首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Stac Fada Member (Stoer Group) is a ~1.2 Ga melt-rich impact breccia preserved and intermittently exposed along the NW coast of Scotland. Using a combination of x-ray diffraction and micro-Raman spectroscopy, we identify potential coesite that is spatially associated with micron-sized diamonds, as well as disordered carbon phases. Comparing the graphite G-band of disordered carbon phases in the impact breccia to samples from underlying units indicates that most of the carbon in the Stoer Group was ultimately derived from the underlying Lewisian basement. Disordered carbon phases within the Stac Fada Member have been modified by mild heating within a hot ejecta blanket rather than shock pressure. We also report the first evidence for impact diamonds discovered within the Stac Fada Member. These diamonds have an average Raman shift of 1328.5 cm−1 and are present within both the impact breccia and the shocked gneiss clasts that are present in sandstones directly underlying the Stac Fada Member contact, and within sandstone rafts entrapped in the unit. These findings have implications for the timing of deposition of the Stac Fada Member, which must have occurred after ballistic ejection of Lewisian basement clasts during the impact event.  相似文献   

2.
A total of 184 confirmed impact structures are known on Earth to date, as registered by the Earth Impact Database . The discovery of new impact structures has progressed in recent years at a rather low rate of about two structures per year. Here, we introduce the discovery of the approximately 10 km diameter Santa Marta impact structure in Piauí State in northeastern Brazil. Santa Marta is a moderately sized complex crater structure, with a raised rim and an off‐center, approximately 3.2 km wide central elevated area interpreted to coincide with the central uplift of the impact structure. The Santa Marta structure was first recognized in remote sensing imagery and, later, by distinct gravity and magnetic anomalies. Here, we provide results obtained during the first detailed ground survey. The Bouguer anomaly map shows a transition from a positive to a negative anomaly within the structure along a NE–SW trend, which may be associated with the basement signature and in parts with the signature developed after the crater was formed. Macroscopic evidence for impact in the form of shatter cones has been found in situ at the base around the central elevated plateau, and also in the interior of fractured conglomerate boulders occurring on the floor of the surrounding annular basin. Planar deformation features (PDFs) are abundant in sandstones of the central elevated plateau and at scattered locations in the inner part of the ring syncline. Together, shatter cones and PDFs provide definitive shock evidence that confirms the impact origin of Santa Marta. Crystallographic orientations of PDFs occurring in multiple sets in quartz grains are indicative of peak shock pressures of 20–25 GPa in the rocks exposed at present in the interior of the crater. In contrast to recent studies that have used additional, and sometimes highly controversial, alleged shock recognition features, Santa Marta was identified based on well‐understood, traditional shock evidence.  相似文献   

3.
Kamil is a 45 m diameter impact crater identified in 2008 in southern Egypt. It was generated by the hypervelocity impact of the Gebel Kamil iron meteorite on a sedimentary target, namely layered sandstones with subhorizontal bedding. We have carried out a petrographic study of samples from the crater wall and ejecta deposits collected during our first geophysical campaign (February 2010) in order to investigate shock effects recorded in these rocks. Ejecta samples reveal a wide range of shock features common in quartz‐rich target rocks. They have been divided into two categories, as a function of their abundance at thin section scale: (1) pervasive shock features (the most abundant), including fracturing, planar deformation features, and impact melt lapilli and bombs, and (2) localized shock features (the least abundant) including high‐pressure phases and localized impact melting in the form of intergranular melt, melt veins, and melt films in shatter cones. In particular, Kamil crater is the smallest impact crater where shatter cones, coesite, stishovite, diamond, and melt veins have been reported. Based on experimental calibrations reported in the literature, pervasive shock features suggest that the maximum shock pressure was between 30 and 60 GPa. Using the planar impact approximation, we calculate a vertical component of the impact velocity of at least 3.5 km s?1. The wide range of shock features and their freshness make Kamil a natural laboratory for studying impact cratering and shock deformation processes in small impact structures.  相似文献   

