首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
A number of studies in north Queensland over the past two decades have concluded that large amounts of nutrients and sediments are exported from agricultural watersheds, particularly during wet season rainfall events. With the co-operation of a number of growers, runoff from Queensland Wet Tropics banana and cane farm paddocks in two distinct tropical river catchments was examined to provide an estimate of nutrient and sediment concentrations and export, with comparison to water quality of flow through a small urban lakes system. Median total nitrogen concentrations in cane drainage runoff (3110 microg N/L) were higher than for banana paddock drainage (2580 microg N/L), although the maximum concentration was recorded from a banana paddock (20,900 microg N/L). Nitrogen losses during post-event drainage flow were supplemented by high proportions of NO(X) (nitrate + nitrite) sourced from groundwater inputs. Banana paddocks had the highest maximum and median total phosphorus and TSS concentrations (5120 and 286 microg P/L, and 7250 and 75 mg/L respectively) compared to the cane farms (1430 and 50 microg P/L, and 1840 and 14 mg/L respectively). The higher phosphorus and TSS concentrations in the banana runoff were attributed to higher paddock slopes and a greater proportion of exposed ground surface during the wet season. Highest nutrient and TSS concentrations corresponded with samples collected near the peak discharge periods; however, the rising stage of the drainage flows, where the highest nutrient and TSS concentrations are often reported, were difficult to target because of the manual sampling strategy used. This study shows that high concentrations of nutrients and TSS occur in the runoff from cane and banana paddocks. Median total nitrogen, total phosphorus and TSS concentrations in flow through the urban lakes were 369 microg N/L, 16 microg P/L and 11 mg/L, respectively. Flux estimates of 9.2 kg N, 0.8 kg P and 126 kg TSS/ha were determined for drainage runoff from a banana paddock during a single intensive storm event.  相似文献   

2.
Soil‐mix technology is effective for the construction of permeable reactive barriers (PRBs) for in situ groundwater treatment. The objective of this study was to perform initial experiments for the design of soil‐mix technology PRBs according to (i) sorption isotherm, (ii) reaction kinetics and (iii) mass balance of the contaminants. The four tested reactive systems were: (i) a granular zeolite (clinoptilolite–GZ), (ii) a granular organoclay (GO), (iii) a 1:1‐mixture GZ and model sandy clayey soil and (iv) a 1:1:1‐mixture of GZ, GO and model soil. The laboratory experiments consisted of batch tests (volume 900 mL and sorbent mass 18 g) with a multimetal solution of Pb, Cu, Zn, Cd and Ni. For the adsorption experiment, the initial concentrations ranged from 0.01 to 0.5 mM (2.5 to 30 mg/L). The maximum metal retention was measured in a batch test (300 mg/L for each metal, volume 900 mL, sorbent mass 90–4.5 g). The reactive material efficiency order was found to be GZ > GZ‐soil mix > GZ‐soil‐GO mix > GO. Langmuir isotherms modelled the adsorption, even in presence of a mixed cations solution. Adsorption was energetically favourable and spontaneous in all cases. Metals were removed according to the second order reaction kinetics; GZ and the 1:1‐mix were very similar. The maximum retention capacity was 0.1–0.2 mmol/g for Pb in the presence of clinoptilolite; for Cu, Zn, Cd and Ni, it was below 0.05 mmol/g for the four reactive systems. Mixing granular zeolite, organoclay and model soil increased the chemisorption. Providing that GZ is reactive enough for the specific conditions, GZ can be mixed to obtain the required sorption. Granular clinoptilolite addition to soil is recommended for PRBs for metal contaminated groundwater.  相似文献   

3.
Rainfall retention and runoff detention are likely the most important ecosystem services provided by extensive green roofs (EGRs) that contribute to urban stormwater mitigation and management. However, the hydrological performance and runoff generation mechanisms of mature, well-established EGRs in tropical regions remain poorly understood. This study evaluated the rainfall retention, discharge detention times and processes of runoff generation in two neighbouring 20-year-old EGRs with different slopes (2° and 14° for EGRns and EGRws, respectively) and management practices in Mexico City; results were compared with those obtained in a conventional roof (CR, 2° slope). Precipitation, substrate moisture and storm runoff were continuously measured during the 2017 and 2018 rainy seasons (May–November). Results showed spatial differences in substrate properties and moisture within and between green roofs. In general, higher bulk densities and a wide range of variation in water content characterized the bare substrate areas compared to those below vegetation. Greatest increases in substrate moisture and storm runoff were observed in the steeper green roof. Subsurface flow was the dominant process controlling the amount and timing of stormflow in the EGRs. The occurrence of saturation excess overland flow was small and detected when large rain events were preceded by high wetness conditions. The main factors influencing the hydrological responses of the green roofs were their substrate hydrophysical properties, related mostly to vegetation cover, management and age, and to much lesser extent to slope and substrate depth. On average, rainfall retention was ~60% in the EGRs with significantly longer delays and prolonged runoff times (100 and 340 min, respectively) compared to CR (3%, 20 min, and 258 min, respectively). Overall, these findings highlight the potential of EGRs in reducing stormflow and peak discharges for most rainfall in Mexico City, and thus mitigating the risk of saturation and overflow of urban drainages.  相似文献   

