical units (AU). It is found that the energy source keeping the nebula warm during stages 3 and 4 is recombination of ionized H in the ionized bipolar jets and the T Tauri coronal expansion solar wind. The parameters of the heating model were adjusted to locate the ice sublimation line at 5.2 AU. In this work, a nebular model is used with a surface density of 4.25 × 103 gm/cm2 at 1 AU and a variation with radial distance as the inverse first power. Under normal conditions in the nebula, there is a negative pressure gradient that provides partial radial support for the gas, which thus circles the Sun more slowly than large solid objects do. Large objects undergo a slow inward spiral due to the gas drag; very small objects move essentially with the gas but have a slow inward drift; and intermediate objects (e.g., 1 m) have a fairly large inward drift velocity that traverses the full radial extent of the nebula in considerably less than the CAI to chondrule time interval. Such objects are thus lost unless they can grow rapidly to larger sizes. Near the inner edge (bow) of the nebula during stage 4, the pressure gradient becomes positive, creating a narrow zone of zero gas drag toward which solids drift from both directions, facilitating planetesimal formation in the inner solar nebula. Recent theoretical and experimental results on sticking probabilities of solids show that icy surfaces have the best sticking properties, but icy interstellar grains can only stick together when subjected to impact velocities of less than 2000 cm/sec. However, if the solid objects are very underdense, then a collision leads to interpenetration and many points at which the small constituent grains can adhere to one another, and thus coagulation becomes possible for such underdense objects. Simulations were made of such coagulation in the outer solar nebula, and it was found that the central plane of the nebula quickly becomes filled with meter-sized and larger bodies that rapidly accumulated near the top of the nebula and rapidly descended; in a few thousand years this quickly leads to gravitational instabilities that can form planetesimals. These processes led to the rapid formation of Jupiter in the nebula (and the slightly less rapid formation of the other giant planets). The early formation of Jupiter opens an annular gap in the nebula, and thus a second region is created in the nebula with zero gas drag. It is concluded that CAIs were formed at the end of stage 2 of the nebula history and moved out into the nebula for long-term storage, and that most chondrules were formed by magnetic reconnection flares in the bow region of the nebula during stage 4, several million years later. Carbonaceous meteorites should be formed on the far side of the Jovian gap, with the chondrules being heated by flares on the early Jupiter irradiating materials in the nearby zone of zero gas drag, and they should have essentially the same 26Al ages as the CAIs (this will be very hard to confirm owing to scarcity of Al mineral phases in these chondrules).  相似文献   

5.
Chondrules represent one of the best probes of the physical conditions and processes acting in the early solar nebula. Proposed chondrule formation models are assessed based on their ability to match the meteoritic evidence, especially experimental constraints on their thermal histories. The model most consistent with chondrule thermal histories is passage through shock waves in the solar nebula. Existing models of heating by shocks generally yield a good first‐order approximation to inferred chondrule cooling rates. However, they predict prolonged heating in the preshock region, which would cause volatile loss and isotopic fractionation, which are not observed. These models have typically included particles of a single (large) size, i.e., chondrule precursors, or at most, large particles accompanied by micron‐sized grains. The size distribution of solids present during chondrule formation controls the opacity of the affected region, and significantly affects the thermal histories of chondrules. Micron‐sized grains evaporate too quickly to prevent excessive heating of chondrule precursors. However, isolated grains in chondrule‐forming regions would rapidly coagulate into fractal aggregates. Preshock heating by infrared radiation from the shock front would cause these aggregates to melt and collapse into intermediate‐sized (tens of microns) particles. We show that inclusion of such particles yields chondrule cooling rates consistent with petrologic and isotopic constraints.  相似文献   

6.
Meteoritical and astrophysical models of planet formation make contradictory predictions for dust concentration factors in chondrule-forming regions of the solar nebula. Meteoritical and cosmochemical models strongly suggest that chondrules, a key component of the meteoritical record, formed in regions with solids-to-gas mass ratios orders above the solar nebula average. However, models of dust grain dynamics in protoplanetary disks struggle to surpass concentration factors of a few except during very short-lived stages in a dust grain's life. Worse, those models do not predict significant concentration factors for dust grains the size of chondrule precursors. We briefly develop the difficulty in concentrating dust particles in the context of nebular chondrule formation and show that the disagreement is sufficiently stark that cosmochemists should explore ideas that might revise the concentration factor requirements downward.  相似文献   