4.
Abstract— The large, complex Woodleigh structure in the Carnarvon basin of Western Australia has recently been added to the terrestrial impact crater record. Many aspects of this structure are, however, still uncertain. This work provides a detailed petrographic assessment of a suite of representative drill core samples from the borehole Woodleigh 1 that penetrated uplifted basement rocks of the central part of this structure. Fundamental rock and mineral deformation data and high‐precision chemical data, including results of PGE and oxygen isotopic analysis, are presented. The sampled interval displays likely impact‐produced macrodeformation in the form of fracturing and breccia veining at the microscopic scale. Contrary to earlier reports that these breccias represent pseudotachylite (friction melt) or even shock/shear‐produced pseudotachylitic melt breccia cannot be confirmed due to pervasive post‐impact alteration. Abundant planar deformation features (PDFs) in quartz, in addition to diaplectic glass and partial isotropization, are the main shock deformation effects observed, confirming that Woodleigh is of impact origin. Over the investigated depth interval, the statistics of quartz grains with a variable number of sets of PDFs does not change significantly, and the patterns of crystallographic orientations of PDFs in randomly selected quartz grains does not indicate a change in absolute shock pressure with depth either. The value of oxygen isotopes for the recognition of meteoritic contamination, as proposed by earlier Woodleigh workers, is critically assessed. Neither INA nor PGE analyses of our samples support the presence of a meteoritic component within this basement section, as had been claimed in earlier work.  相似文献   

5.
Riachão, located at S7°42′/W46°38′ in Maranhão State, northeastern Brazil, is a complex impact structure of about 4.1 km diameter, formed in Pennsylvanian to Permian sedimentary rocks of the Parnaíba Basin sequence. Although its impact origin was already proposed in the 1970s, information on its geology and shock features is still scarce in the literature. We present here the main geomorphological and geological characteristics of the Riachão impact structure obtained by integrated geophysical and remote sensing analysis, as well as geological field work and petrographic analysis. The identified lithostratigraphic units consist of different levels of the Pedra de Fogo Formation and, possibly, the Piauí Formation. Our petrographic analysis confirms the presence of shock‐diagnostic planar microdeformation structures in quartz grains of sandstone from the central uplift as evidence for an impact origin of the Riachão structure. The absence of crater‐filling impact breccias and melt rocks, shatter cones, as well as the restricted occurrence of microscopic shock effects, suggests that intense and relatively deep erosion has occurred since crater formation.  相似文献   

6.
With the TanDEM‐X digital elevation model (DEM), the terrestrial solid surface is globally mapped with unprecedented accuracy. TanDEM‐X is a German X‐band radar mission whose two identical satellites have been operated in single‐pass interferometer configuration over several years. The acquired data are processed to yield a global DEM with 12 m independent posting and relative vertical accuracies of better than 2 m and 4 m in moderate and mountainous terrain, respectively. This DEM provides new opportunities for space‐borne remote‐sensing studies of the entire sample of terrestrial impact craters. In addition, it represents an interesting repository to aid in the search for new impact crater candidates. We have used the TanDEM‐X DEM to investigate the current set of confirmed impact structures. For a subsample of the craters, including small, midsized, and large structures, we compared the results with those from other DEMs. This quantitative analysis demonstrates the excellent quality of the TanDEM‐X elevation data. Our findings help to estimate what can be gained by using the TanDEM‐X DEM in impact crater studies. They may also be beneficial in identifying the regions and morphologies where the search for currently unknown impact structures might be most promising.  相似文献   

7.
Abstract– Although the meteorite impact origin of the Keurusselkä impact structure (central Finland) has been established on the basis of the occurrence of shatter cones, no detailed microscopic examination of the impactites from this structure has so far been made. Previous microscope investigations of in situ rocks did not yield any firm evidence of shock features (Raiskila et al. 2008; Kinnunen and Hietala 2009). We have carried out microscopic observations on petrographic thin sections from seven in situ shatter cone samples and report here the discovery of planar fractures (PFs) and planar deformation features (PDFs) in quartz and feldspar grains. The detection and characterization of microscopic shock metamorphic features in the investigated samples substantiates a meteorite impact origin for the Keurusselkä structure. The crystallographic orientations of 372 PDF sets in 276 quartz grains were measured, using a universal stage (U‐stage) microscope, for five of the seven distinct shatter cone samples. Based on our U‐stage results, we estimate that investigated shatter cone samples from the Keurusselkä structure have experienced peak shock pressures from approximately 2 GPa to slightly less than 20 GPa for the more heavily shocked samples. The decoration of most of the PDFs with fluid inclusions also indicates that these originally amorphous shock features were altered by postimpact processes. Finally, our field observations indicate that the exposed surface corresponds to the crater floor; it is, however, difficult to estimate the exact diameter of the structure and the precise amount of material that has been eroded since its formation.  相似文献   

