首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Commonly, geomagnetic prospection is performed via scalar magnetometers that measure values of the total magnetic intensity. Recent developments of superconducting quantum interference devices have led to their integration in full tensor magnetic gradiometry systems consisting of planar‐type first‐order gradiometers and magnetometers fabricated in thin‐film technology. With these systems measuring directly the magnetic gradient tensor and field vector, a significantly higher magnetic and spatial resolution of the magnetic maps is yield than those produced via conventional magnetometers. In order to preserve the high data quality in this work, we develop a workflow containing all the necessary steps for generating the gradient tensor and field vector quantities from the raw measurement data up to their integration into high­resolution, low­noise, and artefactless two‐dimensional maps of the magnetic field vector. The gradient tensor components are processed by superposition of the balanced gradiometer signals and rotation into an Earth‐centred Earth‐fixed coordinate frame. As the magnetometers have sensitivity lower than that of gradiometers and the total magnetic intensity is not directly recorded, we employ Hilbert‐like transforms, e.g., integration of the gradient tensor components or the conversion of the total magnetic intensity derived by calibrated magnetometer readings to obtain these values. This can lead to a better interpretation of the measured magnetic anomalies of the Earth's magnetic field that is possible from scalar total magnetic intensity measurements. Our conclusions are drawn from the application of these algorithms on a survey acquired in South Africa containing full tensor magnetic gradiometry data.  相似文献   

2.
The principle of optical pumping allows the design of magnetometers with high sensitivity. When mapping the field of the total magnetic force, it is no longer possible to make full use of the accuracy of the instruments because the accuracy of the reduction of the diurnal variation is limited. By simultaneously recording with two instruments in different altitudes, the vertical gradient can be measured which doe's not depend on the time variation of the magnetic field. Therefore, the gradiometer seems to be a more adequate tool for oil exploration than the magnetometer. It is investigated in this article whether the results of this gradiometer or the measurements of the total magnetic field by the high sensitive magnetometer are more useful in oil exploration. The article comes to the conclusion that for most problems of oil exploration the total magnetic field is a more valuable unit than the vertical gradient measured directly by the gradiometer. The total magnetic field allows a better investigation of the tectonics than the vertical gradient. The apparent advantages of the gradiometer claimed by its supporters are mainly based on inconsistent mathematical concepts.  相似文献   

3.
Source/body edge detection is a common feature in the processing and interpretation of potential field data sets. A wide range of spatial derivatives is available to enhance the information contained in the basic data. Here the ability of these procedures to assist with the mapping interpretation of non‐potential field data is considered. The study uses airborne electromagnetic (conductivity) data but also provides a general context for other conductivity/resistivity data, provided the non‐potential field nature of active and thus spatially‐focused, measurements is acknowledged. The study discusses and demonstrates the application of a range of common spatial derivative procedures, including the analytic signal and upward continuation, to both magnetic and conductivity data. The ability of the tilt derivative to provide enhanced mapping of conductivity data is considered in detail. Tilt and its associated functions are formed by taking combinations of vertical and horizontal derivatives of the data set. Theoretical forward modelling studies are first carried out to assess the performance of the tilt derivative in relation to the detection and definition of concealed conductivity structure. The tilt derivative embodies automatic gain control that normalizes the detection and definition of both weak and strong conductivity gradients across an appropriate subsurface depth range. The use of high‐order spatial derivatives inevitably results in a degree of noise (cultural perturbation) amplification that is survey and technique specific. Both of these aspects are considered using practical case studies of jointly obtained magnetic and conductivity data at a variety of spatial scales.  相似文献   