4.
Low Impact Development (LID) aims to mitigate the hydrological impacts of urbanization by replication of processes in natural catchments. Green roofs covered with vegetation and pervious substrate are one alternative among a wide range of LID tools. Water retention of green roofs depends on many factors (e.g. local climate), and measurements remain crucial in evaluating their performance. The simulation of green roof retention by a hydrological model is one option to evaluate their potential benefits before implementation. In this paper, we evaluated the ability of the recently introduced LID green roof module of the stormwater management model to replicate runoff from monitored green roof test beds under Nordic climate conditions. A parameter sensitivity analysis was conducted to identify calibration parameters. The model showed an overall acceptable performance, and the results indicated the importance of accurately estimating potential evapotranspiration rates for inter‐event periods, which is essential in representing the retention capacity regeneration. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
This paper discusses aspects of grass vegetation in relation to soil erosion control. By means of a literature research, four options for using grass vegetation were recognized, each having its own requirements concerning maintenance, vegetation characteristics and field layout. The main filter mechanisms, application in the field and effects on runoff and soil loss are discussed. Field experiments on filter strips were carried out to determine whether literature data for water and sediment retention by vegetation can be applied to sloping loess soils in South Limburg (The Netherlands). The field experiments simulated a situation in which surface runoff carrying loess sediment from an upslope field enters a grass strip. The retention of water and sediment by grass strips was determined by measuring runoff discharge and the sediment concentration at the inflow and outflow points from bordered plots. Two locations with different grass age and agricultural management were studied. Results show that grass strips are effective in filtering sediment from surface runoff as long as concentrated flow is absent. Outflow sediment concentrations could be described as a function of inflow concentrations and strip width. Reductions of sediment discharge varied between 50–60, 60–90 and 90–99% for strips of 1, 4–5 and 10 m width, respectively. Old grass, extensively used as pasture, is more effective in reducing erosion than the younger grass which was often accessed by tractors for mowing. Differences in water retention between both grass locations appear to be caused mainly by differences in grass density.  相似文献   

6.
This paper summarizes a study to estimate the potential for dry-well drainage of urban runoff to recharge and pollute ground water in Tucson, Arizona. We selected three candidate dry wells for study. At each site we collected samples of runoff, dry-well sediment, vadose-zone sediment, perched ground water, and ground water. Water content data from vadose-zone samples suggest that dry-well drainage has created a transmission zone for water movement at each site. Volatile organic compounds, while undetected in runoff samples, were present in dry-well sediment, perched ground water at one site, and ground water at two sites. The concentrations of volatile organics (toluene and ethylbenzene) in the water samples were less than the corresponding EPA human health criteria. Pesticides were detected only in runoff and dry-well sediment. Lead and chromium occurred in runoff samples at concentrations above drinking water standards. Nickel, chromium, and zinc concentrations were elevated in vadose-zone samples at the commercial site. Of the metals, only manganese, detected at the residential site, exceeded Secondary Drinking Water Standards in ground water. It is concluded that the three dry wells examined during this study are currently not a major source of ground water pollution.  相似文献   

