首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— The structural states of sodic plagioclase crystals of ~50 μm in size from three H6, two L6, and one LL6 chondritic meteorites have been determined by measuring the Δ131 parameter with a Gandolfi camera after analyzing chemical compositions. The temperature for each sodic plagioclase crystal has been determined by plotting the Δ131 parameter, corrected for the influence of K, on the relation diagram between the Δ131 parameter and the temperature of synthesis of sodic plagioclase by Smith (1972). The temperature obtained is assigned to the crystallization temperature of sodic plagioclase, and the maximum plagioclase temperature for each meteorite can be assumed to correspond to the maximum temperature attained by each meteorite during metamorphism. The maximum metamorphic temperatures estimated are 725–742 °C for the H6 chondrites, 808–820 °C for the L6 chondrites, and 800 °C for the LL6 chondrite. These temperatures are lower than those based on Ca contents of clinopyroxenes (Dodd, 1981; McSween et al., 1988) but are consistent with those based on Ca contents of orthopyroxenes (McSween and Patchen, 1989; Langenhorst et al., 1995; Jones, 1997). The K content of sodic plagioclase correlates with the temperature obtained from the structural state. This positive correlation suggests that sodic plagioclase has formed in the course of equilibration processes of alkali elements in prograde metamorphism (i.e., during heating processes). The results of this study (i.e., the maximum metamorphic temperature of the H6 chondrites is lower than that of the L6 chondrites by ~80 °C, and meteorites of the same chemical group show very similar maximum metamorphic temperatures) are in accordance with the predictions of calculations based on the 26Al heat source and the onion-shell structure model of the parent bodies.  相似文献   

2.
Ordinary chondrite meteorites contain silicates, Fe,Ni‐metal grains, and troilite (FeS). Conjoined metal‐troilite grains would be the first phase to melt during radiogenic heating in the parent body, if temperatures reached over approximately 910–960 °C (the Fe,Ni‐FeS eutectic). On the basis of two‐pyroxene thermometry of 13 ordinary chondrites, we argue that peak temperatures in some type 6 chondrites exceeded the Fe,Ni‐FeS eutectic and thus conjoined metal‐troilite grains would have begun to melt. Melting reactions consume energy, so thermal models were constructed to investigate the effect of melting on the thermal history of the H, L, and LL parent asteroids. We constrained the models by finding the proportions of conjoined metal‐troilite grains in ordinary chondrites using high‐resolution X‐ray computed tomography. The models show that metal‐troilite melting causes thermal buffering and inhibits the onset of silicate melting. Compared with models that ignore the effect of melting, our models predict longer cooling histories for the asteroids and accretion times that are earlier by 61, 124, or 113 kyr for the H, L, and LL asteroids, respectively. Because the Ni/Fe ratio of the metal and the bulk troilite/metal ratio is higher in L and LL chondrites than H chondrites, thermal buffering has the greatest effect in models for the L and LL chondrite parent bodies, and least effect for the H chondrite parent. Metal‐troilite melting is also relevant to models of primitive achondrite parent bodies, particularly those that underwent only low degrees of silicate partial melting. Thermal models can predict proportions of petrologic types formed within an asteroid, but are systematically different from the statistics of meteorite collections. A sampling bias is interpreted to explain these differences.  相似文献   