4.
卫星重力梯度测量与地球引力场的精度研究   总被引:1,自引:0,他引:1  
本文根据地球引力位的球谐函数展开式,利用重力梯度张量各分量导出了位系数模型的精度估计公式.从三方面进行了研究:假定卫星重力梯度仪测量精度,探讨用重力梯度数据确定地球重力场模型的精度;求出位系数模型和大气阻力引起的重力梯度卫星的轨道误差;最后,反求轨道误差和位系数误差对重力梯度测量值的影响.数值计算表明,与地面技术和常规卫星方法相比,卫星梯度测量可使重力场模型的精度至少提高3-5倍;利用重力梯度张量全分量求得的重力值精度比单用径向分量Vrr的结果提高40%以上;若仅顾及位系数模型和大气阻力误差,则轨道误差对梯度测量值的影响△Vi3(i=3,2,1)至少可分别在1/4和1/3弧圈内达到△Vi3≤σ(仪器精度).  相似文献   

5.
This study considers the three-dimensional (3D) modelling of compact, at-surface conductive bodies on frequency domain airborne electromagnetic (AEM) survey data. The context is the use of AEM data for environmental and land quality applications. The 3D structures encountered are typically conductive, of limited thickness (<20 m) and form ‘point’ source locations carrying potential environmental risk. The scale of such bodies may generate single-profile, ‘bulls-eye’ anomalies. In attempts to recover geological information, such anomalies may be considered to represent noise. In environmental AEM, the correct interpretation of such features is important. The study uses a combination of theoretical models and trial-fixed-wing survey data obtained in populated areas of the UK. Scale issues are discussed in terms of the volumetric footprints of the induced electric field generated by systems flown at both low and high elevation. One of the primary uses of AEM survey data lies in the assessment of conductivity maps. These are typically obtained using one-dimensional (1D) conductivity models at individual measurement points. In order to investigate the limitations of this approach, 3D modelling of conductive structures with dimensions less than 350×350 m and thicknesses extending to 20 m has been carried out. A 1D half space inversion of the data obtained at each frequency is then used to assess the behaviour of the spatial information. The results demonstrate that half space conductivity values obtained over compact 3D targets generally provide only apparent conductivity results. For thin, at-surface bodies, conductivity values are biased to lower values than the true conductivity except at high frequency. The spatial perturbation to both coupling ratios and 1D conductivity models can be laterally extensive. The results from 3D modelling indicate that the use of horizontal derivatives applied to the conductivity models offers enhanced edge detection. The practical application of such derivatives to both regional- and local-scale survey data is presented.. The special case of a near-surface, metallic pipeline has been modelled. The problem constitutes an inductive limit (current gathering) response in which the perturbation is largely confined to the in-phase coupling ratios. The main perturbations, in data and conductivity models, are within about 40 m of each side of the pipeline. The maximum perturbation to the conductivity model is only a factor of 1.5 above background. Detailed survey data across a former compact landfill (about 100×100 m) are used to compare the model behaviour predicted by the 3D modelling with survey results. The survey, conducted at two separate altitudes, provides a demonstration of 3D effects on 1D survey models as a function of frequency and elevation. Although the nature of the landfill materials and their location are not known precisely, the mapping information appears realistic.  相似文献   

6.
The past few years have witnessed significant advances and unparalleled interest in gravity gradiometer instrument technology as well as new deployment scenarios for various applications. Gravity gradiometry is now routinely considered as a viable component for resource exploration activities as well as being deployed for global information gathering. Since the introduction of the torsion balance in the 1890s, it has been recognized that gravity gradient information is valuable – yet difficult and time-consuming to obtain. The recent acceptance and routine use of airborne gravity gradiometry for exploration has inspired many new technology developments. This paper summarizes advances in gravity gradient sensor development and also looks at deployment scenarios and gradiometer systems that have been successfully fielded. With projected improved system performance on the horizon, new challenges will also come to the forefront. Included in these challenges are aspects of instrument and system intrinsic noise, vehicle dynamic noise, terrain noise, geologic noise and other noise sources. Each of these aspects is briefly reviewed herein and recommendations for improvements presented.  相似文献   