7.
天目湖流域丘陵山区典型土地利用类型氮流失特征   总被引:4,自引:2,他引:2  
天目湖丘陵山区农业综合开发持续推进,大量林地转变为茶园,迫切需要认识茶园扩张对流域氮流失的影响.本研究选取茶园、次生马尾松林和毛竹林开展自然降雨条件下的径流小区实验,分析天目湖丘陵山区典型用地类型径流氮流失规律,为评估丘陵山区综合开发的水环境影响提供实测参数.研究表明:茶园、次生马尾松林和毛竹林地表径流TN浓度分别为11.25、2.83和3.60 mg/L,均以溶解态为主;壤中流TN浓度分别为27.16、3.59和1.06 mg/L,茶园和次生马尾松林均以溶解性无机氮(尤其是硝态氮)为主,毛竹林以溶解性有机氮为主;茶园、次生马尾松林和毛竹林的小区尺度地表径流系数均不到0.03,壤中流是丘陵山区径流的主要来源;茶园开发加剧了丘陵山区的氮素流失,茶园径流TN流失强度高达103.08 kg/(hm2·a),分别是次生马尾松林和毛竹林的7.6和23.2倍,壤中流贡献了流失总量的86.7%~99.7%.防治茶园径流氮流失需重点关注壤中流输出,在减量施肥的基础上,采取坡脚构建毛竹林生态缓冲带/在小流域出口布设塘坝等原位拦截措施,实现流域氮流失综合防控.  相似文献   

8.
A combination of retention pond and reed bed was tested for its effectiveness in reducing non-point source runoff pollution from an urban area. This paper presents data on the development of reed plants (Phragmites australis Cav. Trin.), on the effectiveness of runoff purification and on the accumulation of contaminants in the pond sediment and the reed bed for the years 1993–1995. P. australis was well established and grew according to normal development. The measured length and biomass values of P. australis were larger on sand than on gravel and coarse materials. Toxic levels of heavy metals in the plants were not reached. Harvested plants can be composted. The purification system is effective within the following ranges: The rate of retention of suspended solids and heavy metals varies between 16% and 91%. For chemical oxygen demand the average values is 25%. Poor retention rates usually occur along with very low input concentrations. Generally retention within the reed bed is higher than in the pond. Between 1993 and 1995 the concentration of contaminants within the organic layer of the reed bed increased by 50% for lead and by 90% for poly aromatic hydrocarbons. Until 1994 the concentrations of mineral oil hydrocarbons also increased by 60%. Between 1994 and 1995 however the concentration of mineral oil hydrocarbons in the reed bed decreased rapidly by more than 50%: Mineral oil hydrocarbons underlie biological degradation within the reed bed. In the pond sediment a significant accumulation of heavy metals, poly aromatic hydrocarbons and mineral oil hydrocarbons has also been found. The concentrations of these contaminants are still far from inhibiting the function of the system.  相似文献   

9.
Green roofs are a form of green infrastructure aimed at retaining or slowing the movement of precipitation as stormwater runoff to sewer systems. To determine total runoff versus retention from green roofs, researchers and practitioners alike employ hydrologic models that are calibrated to one or more observed events. However, questions still remain regarding how event size may impact parameter sensitivity, how best to constrain initial soil moisture (ISM), and whether limited observations (i.e., a single event) can be used within a calibration-validation framework. We explored these questions by applying the storm water management model to simulate a large green roof located in Syracuse, NY. We found that model performance was very high (e.g., Nash Sutcliffe efficiency index > 0.8 and Kling-Gupta efficiency index > 0.8) for many events. We initially compared model performance across two parameterizations of ISM. For some events, we found similar performance when ISM was varied versus set to zero; for others, varying ISM yielded higher performance as well as greater water balance closure. Within a calibration-validation framework, we found that calibrating to larger events tended to produce moderate to high performance for other non-calibration events. However, very small storms were notoriously difficult to simulate, regardless of calibration event size, as these events are likely fully retained on the roof. Using regional sensitivity analysis, we confirmed that only a subset of model parameters was sensitive across 16 events. Interestingly, many parameters were sensitive regardless of event size, though some parameters were more sensitive when simulating smaller events. This emphasizes that storm size likely influences parameter sensitivity. Overall, we show that while calibrating to a single event can achieve high performance, exploring simulations across multiple events can yield important insight regarding the hydrologic performance of green roofs that can be used to guide the gathering of in situ properties and observations for refining model frameworks.  相似文献   