3.
Abstract– We evaluate the chemical and physical conditions of metamorphism in ordinary chondrite parent bodies using X‐ray diffraction (XRD)‐measured modal mineral abundances and geochemical analyses of 48 type 4–6 ordinary chondrites. Several observations indicate that oxidation may have occurred during progressive metamorphism of equilibrated chondrites, including systematic changes with petrologic type in XRD‐derived olivine and low‐Ca pyroxene abundances, increasing ratios of MgO/(MgO+FeO) in olivine and pyroxene, mean Ni/Fe and Co/Fe ratios in bulk metal with increasing metamorphic grade, and linear Fe addition trends in molar Fe/Mn and Fe/Mg plots. An aqueous fluid, likely incorporated as hydrous silicates and distributed homogeneously throughout the parent body, was responsible for oxidation. Based on mass balance calculations, a minimum of 0.3–0.4 wt% H2O reacted with metal to produce oxidized Fe. Prior to oxidation the parent body underwent a period of reduction, as evidenced by the unequilibrated chondrites. Unlike olivine and pyroxene, average plagioclase abundances do not show any systematic changes with increasing petrologic type. Based on this observation and a comparison of modal and normative plagioclase abundances, we suggest that plagioclase completely crystallized from glass by type 4 temperature conditions in the H and L chondrites and by type 5 in the LL chondrites. Because the validity of using the plagioclase thermometer to determine peak temperatures rests on the assumption that plagioclase continued to crystallize through type 6 conditions, we suggest that temperatures calculated using pyroxene goethermometry provide more accurate estimates of the peak temperatures reached in ordinary chondrite parent bodies.  相似文献   

4.
High‐precision oxygen three‐isotope ratios were measured for four mineral phases (olivine, low‐Ca and high‐Ca pyroxene, and plagioclase) in equilibrated ordinary chondrites (EOCs) using a secondary ion mass spectrometer. Eleven EOCs were studied that cover all groups (H, L, LL) and petrologic types (4, 5, 6), including S1–S4 shock stages, as well as unbrecciated and brecciated meteorites. SIMS analyses of multiple minerals were made in close proximity (mostly <100 μm) from several areas in each meteorite thin section, to evaluate isotope exchange among minerals. Oxygen isotope ratios in each mineral become more homogenized as petrologic type increases with the notable exception of brecciated samples. In type 4 chondrites, oxygen isotope ratios of olivine and low‐Ca pyroxene are heterogeneous in both δ18O and Δ17O, showing similar systematics to those in type 3 chondrites. In type 5 and 6 chondrites, oxygen isotope ratios of the four mineral phases plot along mass‐dependent fractionation lines that are consistent with the bulk average Δ17O of each chondrite group. The δ18O of three minerals, low‐Ca and high‐Ca pyroxene and plagioclase, are consistent with equilibrium fractionation at temperatures of 700–1000 °C. In most cases the δ18O values of olivine are higher than those expected from pyroxene and plagioclase, suggesting partial retention of premetamorphic values due to slower oxygen isotope diffusion in olivine than pyroxene during thermal metamorphism in ordinary chondrite parent bodies.  相似文献   

5.
Abstract— The induced thermoluminescence (TL) properties of 16 CV and CV-related chondrites, four CK chondrites and Renazzo (CR2) have been measured in order to investigate their metamorphic history. The petrographic, mineralogical and bulk compositional differences among the CV chondrites indicate that the TL sensitivity of the ~130 °C TL peak is reflecting the abundance of ordered feldspar, especially in chondrule mesostasis, which in turn reflects parent-body metamorphism. The TL properties of 18 samples of homogenized Allende powder heated at a variety of times and temperatures, and cathodoluminescence mosaics of Axtell and Coolidge, showed results consistent with this conclusion. Five refractory inclusions from Allende, and separates from those inclusions, were also examined and yielded trends reflecting variations in mineralogy indicative of high peak temperatures (either metamorphic or igneous) and fairly rapid cooling. The CK chondrites are unique among metamorphosed chondrites in showing no detectable induced TL, which is consistent with literature data that suggests very unusual feldspar in these meteorites. Using TL sensitivity and several mineral systems and allowing for the differences in the oxidized and reduced subgroups, the CV and CV-related meteorites can be divided into petrologic types analogous to those of the ordinary and CO type 3 chondrites. Axtell, Kaba, Leoville, Bali, Arch and ALHA81003 are type 3.0–3.1, while ALH84018, Efremovka, Grosnaja, Allende and Vigarano are type 3.2–3.3 and Coolidge and Loongana 001 are type 3.8. Mokoia is probably a breccia with regions ranging in petrologic type from 3.0 to 3.2. Renazzo often plots at the end of the reduced and oxidized CV chondrite trends, even when those trends diverge, suggesting that in many respects it resembles the unmetamorphosed precursors of the CV chondrites. The low-petrographic types and low-TL peak temperatures of all samples, including the CV3.8 chondrites, indicates metamorphism in the stability field of low feldspar (i.e., <800 °C) and a metamorphic history similar to that of the CO chondrites but unlike that of the ordinary chondrites.  相似文献   