7.
航磁垂直梯度调整ΔT水平方法研究   总被引:2,自引:1,他引:1       下载免费PDF全文
骆遥  王平  段树岭  程怀德 《地球物理学报》2012,55(11):3854-3861
使用中国自主研发、具有完全自主知识产权的航磁全轴梯度勘查系统首次试飞获得的资料,利用航磁垂直梯度数据进行ΔT水平调整研究,讨论了航磁及航磁梯度资料水平调整的原则,提出梯度资料长波水平的调平方法.对经长波水平调整后的垂直梯度数据进行位场转换,获得不受地磁场随时间变化影响的磁异常,并通过恢复磁异常的长波信息,实现了ΔT的水平调整和增强.实际资料处理表明调平过程具有物理意义、效果明显.  相似文献   

8.
Only with satellites it is possible to cover the entire Earth densely with gravity field related measurements of uniform quality within a short period of time. However, due to the altitude of the satellite orbits, the signals of individual local masses are strongly damped. Based on the approach of Petrovskaya and Vershkov we determine the gravity gradient tensor directly from the spherical harmonic coefficients of the recent EIGEN-GL04C combined model of the GRACE satellite mission. Satellite gradiometry can be used as a complementary tool to gravity and geoid information in interpreting the general geophysical and geodynamical features of the Earth. Due to the high altitude of the satellite, the effects of the topography and the internal masses of the Earth are strongly damped. However, the gradiometer data, which are nothing else than the second order spatial derivatives of the gravity potential, efficiently counteract signal attenuation at the low and medium frequencies. In this article we review the procedure for estimating the gravity gradient components directly from spherical harmonics coefficients. Then we apply this method as a case study for the interpretation of possible geophysical or geodynamical patterns in Iran. We found strong correlations between the cross-components of the gravity gradient tensor and the components of the deflection of vertical, and we show that this result agrees with theory. Also, strong correlations of the gravity anomaly, geoid model and a digital elevation model were found with the diagonal elements of the gradient tensor.  相似文献   

9.
Inversion of band-limited TEM responses   总被引:2,自引:0,他引:2  
It is shown that the electromagnetic (EM) spectrum is characterized by strong amplitude-modulated transmitters operating in the target bandwidth of transient electromagnetic (TEM) measurements. As these transmitters cause significant noise in TEM soundings, it is mandatory to band-limit the input signals to improve the signal-to-noise ratio and thereby the depth of exploration. Band-limitation will distort the TEM responses, which leads to erroneous inversion results if the applied low-pass filters are not accounted for in the inversion scheme. We incorporate the low-pass filters in the inversion scheme and test the inversion approach on theoretical and field data. Inversion of band-limited theoretical responses results in recovery of erroneous resistivity models if the filters are not included in the inversion scheme. By contrast, inversion of band-limited theoretical and field data, for which the applied low-pass filters are included in the inversion scheme, leads to recovery of similar resistivity models, independent of the applied cut-off frequencies.  相似文献   

10.
基于加速度计重力梯度仪分析与设计   总被引:1,自引:1,他引:0       下载免费PDF全文
目前,重力梯度仪成为重力仪器的主要研究方向,国内尚无此种仪器问世.本文利用加速度计在旋转载体中测量公式,推导出基于加速度计重力梯度仪测量公式.分析利用此公式进行重力梯度测量时需要注意的问题.然后以美国Bell/Aero公司生产的重力梯度仪为例,导出旋转加速度计式重力梯度仪测量结果.最后总结出基于加速度计重力梯度仪设计过程中存在的各种误差,并给出解决这些问题的方案.为国内重力梯度仪的研究工作提供理论依据.  相似文献   