7.
Abstract– The variation in sizes of chondrules from one chondrite to the next is thought to be due to some sorting process in the early solar nebula. Hypotheses for the sorting process include chondrule sorting by mass and sorting by some aerodynamic mechanism; one such aerodynamic mechanism is the process of turbulent concentration (TC). We present the results of a series of statistical tests of chondrule data from several different chondrites. The data do not clearly distinguish between various options for the sorting parameter, but we find that the data are inconsistent with being drawn from lognormal or (three‐parameter) Weibull distributions in chondrule radius. We also find that all but one of the chondrule data sets tested are consistent with being drawn from the TC distribution.  相似文献   

8.
Abstract— We measured the sizes and textural types of 719 intact chondrules and 1322 chondrule fragments in thin sections of Semarkona (LL3.0), Bishunpur (LL3.1), Krymka (LL3.1), Piancaldoli (LL3.4) and Lewis Cliff 88175 (LL3.8). The mean apparent diameter of chondrules in these LL3 chondrites is 0.80 φ units or 570 μm, much smaller than the previous rough estimate of ~900 μm. Chondrule fragments in the five LL3 chondrites have a mean apparent cross‐section of 1.60 φ units or 330 μm. The smallest fragments are isolated olivine and pyroxene grains; these are probably phenocrysts liberated from disrupted porphyritic chondrules. All five LL3 chondrites have fragment/ chondrule number ratios exceeding unity, suggesting that substantial numbers of the chondrules in these rocks were shattered. Most fragmentation probably occurred on the parent asteroid. Porphyritic chondrules (porphyritic olivine + porphyritic pyroxene + porphyritic olivine‐pyroxene) are more readily broken than droplet chondrules (barred olivine + radial pyroxene + cryptocrystalline). The porphyritic fragment/chondrule number ratio (2.0) appreciably exceeds that of droplet‐textured objects (0.9). Intact droplet chondrules have a larger mean size than intact porphyritic chondrules, implying that large porphyritic chondrules are fragmented preferentially. This is consistent with the relatively low percentage of porphyritic chondrules within the set of the largest chondrules (57%) compared to that within the set of the smallest chondrules (81%). Differences in mean size among chondrule textural types may be due mainly to parent‐body chondrule‐fragmentation events and not to chondrule‐formation processes in the solar nebula.  相似文献   

9.
Abstract— Two unusual dark clasts found in the Vigarano CV3 chondrite were examined using an optical microscope and a scanning electron microscope (SEM). Both clasts lack chondrules, Ca-Al-rich inclusions, and coarse-grained mineral fragments; they, instead, contain abundant inclusions that consist of fine grains (<1 μm) of homogeneous Fe-rich olivine, thus resembling the fine-grained variety of dark inclusions in CV3 chondrites. The external shapes of inclusions in the clasts bear a close resemblance to those of chondrules and chondrule fragments; some of the inclusions are surrounded by dark rims similar to chondrule rims. Our SEM observations reveal the following unusual characteristics: 1) the inclusions are not mere random aggregates of olivine grains but have peculiar internal textures, that is, assemblages of round or oval shaped outlines, which are suggestive of pseudomorphs after porphyritic olivine chondrules; 2) one of thick inclusion rims contains a network of vein-like strings of elongated olivine grains; 3) an Fe-Ni metal aggregate in one of the clasts has an Fe-, Ni-, S-rich halo suggesting a reaction between its precursor and the surrounding matrix; and 4) olivine in the clasts commonly shows a swirly, fibrous texture similar to that of phyllosilicate. These characteristics suggest that the dark clasts in Vigarano are not primary aggregates of dust in the solar nebula but were affected by aqueous alteration and subsequent dehydration by heating after accretion to the meteorite parent body. The fine olivine grains in these clasts were presumably produced by thermal transformation of phyllosilicate, as is the case with those in the two thermally metamorphosed Antarctic CM chondrites, Belgica-7904 and Yamato-86720. From textural and mineralogical similarities, some of the dark inclusions and clasts previously reported from CV3 chondrites and other types of meteorites may have origins common with these clasts in Vigarano.  相似文献   