6.
In ordinary chondrites (OCs), phosphates and feldspar are secondary minerals known to be the products of parent‐body metamorphism. Both minerals provide evidence that metasomatic fluids played a role during metamorphism. We studied the petrology and chemistry of phosphates and feldspar in petrologic type 4–6 L chondrites, to examine the role of metasomatic fluids, and to compare metamorphic conditions across all three OC groups. Apatite in L chondrites is Cl‐rich, similar to H chondrites, whereas apatite in LL chondrites has lower Cl/F ratios. Merrillite has similar compositions among the three chondrite groups. Feldspar in L chondrites shows a similar equilibration trend to LL chondrites, from a wide range of plagioclase compositions in petrologic type 4 to a homogeneous albitic composition in type 6. This contrasts with H chondrites which have homogeneous albitic plagioclase in petrologic types 4–6. Alkali‐ and halogen‐rich and likely hydrous metasomatic fluids acted during prograde metamorphism on OC parent bodies, resulting in albitization reactions and development of phosphate minerals. Fluid compositions transitioned to a more anhydrous, Cl‐rich composition after the asteroid began to cool. Differences in secondary minerals between H and L, LL chondrites can be explained by differences in fluid abundance, duration, or timing of fluid release. Phosphate minerals in the regolith breccia, Kendleton, show lithology‐dependent apatite compositions. Bulk Cl/F ratios for OCs inferred from apatite compositions are higher than measured bulk chondrite values, suggesting that bulk F abundances are overestimated and that bulk Cl/F ratios in OCs are similar to CI.  相似文献   

7.
Abstract— The mineralogy and composition of six Mongolian meteorites were studied in some detail. Previously, only limited information existed about these rocks, and some were still unclassified. The six meteorites include three ordinary chondrites and three irons. The ordinary chondrite Adzhi-Bogdo (stone) is a regolith breccia (LL3–6) containing various types of clasts (some of foreign origin) embedded within a fine-grained clastic matrix. Tugalin Bulen (H6) and Noyan Bogdo (L6) meteorites are typical, well-metamorphosed ordinary chondrites. Adzhi-Bogdo (iron) has to be regarded as an IA iron meteorite like Campo del Cielo or Canyon Diablo; although the sample studied had been heated to about 900 °C–950 °C some time in the past, thus eradicating all original structural elements. Manlai is structurally closely related to the IIC iron meteorites; but based on its chemistry, which does not fit into this group, it is suggested that Manlai is an anomalous iron meteorite. The third iron, Sargiin Gobi, is certainly a normal member of the IA iron meteorites. The concentrations and isotopic compositions of He, Ne, and Ar were measured for all meteorites and their gas retention ages and exposure ages are discussed.  相似文献   

8.
Abstract– We have carried out a study of feldspar compositions in a suite of H and LL ordinary chondrites, of petrologic types 4, 5, and 6, in order to examine the process of recrystallization and equilibration of feldspar as the degree of metamorphism increases. In the H chondrites, there is little variation in feldspar compositions among the petrologic types, suggesting that homogenization of chondrule mesostasis, from which feldspar is presumed to have crystallized, occurred before feldspar crystallization began. The LL chondrites we studied are more complex. In Bjurböle (L/LL4), plagioclase in individual relict chondrules has distinct compositions, with a range of An/Ab ratios and low Or contents. This heterogeneity is most likely attributable to original compositional heterogeneity among chondrule mesostases: localized recrystallization of mesostasis must have occurred before diffusional equilibration took place. In Tuxtuac (LL5), the An/Ab ratio of plagioclase is more homogeneous, and plagioclase includes a significant Or component. In addition, we observe what appears to be exsolution of K‐feldspar from albitic host grains. In Saint Séverin (LL6), the An/Ab ratio of plagioclase is homogeneous, but plagioclase compositions show a range of Or contents, corresponding to a patchy distribution of K in individual feldspar grains. The observations in these LL chondrites are difficult to interpret with a simple model of progressive equilibration with increasing petrologic type. We suggest that the current criteria for assigning petrologic types are poorly defined: it is possible that the assigned petrologic types of these chondrites do not correlate with their peak temperatures. We propose that feldspar compositions might record conditions during the heating stage of metamorphism, and that the early stages of metamorphism may have occurred in the presence of fluids, rather than under the dry conditions that are commonly assumed.  相似文献   