10.
A model developed for estimating the evaporation of rainfall intercepted by forest canopies is applied to estimate measurements of the average runoff from the roofs of six houses made in a previous study of hydrological processes in an urban environment. The model is applied using values of the mean rates of wet canopy evaporation and rainfall derived previously for forests and an estimate of the roof storage capacity derived from the data collected in the previous study. Although the model prediction is sensitive to the value of storage capacity, close correlation between the modelled and measured runoff indicates that the model captures the essential processes. It is concluded that the process of evaporation from an urban roof is sufficiently similar to that from a forest canopy for forest evaporation models to be used to give a useful estimate of urban roof runoff. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
A network of 30 standalone snow monitoring stations was used to investigate the snow cover distribution, snowmelt dynamics, and runoff generation during two rain‐on‐snow (ROS) events in a 40 km2 montane catchment in the Black Forest region of southwestern Germany. A multiple linear regression analysis using elevation, aspect, and land cover as predictors for the snow water equivalent (SWE) distribution within the catchment was applied on an hourly basis for two significant ROS flood events that occurred in December 2012. The available snowmelt water, liquid precipitation, as well as the total retention storage of the snow cover were considered in order to estimate the amount of water potentially available for the runoff generation. The study provides a spatially and temporally distributed picture of how the two observed ROS floods developed in the catchment. It became evident that the retention capacity of the snow cover is a crucial mechanism during ROS. It took several hours before water was released from the snowpack during the first ROS event, while retention storage was exceeded within 1 h from the start of the second event. Elevation was the most important terrain feature. South‐facing terrain contributed more water for runoff than north‐facing slopes, and only slightly more runoff was generated at open compared to forested areas. The results highlight the importance of snowmelt together with liquid precipitation for the generation of flood runoff during ROS and the large temporal and spatial variability of the relevant processes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
The spatial and temporal distribution of sulphate (SO4) concentrations in peat pore water and the outlet streams of two forested swamps was related to variations in the magnitude of upland runoff, wetland water levels and flow path. The swamps were located in headwater catchments with contrasting till depths typical of the southern Canadian Shield. Inputs of SO4 from shallow hillslope tills and streams showed little seasonal variation in either source or concentration in both swamps. Sulphate dynamics at the outlet stream reflected hydrological and biogeochemical processes within the valley wetlands, which in turn were partly controlled by catchment hydrogeology. During high runoff, maximum water table elevations and peak surface flow in the swamps resulted in upland inputs largely bypassing anoxic peat. Consequently, SO4 concentrations of 8–10 mg/l at the swamp outlets were similar to stream and groundwater inputs. During periods of low flow, concentrations of SO4 at the swamp outlets declined to less than 3 mg/l. At this time lower water table elevations resulted in increased interaction of input water with anoxic peats, and therefore, SO4 reduction. Contrasts in till depth and the nature of groundwater flow between catchments resulted in differences in SO4 dynamics between years and swamps. In dry summers the absence of groundwater inputs to the swamp in the catchment with thin till resulted in a large water table drawdown and re-oxidation of accumulated S, which contributed to maximum SO4 concentrations (up to 35 mg/l) during storm runoff. Continuous groundwater input to the swamp in the catchment with deeper till was critical to maintaining saturated surfaces and efficient SO4 retention during both dry and wet summers. A conceptual model of wetland SO4 retention and export, based on catchment hydrogeology, is developed to generalize the SO4 dynamics of valley bottom wetlands at the landscape scale. © 1997 by John Wiley & Sons, Ltd.  相似文献   

13.
The effects of adding oxygen to anaerobic aquifer materials on biodegradation of phenoxy acid herbicides were studied by laboratory experiments with aquifer material from two contaminated sites (a former agricultural machinery service and an old landfill). At both sites, the primary pollutants were phenoxy acids and related chlorophenols. It was found that addition of oxygen enhanced degradation of the six original phenoxy acids and six original chlorophenols. Inverse modeling on 14C 4-chloro-2-methylphenoxypropanoic acid (MCPP) degradation curves revealed that increasing the oxygen concentrations from <0.3 mg/L up to 7 to 8 mg/L shortened the lag phases (from approximately 150 d to 5 to 25 d) and increased first-order degradation rate constants by 1 order of magnitude (from approximately 5 x 10(-2) d(-1) to up to 30 x 10(-2) d(-1)). Additionally, the degree of MCPP mineralization was increased (30% to 50% mineralized at low oxygen concentrations and 50% to 70% mineralized at high oxygen concentrations, based on 14CO2 recovery). These positive effects on degradation were observed even at relatively low oxygen concentrations (2 mg/L). Furthermore, effects related to the addition of oxygen on the general geochemistry were studied. An oxygen consumption of 2.2 to 2.6 mg O2/g dw was observed due to oxidation of solid organic matter and, to some extent (0.5% to 11% of the total oxygen consumption), water-soluble compounds such as Fe2+, dissolved Mn, nonvolatile organic carbon, and NH4+. Overall, the results suggest that stimulated biodegradation by addition of oxygen might be a feasible remediation technology at herbicide-contaminated sites, although oxygen consumption by the sediment could limit the applicability.  相似文献   