10.
Abstract— Detailed numerical models have shown that solar nebula shock waves would be able to thermally process chondrules in a way that is consistent with experimental constraints. However, it has recently been argued that the high relative velocities that would be generated between chondrules of different sizes immediately behind the shock front would lead to energetic collisions that would destroy the chondrules as they were processed rather than preserving them for incorporation into meteorite parent bodies. Here the outcome of these collisions is quantitatively explored using a simple analytic expression for the viscous dissipation of collisional energy in a liquid layer. It is shown that molten chondrules can survive collisions at velocities as high as a few hundred meters per second. It is also shown that the thermal evolution of chondrules in a given shock wave varies with chondrule size, which may allow chondrules of different textures to form in a given shock wave. While experiments are needed to further constrain the parameters used in this work, these calculations show that the expected outcomes from collisions behind shock waves are consistent with what is observed in meteorites.  相似文献   

11.
Abstract— The properties of compound chondrules and the implications that they have for the conditions and environment in which chondrules formed are investigated. Formulae to calculate the probability of detecting compound chondrules in thin sections are derived and applied to previous studies. This reinterpretation suggests that at least 5% of chondrules are compounds, a value that agrees well with studies in which whole chondrules were removed from meteorites. The observation that adhering compounds tend to have small contact arcs is strengthened by application of these formulae. While it has been observed that the secondaries of compound chondrules are usually smaller than their primaries, these same formulae suggest that this could be an observation bias. It is more likely than not that thin section analyses will identify compounds with secondaries that are smaller than their primaries. A new model for chondrule collisional evolution is also developed. From this model, it is inferred that chondrules would have formed, on average, in areas of the solar nebula that had solids concentrated at least 45 times over the canonical solar value.  相似文献   

12.
We report trace element analyses by laser ablation inductively coupled plasma mass spectrometry (LA‐ICP‐MS) of metal grains from nine different CR chondrites, distinguishing grains from chondrule interior (“interior grains”), chondrule surficial shells (“margin grains”), and the matrix (“isolated grains”). Save for a few anomalous grains, Ni‐normalized trace element patterns are similar for all three petrographic settings, with largely unfractionated refractory siderophile elements and depleted volatile Au, Cu, Ag, S. All three types of grains are interpreted to derive from a common precursor approximated by the least‐melted, fine‐grained objects in CR chondrites. This also excludes recondensation of metal vapor as the origin of the bulk of margin grains. The metal precursors were presumably formed by incomplete condensation, with evidence for high‐temperature isolation of refractory platinum‐group‐element (PGE)‐rich condensates before mixing with lower temperature PGE‐depleted condensates. The rounded shape of the Ni‐rich, interior grains shows that they were molten and that they equilibrated with silicates upon slow cooling (1–100 K h?1), largely by oxidation/evaporation of Fe, hence their high Pd content, for example. We propose that Ni‐poorer, amoeboid margin grains, often included in the pyroxene‐rich periphery common to type I chondrules, result from less intense processing of a rim accreted onto the chondrule subsequent to the melting event recorded by the interior grains. This means either that there were two separate heating events, which formed olivine/interior grains and pyroxene/margin grains, respectively, between which dust was accreted around the chondrule, or that there was a single high‐temperature event, of which the chondrule margin records a late “quenching phase,” in which case dust accreted onto chondrules while they were molten. In the latter case, high dust concentrations in the chondrule‐forming region (at least three orders of magnitude above minimum mass solar nebula models) are indicated.  相似文献   