9.
The brecciation and shock classification of 2280 ordinary chondrites of the meteorite thin section collection at the Institut für Planetologie (Münster) has been determined. The shock degree of S3 is the most abundant shock stage for the H and LL chondrites (44% and 41%, respectively), while the L chondrites are on average more heavily shocked having more than 40% of rocks of shock stage S4. Among the H and LL chondrites, 40–50% are “unshocked” or “very weakly shocked.” Considering the petrologic types, in general, the shock degree is increasing with petrologic type. This is the case for all meteorite groups. The main criteria to define a rock as an S6 chondrite are the solid‐state recrystallization and staining of olivine and the melting of plagioclase often accompanied by the formation of high‐pressure phases like ringwoodite. These characteristics are typically restricted to local regions of a bulk chondrite in or near melt zones. In the past, the identification of high‐pressure minerals (e.g., ringwoodite) was often taken as an automatic and practical criterion for a S6 classification during chondrite bulk rock studies. The shock stage classification of many significantly shocked chondrites (>S3) revealed that most ringwoodite‐bearing rocks still contain more than 25% plagioclase (74%). Thus, these bulk chondrites do not even fulfill the S5 criterion (e.g., 75% of plagioclase has to be transformed into maskelynite) and have to be classified as S4. Studying chondrites on typically large thin sections (several cm2) and/or using samples from different areas of the meteorites, bulk chondrites of shock stage S6 should be extremely rare. In this respect, the paper will discuss the probability of the existence of bulk rocks of S6.  相似文献   

10.
Abstract— The Meteoritical Bulletin No. 80 lists data for 178 meteorites. Noteworthy are 3 HED meteorites (ALH 88102, Hammadah al Hamra (HaH) 059, and Monticello); 3 ureilites (HaH 064, HaH 126, and Dar al Gani (DaG) 084); 4 irons (Baygorria (IAB), Ste. Croix (IIIAB), Sargiin Gobi (IAB), and Tarahumara (IIE)); an unusual metal-rich meteorite (Vermillion); 8 carbonaceous chondrites (HaH 043 (C03), HaH 073 (C4), DaG 055 (C3) and 5 C03 chondrites (probably paired) from DaG); an R chondrite (DaG 013); and 6 unequilibrated ordinary chondrites (ALH 88105 (L3), Camel Donga 016 (L3), HaH 093 (LL3.9), HaH 096 (LL(L)3), Richfield (LL3.7), and Sarir Quattusah (LL(L)3)). Three recent falls of ordinary chondrites (Coleman (LL5), St. Robert (H5), and Tsukuba (H5-6)) are described.  相似文献   

11.
In Lindsley's thermometry, a revised sequence of calculation of components is proposed for clinopyroxene, in which kosmochlor component is added. Temperatures obtained for the components calculated by the revised method are about 50 °C lower than those obtained for the components calculated by the Lindsley's original method and agree well with temperatures obtained from orthopyroxenes. Ca‐partitioning between clino‐ and orthopyroxenes is then thought to be equilibrated in types 5 to 7 ordinary chondrites. The temperatures for Tuxtuac (LL5), Dhurmsala (LL6), NWA 2092 (LL6/7), and Dho 011 (LL7) are 767–793°, 818–835°, 872–892°, and 917–936°C, respectively, suggesting that chondrites of higher petrographic types show higher equilibrium temperatures of pyroxenes. The regression equations which relate temperature and Wo and Fs contents in the temperature‐contoured pyroxene quadrilateral of 1 atm of Lindsley (1983) are also determined by the least squares method. It is possible to reproduce temperatures with an error less than 20 °C (2SE) using the regression equations.  相似文献   