8.
We reanalyzed and compared unique data sets, which we obtained in the frame of combined petrophysical and geothermal investigations within scientific drilling projects on four impact structures: the Puchezh–Katunki impact structure (Vorotilovo borehole, Russia), the Ries impact structure (Noerdlingen‐73 borehole, Germany), the Chicxulub impact structure (ICDP Yaxcopoil‐1 borehole, Mexico), and the Chesapeake impact structure (ICDP‐USGS‐Eyreville borehole, USA). For a joined interpretation, we used the following previously published data: thermal properties, using the optical scanning technique, and porosities, both measured on densely sampled halfcores of the boreholes. For the two ICDP boreholes, we also used our previously published P‐wave velocities measured on a subset of cores. We show that thermal conductivity, thermal anisotropy, porosity, and velocity can be correlated with shock metamorphism (target rocks of the Puchezh–Katunki and Ries impact structures), and confirm the absence of shock metamorphism in the samples taken from megablocks (Chicxulub and Chesapeake impact structure). The physical properties of the lithic impact breccias and suevites are influenced mainly by their impact‐related porosity. Physical properties of lower porosity lithic impact breccias and suevites are also influenced by their chemical composition. These data allow for a distinction between different types of breccias due to differences concerning the texture and chemistry and the different amounts of melt and rock clasts.  相似文献   

9.
The Tenoumer impact structure is a small, well‐preserved crater within Archean to Paleoproterozoic amphibolite, gneiss, and granite of the Reguibat Shield, north‐central Mauritania. The structure is surrounded by a thin ejecta blanket of crystalline blocks (granitic gneiss, granite, and amphibolite) and impact‐melt rocks. Evidence of shock metamorphism of quartz, most notably planar deformation features (PDFs), occurs exclusively in granitic clasts entrained within small bodies of polymict, glass‐rich breccia. Impact‐related deformation features in oligoclase and microcline grains, on the other hand, occur both within clasts in melt‐breccia deposits, where they co‐occur with quartz PDFs, and also within melt‐free crystalline ejecta, in the absence of co‐occurring quartz PDFs. Feldspar deformation features include multiple orientations of PDFs, enhanced optical relief of grain components, selective disordering of alternate twins, inclined lamellae within alternate twins, and combinations of these individual textures. The distribution of shock features in quartz and feldspar suggests that deformation textures within feldspar can record a wide range of average pressures, starting below that required for shock deformation of quartz. We suggest that experimental analysis of feldspar behavior, combined with detailed mapping of shock metamorphism of feldspar in natural systems, may provide critical data to constrain energy dissipation within impact regimes that experienced low average shock pressures.  相似文献   

10.
Abstract— The circular Cloud Creek structure in central Wyoming, USA is buried beneath ?1200 m of Mesozoic sedimentary rocks and has a current diameter of ?7 km. The morphology/morphometry of the structure, as defined by borehole, seismic, and gravity data, is similar to that of other buried terrestrial complex impact structures in sedimentary target rocks, e.g., Red Wing Creek in North Dakota, USA. The structure has a fault‐bordered central peak with minimum diameter of ?1.4 km, composed predominantly of Paleozoic carbonates thickened by thrust faulting and brecciation, and is elevated some 520 m above equivalent strata beyond the outer rim of the structure. There is a ?1.6 km wide annular trough sloping away from the central peak (maximum structural relief, 300 m) and terminated by a detached, fault‐bounded, rim anticline. The youngest rocks within the structure are Late Triassic (Norian?) clastics and these are overlain unconformably by post‐impact Middle Jurassic (Bathonian?) sandstones and shales. Thus, the formation of the Cloud Creek structure is dated chronostratigraphicly as ?190 ± 20 Ma. Reported here for the first time are measurements of planar deformation features (PDFs) in shocked quartz grains in thin sections made from drill cuttings recovered in a borehole drilled at the southern perimeter of the central peak. Other, less definitive microstructures consistent with impact occur in samples collected from boreholes drilled into the central peak and rim anticline. The shock‐metamorphic evidence confirms an impact origin for the Cloud Creek structure.  相似文献   