13.
Abstract— We present a model for the thermal processing of particles in shock waves typical of the solar nebula. This shock model improves on existing models in that the dissociation and recombination of H2 and the evaporation of particles are accounted for in their effects on the mass, momentum and energy fluxes. Also, besides thermal exchange with the gas and gas‐drag heating, particles can be heated by absorbing the thermal radiation emitted by other particles. The flow of radiation is calculated using the equations of radiative transfer in a slab geometry. We compute the thermal histories of particles as they encounter and pass through the shock. We apply this shock model to the melting and cooling of chondrules in the solar nebula. We constrain the combinations of shock speed and gas density needed for chondrules to reach melting temperatures, and show that these are consistent with shock waves generated by gravitational instabilities in the protoplanetary disk. After their melting, cooling rates of chondrules in the range 10–1000 K h?1 are naturally reproduced by the shock model. Chondrules are kept warm by the reservoir of hot shocked gas, which cools only as fast as the dust grains and chondrules themselves can radiate away the gas's energy. We predict a positive correlation between the concentration of chondrules in a region and the cooling rates of chondrules in that region. This correlation is supported by the unusually high frequency of (rapidly cooled) barred chondrules among compound chondrules, which must have collided preferentially in regions of high chondrule density. We discuss these and other compelling consistencies between the meteoritic record and the shock wave model of chondrule formation.  相似文献   

14.
Edward R.D. Scott 《Icarus》2006,185(1):72-82
Thermal models and radiometric ages for meteorites show that the peak temperatures inside their parent bodies were closely linked to their accretion times. Most iron meteorites come from bodies that accreted <0.5 Myr after CAIs formed and were melted by 26Al and 60Fe, probably inside 2 AU. Rare carbon-rich differentiated meteorites like ureilites probably also come from bodies that formed <1 Myr after CAIs, but in the outer part of the asteroid belt. Chondrite groups accreted intermittently from diverse batches of chondrules and other materials over a 4 Myr period starting 1 Myr after CAI formation when planetary embryos may already have formed at ∼1 AU. Meteorite evidence precludes accretion of late-forming chondrites on the surface of early-formed bodies; instead chondritic and non-chondritic meteorites probably formed in separate planetesimals. Maximum metamorphic temperatures in chondrite groups are correlated with mean chondrule age, as expected if 26Al and 60Fe were the predominant heat sources. Because late-forming bodies could not accrete close to large, early-formed bodies, planetesimal formation may have spread across the nebula from regions where the differentiated bodies formed. Dynamical models suggest that the asteroids could not have accreted in the main belt if Jupiter formed before the asteroids. Therefore Jupiter probably reached its current mass >3-5 Myr after CAIs formed. This precludes formation of Jupiter via a gravitational instability <1 Myr after the solar nebula formed, and strongly favors core accretion. Jupiter probably formed too late to make chondrules by generating shocks directly, or indirectly by scattering Ceres-sized bodies across the belt. Nevertheless, shocks formed by gravitational instabilities or Ceres-sized bodies scattered by planetary embryos may have produced some chondrules. The minimum lifetime for the solar nebula of 3-5 Myr inferred from the total spread of CAI and chondrule ages may exceed the median lifetime of 3 Myr for protoplanetary disks, but is well within the 1-10 Myr observed range. Shorter formation times for extrasolar planets may help to explain their unusual orbits compared to those of solar giant planets.  相似文献   

15.
Abstract— Fine‐grained, heavily‐hydrated lithic clasts in the metal‐rich (CB) chondrites Queen Alexandra Range (QUE) 94411 and Hammadah al Hamra 237 and CH chondrites, such as Patuxent Range (PAT) 91546 and Allan Hills (ALH) 85085, are mineralogically similar suggesting genetic relationship between these meteorites. These clasts contain no anhydrous silicates and consist of framboidal and platelet magnetite, prismatic sulfides (pentlandite and pyrrhotite), and Fe‐Mn‐Mg‐bearing Ca‐carbonates set in a phyllosilicate‐rich matrix. Two types of phyllosilicates were identified: serpentine, with basal spacing of ?0.73 nm, and saponite, with basal spacings of about 1.1–1.2 nm. Chondrules and FeNi‐metal grains in CB and CH chondrites are believed to have formed at high temperature (>1300 K) by condensation in a solar nebula region that experienced complete vaporization. The absence of aqueous alteration of chondrules and metal grains in CB and CH chondrites indicates that the clasts experienced hydration in an asteroidal setting prior to incorporation into the CH and CB parent bodies. The hydrated clasts were either incorporated during regolith gardening or accreted together with chondrules and FeNi‐metal grains after these high‐temperature components had been transported from their hot formation region to a much colder region of the solar nebula.  相似文献   