14.
An experimental study of water fluxes from roofs in a residential area has quantified water fluxes from different types of roof and identified the major controls on the process. Roofs with pitches of 0°, 22° and 50° and orientations of 15° (from true north) (NNE) and 103° (ESE) were selected. A novel automatic system for monitoring has been developed. Noticeable differences in rainfall, runoff and evaporation were found for different roof slopes, aspects and heights. Depending on height, flat roofs collected 90 to 99% of rainfall recorded at ground level. Roofs with a 22° slope; facing south‐south‐west (i.e. facing the prevailing wind) captured most rain, whereas east‐south‐east facing roofs with slopes of 50° received the least. Depending on the roof slope, the average rainfall captured ranged from 62 to 93% of that at ground level. For the same slope, the results indicated that from roofs orientated normal to the prevailing wind; (i) captured rainfall was higher, (ii) evaporation was higher and (iii) runoff was less than that from roofs having other aspects. Monthly variations in the runoff–rainfall ratio followed the rainfall distribution, being lowest in summer and highest in winter. The highest mean ratio (0·91) was associated with the steeper roof slope; the lowest ratio (0·61) was for roofs facing the prevailing wind direction. For the same amount of rainfall, the runoff generated from a steeper roof was significantly higher than that generated by a moderate roof slope, but the lowest runoff was from roofs facing the prevailing wind. The results have also shown that the amount of runoff collected (under UK climatic condition) was sufficient to supply an average household in the studied area with the major part of its annual water requirements. The use of this water not only represents a financial gain for house owners but also will help protect the environment by reducing demand on water resources through the reduction of groundwater abstraction, construction of new reservoirs, and a reduction of the flood risk as its in situ use is considered a preventive measure known as a source control. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
A subsurface water (vadose zone or ground water) extractor is described. Construction materials were Teflon and a porous ceramic suction cup. The unique features are:
  •Check valves are not needed.
  •Complete retention of water sample in a 1.8L capacity reservoir, even if vacuum is lost or when the reservoir is pressurized to transfer sample to ground surface and the collection bottle.
  •The extractor can usually be retrieved if the access well and well head as described are used. The ceramic cup can then be replaced if necessary and the extractor reused at another site. The water extractor is not suitable for obtaining samples for analysis of highly volatile pollutants.
Up to four of these water extractors were used to monitor the quality of percolating urban runoff water and top of the ground water table (20 to 30m) beneath retention/recharge basins. The presence of water in the basins requires constructing a sealed borehole annular space, a watertight well head, and seal around the Teflon access tubes to the extractor at a control box containing the valves in the access tubes.  相似文献   

16.
Acute toxicity of heavy metals to some marine larvae   总被引:1,自引:0,他引:1  
The toxicity of copper, mercury and zinc to the larvae of oysters, shrimp, crab and lobsters has been examined over periods of up to 64 hours. Mercury was found to be more toxic than copper and zinc, which had similar levels of toxicity. Over the experimental period, the relationship between toxicity and concentration was linear. Larvae were from 14 to 1,000 times more susceptible than adults of the same species. The median lethal concentrations (LC50) of each metal to the most sensitive species of larvae, tested over a 48 hour period, exceeded the concentrations found in natural sea water by a factor of 100. For longer test periods, the LC50 would be considerably less and this factor would then be considerably reduced. Hence the continued addition of these metals to confined waters should give cause for concern.  相似文献   

17.
张晨  周雅迪  宋迪迪 《湖泊科学》2023,35(6):1949-1959
基于1990—2018年于桥水库流域入库河流与水库的逐月总氮(TN)和总磷(TP)监测数据,整理并分析了1990-2002、2003—2014和2015—2018年3个时段TN、TP浓度和氮磷比(TN/TP)的时空变化特征,探究流域内点面源污染削减、调水、氮磷滞留等对营养盐浓度变化的影响。结果表明,1990—2018年于桥水库TN浓度年均值在1.14~3.74 mg/L之间,水库TP浓度年均值在0.025~0.131 mg/L之间,多年TN/TP平均值为45,远高于淡水磷限氮磷比,是磷限水库。于桥水库流域5个测点中,沙河TN浓度最高,黎河TP浓度最高,入库TN、TP浓度大于库区,水库TP滞留率略大于TN。水库TN、TP浓度在2000s中后期下降,之后出现反弹。原因是2003年水源保护工程实施后,入库营养物浓度降低;2014年底南水北调中线一期工程通水后,于桥水库的引滦水量减少,TN的稀释效应弱化,上游来水TP浓度上升与水库内夏秋两季浮游植物的增殖,导致第三时段水库内TP浓度上升。基于月尺度水质分析,夏季水库TN浓度最低,TP浓度达到峰值,主成分分析表明,历年6—10月的水库Chl.a浓...  相似文献   