12.
We present here the Raman spectroscopic study of silicate and carbonaceous minerals in three ordinary chondrites with the aim to improve our understanding the impact process including the peak metamorphic pressures present in carbon‐bearing ordinary chondites. The characteristic Raman vibrational peaks of olivines, pyroxenes, and plagioclase have been determined on three ordinary chondrites from India, Dergaon (H5), Mahadevpur (H4/5), and Kamargaon (L6). The Raman spectra of these meteorite samples show the presence of nanodiamonds at 1334–1345 cm?1 and 1591–1619 cm?1. The full‐width at half maximum (FWHM) of Raman peaks for Mahadevpur and Dergaon reflect the nature of shock metamorphism in these meteorites. The frequency shift in Raman spectra might be because of shock effects during the formation of the diamond/graphite grains.  相似文献   

13.
Abstract— Modal mineralogies of individual, equilibrated (petrologic type 4–6 L and LL chondrites have been measured using an electron microprobe mapping technique, and the chemical compositions of coexisting silicate minerals have been analyzed. Progressive changes in the relative abundances and in the molar Fe/Mn and Fe/Mg ratios of olivine, low‐Ca pyroxene, and diopside occur with increasing metamorphic grade. Variations in olivine/low‐Ca pyroxene ratios (Ol/Px) and in metal abundances and compositions with petrologic type support the hypothesis that oxidation of metallic iron accompanied thermal metamorphism in ordinary chondrites. Modal Ol/Px ratios are systematically lower than normative Ol/Px ratios for the same meteorites, suggesting that the commonly used C.I.P.W. norm calculation procedure may not adequately estimate silicate mineral abundances in reduced chondrites. Ol/Px ratios calculated from visible and near‐infrared (VISNIR) reflectance spectra of the same meteorites are not in agreement with other Ol/Px determinations, possibly because of spectral complexities arising from other minerals in chondrites. Characteristic features in VISNIR spectra are sensitive to the proportions and compositions of olivine and pyroxenes, the minerals most affected by oxidative metamorphism. This work may allow spectral calibration for the determination of mineralogy and petrologic type, and thus may be useful for spectroscopic studies of asteroids.  相似文献   

14.
Abstract– Queen Alexandra Range (QUE) 94204, an enstatite achondrite, is a coarse‐grained, highly recrystallized, chondrule‐free and unbrecciated rock dominated (about 70 vol%) by anhedral, equigranular crystals of orthoenstatite of nearly endmember composition (Fs0.1–0.4, Wo0.3–0.4) with interstitial plagioclase, kamacite, and troilite. Abundance of approximately 120° triple junctions and the close association of metal–sulfide and plagioclase‐rich melts indicate that QUE 94204 has undergone limited partial melting with inefficient melt extraction. Mineral chemistry indicates a high degree of thermal metamorphism. Kamacite in QUE 94204 contains between 2.09 and 2.55 wt% Si, similar to highly metamorphosed EL chondrites. Plagioclase has between 4.31 and 6.66 wt% CaO, higher than other E chondrites but closer in composition to plagioclase from metamorphosed EL chondrites. QUE 94204 troilite contains up to 2.55 wt% Ti, consistent with extensive thermal metamorphism of an E chondrite‐like precursor. Results presented in this study indicate that QUE 94204 is the result of low degree, (about 5–20 vol%, probably toward the lower end of this range) partial melting of an E chondrite protolith. Textural and chemical evidence suggests that during the metamorphism of QUE 94204, melts formed first at the Fe,Ni‐FeS cotectic near approximately 900 °C, followed by plagioclase‐pyroxene silicate partial melts near approximately 1100 °C. Neither the Fe,Ni‐FeS nor the plagioclase‐pyroxene melts were efficiently segregated or extracted. QUE 94204 belongs to a grouplet of similar “primitive enstatite achondrites” that are analogous to the acapulcoites‐lodranites, but that have resulted from the partial melting of an E chondrite‐like protolith.  相似文献   