16.
Abstract– We investigate the hypothesis that many chondrules are frozen droplets of spray from impact plumes launched when thin‐shelled, largely molten planetesimals collided at low speed during accretion. This scenario, here dubbed “splashing,” stems from evidence that such planetesimals, intensely heated by 26Al, were abundant in the protoplanetary disk when chondrules were being formed approximately 2 Myr after calcium‐aluminum‐rich inclusions (CAIs), and that chondrites, far from sampling the earliest planetesimals, are made from material that accreted later, when 26Al could no longer induce melting. We show how “splashing” is reconcilable with many features of chondrules, including their ages, chemistry, peak temperatures, abundances, sizes, cooling rates, indented shapes, “relict” grains, igneous rims, and metal blebs, and is also reconcilable with features that challenge the conventional view that chondrules are flash‐melted dust‐clumps, particularly the high concentrations of Na and FeO in chondrules, but also including chondrule diversity, large phenocrysts, macrochondrules, scarcity of dust‐clumps, and heating. We speculate that type I (FeO‐poor) chondrules come from planetesimals that accreted early in the reduced, partially condensed, hot inner nebula, and that type II (FeO‐rich) chondrules come from planetesimals that accreted in a later, or more distal, cool nebular setting where incorporation of water‐ice with high Δ17O aided oxidation during heating. We propose that multiple collisions and repeated re‐accretion of chondrules and other debris within restricted annular zones gave each chondrite group its distinctive properties, and led to so‐called “complementarity” and metal depletion in chondrites. We suggest that differentiated meteorites are numerically rare compared with chondrites because their initially plentiful molten parent bodies were mostly destroyed during chondrule formation.  相似文献   

17.
A petrographc study of 9 thin sections of Inman (L3) and 18 thin sections of ALHA77011 (L3) served to determine the size-distributions of different chondrule textural types. Inman chondrules are significantly larger than those in ALHA77011, but in each chondrite, there is no statistically significant difference between the size-distributions of barred olivine and radial pyroxene plus cryptocrystalline chondrules. In ALHA77011, barred olivine chondrules outnumber radial pyroxene plus cryptocrystalline chondrules, whereas in Inman, the reverse is true. Because compound and cratered chondrules were formed by the collision of similarly-sized objects, the dustball precursors of chondrules must have been size-sorted prior to chondrule formation. The region of dustball size-sorting in the solar nebula must have been very large, similarly affecting the physically-separated precursors of different chondrule types. Size-sorting was probably accomplished by aerodynamic particle-gas interactions. Zones of dustball melting (i.e., chondrule formation) were relatively small, generally affecting only dustballs of one compositional type and relatively uniform size. Different chondrule types were then mixed together in somewhat variable ratios. Within the region where chondrites of a particular compositional group agglomerated, there were sub-reservoirs that contained (roughly) uniformly large or uniformly small chondrules with different mixtures of textural types.  相似文献   

18.
The matrix of primitive chondrites is composed of submicron crystals embedded in amorphous silicates. These grains are thought to be the remains of relatively unprocessed dust from the inner regions of the protoplanetary disk. The matrix of primitive meteorites is often compared to chondritic porous interplanetary dust particles (CP-IDPs) which are believed to be of cometary origin, having accreted in the outermost regions of the solar nebula. Crystalline grains in CP-IDPs show evidence of a size–density relationship between the silicates and sulfides suggesting that these components experienced sorting prior to accretion. Here, we investigate whether such evidence of sorting is also present in the matrix constituents of primitive chondrites. We report findings from our study of grain size distributions of discrete silicate and opaque (sulfide and metal) grains within the matrix of the primitive meteorites Acfer 094 (C2-ung.), ALHA77307 (CO3), MIL 07687 (C3-ung.), and QUE 99177 (CR2). Mean radii of matrix silicate grains range from 103 nm in QUE 99177 to 2018 nm in MIL 07687. The opaque grains show a wider variation, with average radii ranging from 15 nm in QUE 99177 to 219 nm in MIL07687. Our results indicate that, in contrast to CP-IDPs, the size distribution of matrix components of these primitive meteorites cannot be explained by aerodynamic sorting that took place prior to accretion. We conclude that any evidence of sorting is likely to have been lost due to a greater variety and degree of processing experienced on these primitive chondrites than on cometary parent bodies.  相似文献   