11.
Abstract The 9 km diameter Red Wing Creek structure, North Dakota, is located within the oil-rich Williston Basin at 47°36′N and 103°33′W. Earlier geophysical studies indicated that this subsurface structure has a central uplift, surrounded by an annular crater moat, and a raised rim. Breccias were encountered during drilling between ~2000 and 2800 m depth in the central uplift area, and the presence of shatter cone fragments in drill core samples was suggested to indicate an impact origin of the Red Wing Creek structure. We studied the petrographic and geochemical characteristics of samples of well cuttings from two boreholes at the center of the structure: the True Oil 22–27 Burlington Northern and True Oil 11–27 Burlington Northern wells. We found planar deformation features (PDFs) in quartz with up to three sets of different crystallographic orientations in sandstone- and siltstone-dominated samples from the True Oil 11–27 borehole. U-stage measurements of the crystallographic orientations of the PDFs showed the occurrence of the shock-characteristic (0001), and orientations, with a dominance of (0001) and orientations. The relative frequencies of the orientations indicate a shock pressure of at least 12–20 GPa. These results provide unambiguous evidence for shock metamorphism at Red Wing Creek and confirm that the structure was formed by impact.  相似文献   

12.
Magnesium‐rich spinel assemblages occur in the two lunar vitric breccia meteorites—Dhofar (Dho) 1528 and Graves Nunataks (GRA) 06157. Dho 1528 contains up to ~0.7 mm cumulate Mg‐rich spinel crystals associated with Mg‐rich olivine, Mg‐ and Al‐rich pyroxene, plagioclase, and rare cordierite. Using thermodynamic calculations of these mineral assemblages, we constrain equilibration depths and discuss an origin of these lithologies in the upper mantle of the Moon. In contrast, small, 10 to 20 μm spinel phenocryst assemblages in glassy melt rock clasts in Dho 1528 and GRA 06157 formed from the impact melting of Mg‐rich rocks. Some of these spinel phenocrysts match compositional constraints for spinel associated with “pink spinel anorthosites” inferred from remote sensing data. However, such spinel phenocrysts in meteorites and Apollo samples are typically associated with significant amounts of olivine ± pyroxene that exceed the compositional constraints for pink spinel anorthosites. We conclude that the remotely sensed “pink spinel anorthosites” have not been observed in the collections of lunar rocks. Moreover, we discuss impact‐excavation scenarios for the spinel‐bearing assemblages in Dhofar 1528 and compare the bulk rock composition of Dho 1528 to strikingly similar compositions of Luna 20 samples that contain ejecta from the Crisium impact basin.  相似文献   

13.
Libyan Desert Glass (LDG) is an enigmatic natural glass, about 28.5 million years old, which occurs on the floor of corridors between sand dunes of the southwestern corner of the Great Sand Sea in western Egypt, near the Libyan border. The glass occurs as centimeter‐ to decimeter‐sized, irregularly shaped, and strongly wind‐eroded pieces. The origin of the LDG has been the subject of much debate since its discovery, and a variety of exotic processes were suggested, including a hydrothermal sol‐gel process or a lunar volcanic source. However, evidence of an impact origin of these glasses included the presence of schlieren and partly or completely digested minerals, such as lechatelierite, baddeleyite (a high‐T breakdown product of zircon), and the presence of a meteoritic component in some of the glass samples. The source material of the glass remains an open question. Geochemical data indicate that neither the local sands nor sandstones from various sources in the region are good candidates to be the sole precursors of the LDG. No detailed studies of all local rocks exist, though. There are some chemical and isotopic similarity to rocks from the BP and Oasis impact structures in Libya, but no further evidence for a link between these structures and LDG was found so far. These complications and the lack of a crater structure in the area of the LDG strewn field have rendered an origin by airburst‐induced melting of surface rocks as a much‐discussed alternative. About 20 years ago, a few shocked quartz‐bearing breccias (float samples) were found in the LDG strewn field. To study this question further, several basement rock outcrops in the LDG area were sampled during three expeditions in the area. Here we report on the discovery of shock‐produced planar microdeformation features, namely planar fractures (PFs), planar deformation features (PDFs), and feather features (FFs), in quartz grains from bedrock samples. Our observations show that the investigated samples were shocked to moderate pressure, of at least 16 GPa. We interpret these observations to indicate that there was a physical impact event, not just an airburst, and that the crater has been almost completely eroded since its formation.  相似文献   