15.
Here, the petrological features of numerous primitive achondrites and highly equilibrated chondrites are evaluated to review and expand upon our knowledge of the chondrite–achondrite transition, and primitive achondrites in general. A thermodynamic model for the initial silicate melting temperature and progressive melting for nearly the entire known range of oxidation states is provided, which can be expressed as Tm = 0.035Fa2?3.51Fa + 1109 (in °C, where Fa is the proportion of fayalite in olivine). This model is then used to frame a discussion of textural and mineralogical evolution of stony meteorites with increasing temperature. We suggest that the metamorphic petrology of these meteorites should be based on diffusive equilibration among the silicate minerals, and as such, the chondrite–achondrite transition should be defined by the initial point of silicate melting, not by metal–troilite melting. Evidence of silicate melting is preserved by a distinctive texture of interconnected interstitial plagioclase ± pyroxene networks among rounded olivine and/or pyroxene (depending on ?O2), which pseudomorph the former silicate melt network. Indirectly, the presence of exsolution lamellae in augite in slowly cooled achondrites also implies that silicate melting occurred because of the high temperatures required, and because silicate melt enhances diffusion. A metamorphic facies series is defined: the Plagioclase Facies is equivalent to petrologic types 5 and 6, the Sub‐calcic Augite Facies is bounded at lower temperatures by the initiation of silicate melting and at higher temperatures by the appearance of pigeonite, which marks the transition to the Pigeonite Facies.  相似文献   

16.
Abstract— Infrared diffuse reflectance spectra were measured for several thermally metamorphosed carbonaceous chondrites with CI-CM affinities which were recently found from Antarctica. Compared with other CI or CM carbonaceous chondrites, these Antarctic carbonaceous chondrites show weaker absorption bands near 3 μm due to hydrous minerals, and weaker absorption bands near 6.9 μm due to carbonates, interpreted as thermal metamorphic features. These absorption bands also disappear in the spectra of samples of the Murchison (CM) carbonaceous chondrite heated above 500 °C, implying that the metamorphic temperatures of the Antarctic carbonaceous chondrites considered here were higher than about 500 °C. Model calculations were performed to study thermal metamorphism of carbonaceous chondrites in a parent body internally heated by the decay of the extinct nuclide 26Al. The maximum temperature of the interior of a body more than 20 km in radius is 500–700 °C for the bulk Al contents of CI and CM carbonaceous chondrites, assuming a ratio of 26Al/27Al = 5 × 10?6 which has been previously proposed for an ordinary-chondrite parent body. The metamorphic temperatures experienced by the Antarctic carbonaceous chondrites considered here may be attainable by an internally heated body with an 26Al/27Al ratio similar to that inferred for an ordinary-chondrite parent body.  相似文献   

17.
Abstract— Geothermometry based on the compositions of clinopyroxenes in type 6 and 7 LL chondrites gives coherent results, but the estimated temperatures from coexisting orthopyroxenes are consistently lower than for clinopyroxenes. Orthopyroxene thermometry is suspect because of compositional effects of polymorphic inversions and/or unknown kinetic factors. Lack of clinopyroxene equilibration precludes accurate estimation of peak metamorphic temperatures for type 4 and 5 chondrites. There is no apparent correlation between Al content (a pressure-dependent variable) and equilibration temperature in chondritic pyroxenes. This finding, which is at variance with a previously published conclusion that temperature and pressure are correlated in metamorphosed chondrites, may have important implications for asteroid thermal models.  相似文献   