19.
Augusto Carballido 《Icarus》2011,211(1):876-884
Numerical magnetohydrodynamic (MHD) simulations of a turbulent solar nebula are used to study the growth of dust mantles swept up by chondrules. A small neighborhood of the solar nebula is represented by an orbiting patch of gas at a radius of 3 AU, and includes vertical stratification of the gas density. The differential rotation of the nebular gas is replaced by a shear flow. Turbulence is driven by destabilization of the flow as a result of the magnetorotational instability (MRI), whereby magnetic field lines anchored to the gas are continuously stretched by the shearing motion. A passive contaminant mimics small dust grains that are aerodynamically well coupled to the gas, and chondrules are modeled by Lagrangian particles that interact with the gas through drag. Whenever a chondrule enters a region permeated by dust, its radius grows at a rate that depends on the local dust density and the relative velocity between itself and the dust. The local dust abundance decreases accordingly. Compaction and fragmentation of dust aggregates are not included. Different chondrule volume densities ρc lead to varying depletion and rimmed-chondrule size growth times. Most of the dust sweep-up occurs within ~1 gas scale-height of the nebula midplane. Chondrules can reach their asymptotic radius in 10–800 years, although short growth times due to very high ρc may not be altogether realistic. If the sticking efficiency Q of dust to chondrules depends on their relative speed δv, such that Q < 10?2 whenever δv > vstick  34 cm/s (with vstick a critical sticking velocity), then longer growth times result due to the prevalence of high MRI-turbulent relative velocities. The vertical variation of nebula turbulent intensity results in a moderate dependence of mean rimmed-chondrule size with nebula height, and in a ~20% dispersion in radius values at every height bin. The technique used here could be combined with Monte Carlo (MC) methods that include the physics of dust compaction, in a self-consistent MHD-MC model of dust rim growth around chondrules in the solar nebula.  相似文献   

20.
Das et al. (2012) claim that in several cases nominal cosmic ray exposure ages derived from concentrations of cosmogenic Ne in individual olivine grains separated from chondrules substantially exceed exposure ages of matrix samples. Some grains were also reported to show larger apparent exposure ages than other grains from the same chondrule. The authors conclude that the excesses were caused by an exposure of chondrules to high fluences of solar energetic particles and suggest that their data provide direct evidence for a highly active phase of the early Sun, similar to what is observed in X‐ray emissions of recent naked T‐Tauri stars. Here, we show that the production rates of cosmogenic Ne used by Das et al. (2012) to derive nominal cosmic ray exposure ages of their olivine grains are often much too low, as the reported major element concentrations in many cases sum up to considerably less than 100% even if converted to oxides. In contrast, adopted element concentrations for matrix samples are basically self‐consistent. A precompaction exposure of chondrules to a very high flux of solar energetic particles is thus not supported by the data presented by Das et al. (2012). Das et al. (2012) claim that in several cases nominal cosmic ray exposure ages derived from concentrations of cosmogenic Ne in individual olivine grains separated from chondrules substantially exceed exposure ages of matrix samples. Some grains were also reported to show larger apparent exposure ages than other grains from the same chondrule. The authors conclude that the excesses were caused by an exposure of chondrules to high fluences of solar energetic particles and suggest that their data provide direct evidence for a highly active phase of the early Sun, similar to what is observed in X‐ray emissions of recent naked T‐Tauri stars. Here, we show that the production rates of cosmogenic Ne used by Das et al. (2012) to derive nominal cosmic ray exposure ages of their olivine grains are often much too low, as the reported major element concentrations in many cases sum up to considerably less than 100% even if converted to oxides. In contrast, adopted element concentrations for matrix samples are basically self‐consistent. A precompaction exposure of chondrules to a very high flux of solar energetic particles is thus not supported by the data presented by Das et al. (2012).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号