18.
The aim of this study was to assess trace metal contamination of drinking water in the Pearl Valley, Azad Jammu and Kashmir (Pakistan). The objectives were to determine physical properties and the dissolved concentration of five trace metals, i. e., lead, copper, nickel, zinc, and manganese, in drinking water samples collected from various sites of municipal water supply, natural water springs and wells in the valley. Concentrations of the metals in the water samples were determined by flame atomic absorption spectrometry. Results showed physical parameters, i. e., appearance, taste and odor within acceptable limits and pH was between 5.5 and 7.0. The observed concentrations of the metals varied between sources of water samples and between sampling sites. Maximum dissolved concentration observed was 4.7 mg/L for Pb and Mn, 4.6 mg/L for Zn, 2.9 mg/L for Ni and 2.8 mg/L for Cu. The observed concentrations of the metals were compared with the World Health Organization's guideline values for drinking water. Overall, the quality of water samples taken from the water springs at Mutyal Mara and Bonjosa was good; however, the water quality was unsuitable for drinking in Kiraki, Kharick, and Pothi Bala localities particularly. Finally, the authors discuss possible causes for increased concentrations of the trace metals in drinking water in the study area.  相似文献   

19.
An avoidance test was developed using non-cultured individuals of the sediment dwelling amphipod Monoporeia affinis. As test substance we used zinc pyrithione, an antifouling agent and a common shampoo ingredient. The toxicity to Daphnia and fish is well known but sediment toxicity of this very hydrophobic compound is less known. The preference of juvenile M. affinis was tested in jars, each including 12 petri dishes. In each replicate, half of the petri dishes contained sediment mixed with six concentrations ranging from 0 to 10microg zinc pyrithione per L sediment and half of the petri dishes contained the corresponding sediment-substance mixture plus an extra food addition. The amphipods significantly avoided petri dishes with the three highest concentrations of zinc pyrithione and the calculated EC(50) was 9.65microgL(-1) sediment. No difference in mortality was observed between concentrations. Using the avoidance behaviour in sediment toxicity testing is a simple and cost-effective screening for toxicants.  相似文献   

20.
This study evaluated the attributes and uncertainty of non‐point source pollution data derived from synoptic surveys in a catchment affected by inactive metal mines in order to help to identify and select appropriate methods for data analysis/reporting and information use. Dissolved zinc data from the Upper Animas River Basin, Colorado, USA, were the focus of the study. Zinc was evaluated because concentrations were highest relative to national water quality criteria for brown trout, and zinc had the greatest frequency of criteria exceedances compared with other metals. Data attributes evaluated included measurement and model error, sample size, non‐normality, seasonality and uncertainty. The average measurement errors for discharges, concentrations and loadings were 0·15, 0·1 and 0·18, respectively. The 90 and 95% coefficients of confidence intervals for mean concentrations based on a sample size of four were 0·48 and 0·65, respectively, and ranged between 0·15 and 0·23 for sample sizes greater than 40. Aggregation of data from multiple stations decreased the confidence intervals significantly, but additional aggregation of all data increased them as a result of increasing spatial variability. Unit area loading data were approximately log‐normal. Concentration data were right‐skewed but not log‐normal. Differences in median concentrations were appreciable between snowmelt and both storm flow and baseflow, but not between storm flow and baseflow. Differences in unit area loadings between all flow events were large. It was determined that the average concentration and unit area loading values should be estimated for each flow event because of significant seasonality. Time weighted values generally should be computed if annual information is required. The confidence in average concentrations and unit area loadings is dependent on the computation method used. Both concentrations and loadings can be significantly underestimated on an annual basis when using data from synoptic surveys if the first flush of contaminants during the initial snowmelt runoff period is not sampled. The ambient standard for dissolved zinc for all events was estimated as 1600 μg l−1 using the 85th percentile of observed concentration data, with a 90% confidence interval width of 200 μg l−1. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号