18.
Abstract A suite of eight unshocked equilibrated H-chondrites ranging from petrographic type 4 to 6 (La Villa, Raguli, FRO 90076, Miami, FRO 90049, Estacado, FRO 90156 and Acfer 314) was selected for a systematic study of orthopyroxene cation ordering temperatures. The closure temperatures of the Fe-Mg exchange lie within the 384 ± 48 °C to 480 ± 28 °C range, regardless of the petrographic type. Data suggests that metamorphosed H-chondrites share a similar thermal evolution close to 380–480 °C. Indeed, this indicates that H4, H5 and H6 chondrites were located in petrogenetic environments characterized by similar temperature-time conditions when cooling through the above temperature interval.  相似文献   

19.
Abstract— iron-magnesium ordering was determined in orthopyroxenes from two suites of unshocked (shock stage S1, S2), equilibrated L- and LL-chondrites (10 grains from 5 meteorites and 7 grains from 4 meteorites, respectively) by means of single crystal x-ray diffraction (SCXRD). This study, together with a previous investigation of H-chondrites (13 grains from 8 meteorites), produces an internally consistent data set about the thermal record in equilibrated ordinary chondrites (EOCs). The major feature outlined by cation ordering in EOC orthopyroxenes is that H-, L- and LL-chondrites share a common low-temperature record, that is, a common range of similar cooling rates in the 340–480 °C interval for the petrographic types 4 to 6. As a consequence, the thermal evolution of EOCs consists of at least two subsolidus stages; the first stage occurred at temperatures >480 °C where petrographic types were established in distinct environments; the second stage occurred when EOCs, irrespective of chemical class and type, cooled through 340–480 °C in environments characterized by close temperature-time conditions. Quantitative estimates of minimal cooling rates for EOCs range from a few °C/ka to ~102°C/ka in the 340–480 °C interval. Possibly, final ordering was attained in environments where moderate radiative heat-loss was possible and, thus indicating shallow burial depths in the parent body.  相似文献   

20.
We have sampled sulfide grains from one pristine CM2 chondrite (Yamato [Y‐] 791198), one thermally metamorphosed CM2 chondrite (Y‐793321), and two anomalous, metamorphosed CM/CI‐like chondrites (Y‐86720 and Belgica [B‐] 7904) by the focused ion beam (FIB) technique and studied them by analytical transmission electron microscopy (TEM). Our study aims at exploring the potential of sulfide assemblages and microstructures to decipher processes and conditions of chondrite petrogenesis. Complex exsolution textures of pyrrhotite (crystallographic NC‐type with ≈ 6), troilite, and pentlandite occur in grains of Y‐791198 and Y‐793321. Additionally, polycrystalline 4C‐pyrrhotite‐pentlandite‐magnetite aggregates occur in Y‐791198, pointing to diverse conditions of gas–solid interactions in the solar nebula. Coarser exsolution textures of Y‐793321 grains indicate higher long‐term average temperatures in the <100 °C range compared to Y‐791198 and other CM chondrites. Sulfide mineralogy of Y‐86720 and B‐7904 is dominated by aggregates of pure troilite and metal, indicating metamorphic equilibration at sulfur fugacities (fS2) of the iron‐troilite buffer. Absence of magnetite in equilibrium with sulfide and metal in Y‐86720 indicates higher peak temperatures compared with B‐7904, in which coexistence of troilite, metal, and magnetite constrains metamorphic temperature to less than 570 °C. NC‐pyrrhotite occurs in both meteorites as nm‐wide rims on troilite grains and, together with frequent anhydrite, indicates a retrograde metamorphic stage at higher fS2 slightly above the fayalite‐magnetite‐quartz‐pyrrhotite buffer. Fine‐grained troilite‐olivine intergrowths in both meteorites suggest the pre‐metamorphic presence of tochilinite‐serpentine interlayer phases, pointing to mineralogical CM affinity. Pseudomorphs after euhedral pyrrhotite crystals in Y‐86720 in turn suggest CI affinity as do previously published O isotopic data of both meteorites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号