14.
15.
Abstract— Libyan Desert Glass (LDG) is an impact‐related, natural glass of still unknown target material. We have determined Rb‐Sr and Sm‐Nd isotopic ratios from seven LDG samples and five associated sandstones from the LDG strewn field in the Great Sand Sea, western Egypt. Planar deformation features were recently detected in quartz from these sandstones. 87Sr/86Sr ratios and ?‐Nd values for LDG range between 0.71219 and 0.71344, and between –16.6 and –17.8, respectively, and hence are distinct from the less radiogenic 87Sr/86Sr ratios of 0.70910–0.71053 and ?‐Nd values from –6.9 to –9.6 for the local sandstones from the LDG strewn field. Previously published isotopic ratios from the Libyan BP and Oasis crater sandstones are generally incompatible with our LDG values. LDG formation undoubtedly occurred at 29 Ma, but neither the Rb‐Sr nor the Sm‐Nd isotopic system were rehomogenised during the impact event, as we can deduce from Pan‐African ages of ?540 Ma determined from the regression lines from a total of 14 LDG samples from this work and the literature. Together with similar Sr and Nd isotopic values for LDG and granitoid rocks from northeast Africa west of the Nile, these findings point to a sandy matrix target material for the LDG derived from a Precambrian crystalline basement, ruling out the Cretaceous sandstones of the former “Nubian Group” as possible precursors for LDG.  相似文献   

16.
Abstract— Shatter cones have been described from many meteorite impact structures and are widely regarded as a diagnostic macroscopic recognition feature for impact. However, the origin of this meso‐ to macroscopic striated fracture phenomenon has not yet been satisfactorily resolved, and the timing of shatter cone formation in the cratering process still remains enigmatic. Here, previous results from studies of shatter cones from the Vredefort impact structure and other impact structures are discussed in the light of new field observations made in the Vredefort Dome. Contrary to earlier claims, Vredefort cone fractures do not show uniform apex orientations at any given outcrop, nor do small cones show a pattern consistent with the previously postulated “master cone” concept. Simple back‐rotation of impact‐rotated strata to a horizontal pre‐impact position also does not lead to a uniform centripetal‐upward orientation of the cone apices. Striation patterns on the cone surfaces are variable, ranging from the typically diverging pattern branching off the cone apex to subparallel‐to‐parallel patterns on almost flat surfaces. Striation angles on shatter cones do not increase with distance from the center of the dome, as alleged in the literature. Instead, a range of striation angles is measured on individual shatter cones from a specific outcrop. New observations on small‐scale structures in the collar around the Vredefort Dome confirm the relationship of shatter cones with subparallel sets of curviplanar fractures (so‐called multipli‐striated joint sets, MSJS). Pervasive, meter‐scale tensile fractures cross‐cut shatter cones and appear to have formed after the closely spaced MSJ‐type fractures. The results of this study indicate that none of the existing hypotheses for the formation of shatter cones are currently able to adequately explain all characteristics of this fracturing phenomenon. Therefore, we favor a combination of aspects of different hypotheses that includes the interaction of elastic waves, as supported by numerical modeling results and which reasonably explains the variety of shatter cone shapes, the range of striation geometries and angles, and the relationship of closely spaced fracture systems with the striated surfaces. In the light of the currently available theoretical basis for the formation of shatter cones, the results of this investigation lead to the conclusion that shatter cones are tensile fractures and might have formed during shock unloading, after the passage of the shock wave through the target rocks.  相似文献   

17.
Abstract— The lake Lappajärvi impact crater lies in Paleoproterozoic Svecofennian metasedimentary rocks, on the western side of the Central Finland granitoid complex (~1.9 Ga). Two conflicting ages have been reported for the meteorite impact: an age of 77.3 ± 0.4 Ma on the basis of Ar‐Ar whole‐rock data from impact melt samples and a paleomagnetic age of 195 Ma. During studies on impact crater indicator minerals at Lappajärvi, zircons with an atypical appearance were found in suevite boulders. These zircons seemed to have been affected by impact shock metamorphism and it was considered that they would be good candidates for ion microprobe U‐Pb dating, allowing a new and independent age estimate for the impact event at Lappajärvi. Four spot analyses on two black‐coated zircons plotted close to the upper intercept end of the concordia curve giving an approximate age of 1.8 Ga for the source rock. Seventeen analyses were done on three dull zircon grains showing patchy impact‐related partial recrystallization. Most of these data fell fairly well on a single discordia line with intercept ages of 73.3 ± 5.3 Ma and 1854 ± 51 Ma. However, five of the data spots near the lower intercept end fell on the younger side of the line. This was interpreted to indicate post‐impact loss of lead. Importantly, the new ion microprobe U‐Pb age of 73.3 ± 5.3 Ma is in a very good agreement with the previously reported Ar‐Ar age.  相似文献   

18.
The fundamental approach for the confirmation of any terrestrial meteorite impact structure is the identification of diagnostic shock metamorphic features, together with the physical and chemical characterization of impactites and target lithologies. However, for many of the approximately 200 confirmed impact structures known on Earth to date, multiple scale‐independent tell‐tale impact signatures have not been recorded. Especially some of the pre‐Paleozoic impact structures reported so far have yielded limited shock diagnostic evidence. The rocks of the Dhala structure in India, a deeply eroded Paleoproterozoic impact structure, exhibit a range of diagnostic shock features, and there is even evidence for traces of the impactor. This study provides a detailed look at shocked samples from the Dhala structure, and the shock metamorphic evidence recorded within them. It also includes a first report of shatter cones that form in the shock pressure range from ~2 to 30 GPa, data on feather features (FFs), crystallographic indexing of planar deformation features, first‐ever electron backscatter diffraction data for ballen quartz, and further analysis of shocked zircon. The discovery of FFs in quartz from a sample of the MCB‐10 drill core (497.50 m depth) provides a comparatively lower estimate of shock pressure (~7–10 GPa), whereas melting of a basement granitoid infers at least 50–60 GPa shock pressure. Thus, the Dhala impactites register a strongly heterogeneous shock pressure distribution between <2 and >60 GPa. The present comprehensive review of impact effects should lay to rest the nonimpact genesis of the Dhala structure proposed by some earlier workers from India.  相似文献   

19.
Abstract– Shock metamorphism can occur at transient pressures that reach tens of GPa and well over 1000 °C, altering the target material on both megascopic and microscopic scales. This study explores the effects of shock metamorphism on crystalline, quartzofeldspathic basement material from the Haughton impact structure on Devon Island, Arctic Canada. Shock levels were assigned to samples based on petrographic examination of main mineral phases. Conventional shock classification schemes proved to incompletely describe the Haughton samples so a modified shock classification system is presented. Fifty‐two crystalline bedrock samples from the clast‐rich impact melt rocks in the crater, and one reference site outside of the crater, were classified using this system. The shock levels range from 0 to 7 (according to the new shock stage classification proposed here, i.e., stages 0–IV after the Stöffler classification), indicating shock pressures ranging from 0 to approximately 80 GPa. The second aspect of this study involved measuring bulk physical characteristics of the shocked samples. The bulk density, grain density, and porosity were determined using a water displacement method, a bead displacement method, and a Hepycnometer. Results suggest a nonlinear, negative correlation between density and shock level such that densities of crystalline rocks with original densities of approximately 3 g cm?3 are reduced to <1.0 g cm?3 at high shock levels. The results also show a positive nonlinear correlation between porosity and shock level. These data illustrate the effect of shock on the bulk physical characteristics of crystalline rocks, and has implications for assessing the habitability of shocked rocks.  相似文献   

20.
Abstract— The Obolon impact structure, 18 km in diameter, is situated at the northeastern slope of the Ukrainian Shield near its margin with the Dnieper‐Donets Depression. The crater was formed in crystalline rocks of the Precambrian basement that are overlain by marine Carboniferous and continental Lower Triassic deposits. The post‐impact sediments comprise marine Middle Jurassic (Bajocian and Bathonian) and younger Mesozoic and Cenozoic deposits. Today the impact structure is buried beneath an about 300‐meter‐thick sedimentary rock sequence. Most information on the Obolon structure is derived from two boreholes in the western part of the crater. The lowest part of the section in the deepest borehole is composed by allogenic breccia of crystalline basement rocks overlain by clast‐rich impact melt rocks and suevites. Abundant shock metamorphic effects are planar deformation features (PDFs) in quartz and feldspars, kink bands in biotite, etc. Coesite and impact diamonds were found in clast‐rich impact melt rocks. Crater‐fill deposits are a series of sandstones and breccias with blocks of sedimentary rocks that are covered by a layer of crystalline rock breccia. Crystalline rock breccias, conglomeratic breccias, and sandstones with crystalline rock debris have been found in some boreholes around the Obolon impact structure to a distance of about 50 km from its center. Those deposits are always underlain by Lower Triassic continental red clay and overlain by Middle Jurassic marine clay. The K‐Ar age of impact melt glasses is 169 Ma, which corresponds to the Middle Jurassic (Bajocian) age. The composition of crater‐fill rocks within the crater and sediments outside the Obolon structure testify to its formation under submarine conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号