11.
罗鸣  李予国  李刚 《地球物理学报》2016,59(11):4349-4359
本文提出了一维垂直各向异性(VTI)介质倾斜偶极源频率域海洋可控源电磁(CSEM)资料高斯-牛顿反演方法.在电阻率各向异性介质水平偶极源和垂直偶极源海洋CSEM正演算法的基础上,利用欧拉旋转方法,实现了各向异性介质倾斜偶极源海洋CSEM正演算法.海洋可控源电磁场关于地下介质横向电阻率(ρ_h)和垂向电阻率(ρ_v)的偏导数(即灵敏度矩阵)是解析计算的,结合垂直各向异性介质横向电阻率与垂向电阻率的关系,将各向异性率融入到正则化因子选择中,实现了正则化因子的自适应选择.理论模型合成数据和实测资料反演算例表明,我们提出的反演方法能够较准确的重构海底围岩和基岩的各向异性电阻率以及高阻薄层的埋藏深度、厚度和垂向电阻率.  相似文献   

12.
徐世刚  刘洋 《地球物理学报》2018,61(7):2950-2968
传统有限差分系数是通过泰勒级数展开求取的,这样导致所计算的频散曲线在大波数区域会产生较强的数值误差.针对二阶空间偏导数的显式有限差分离散,本文发展了一种新的优化差分系数方法:首先将泰勒级数展开与多点采样方法结合应用于空间频散关系,基于最大范数建立直观有效的优化目标函数,采用Remez算法求解该目标函数,从而获得最优化差分系数.利用优化有限差分方法求解三维垂直对称轴横向各向同性(VTI)介质中的声波和弹性波方程.另外,本文将二维混合吸收边界条件推广到三维VTI介质中,用于吸收人工截断边界反射;基于各向异性特征,合理调整了边界区域的速度值来提高吸收效果.考虑到三维情况下计算效率的问题,本文波场外推过程中采用图形处理器(GPU)取代传统的中央处理器(CPU).数值精度分析表明,相比较于传统的泰勒级数展开方法,优化有限差分方法在大波数区域对频散误差的压制效果更明显.在三维均匀和修改的Hess VTI模型中的数值模拟实验证明了本文方法具有更高的精度与效率,混合吸收边界条件在三维VTI介质中具有良好的边界吸收效果.  相似文献   

13.
程一  李桐林  周帅 《地球物理学报》2022,65(3):1125-1134
航空重力梯度测量技术可快速、高效地完成面积性重力梯度数据采集工作,在矿产资源勘查、军事目标探测等诸多科学领域具有广泛的应用.而航空重力梯度动态测量误差补偿方法是重力梯度动态测量数据处理中的一项重要工作.本文首先对旋转式重力梯度仪误差传递机理进行了定量分析,在综合考虑重力梯度仪系统非理想因素相互作用的情况下,建立了多种非...  相似文献   

14.
Very low frequency electromagnetic (EM) methods using VLF transmitters have found many applications in subsurface geophysical investigations. Surface measurements involving both the vertical component of the magnetic field (VLF-EM or VLF-Z) and of the apparent resistivity (VLF-R) are increasingly common. Although extensive VLF data sets have been successfully used for mapping purposes, modelling and interpretation techniques which asess the third (i.e. depth) dimension appear limited.Given a profile of VLF-R measurements the main purpose of the present study is to demonstrate an automatic method for the construction of a resistivity cross-section. The technique used is one of a new generation of regularised inversion methods. These techniques attempt to overcome the problem of equivalence/non-uniqueness in EM sounding data by constructing the resistivity distribution with the minimum amount of structure that fits the data.VLF data represent a special case of plane-wave EM sounding in that they conform, in practice, to a single-frequency technique. This fact imposes a limitation in the amount of vertical resolution that we can expect using such data. In the case of two-dimensional modelling and inversion, resolution through the cross-section is a resultant attribute from both vertical and lateral resistivity gradients within the subsurface. In order to provide insight into the practical application of regularised inversion techniques to VLF data, both synthetic and field examples are considered. Both sets of examples are primarily concerned with VLF data applied to near-surface fault mapping where the main aim is to assess the location, dip and depth extent of conductive subsurface features.  相似文献   

15.
The errors of measurements of vertical geomagnetic gradients at altitudes of 20–40 km, using a balloon magnetic gradiometer with a 6-km-long measuring base oriented along gravity, have been studied in the work. The errors related to the deviation of the measuring base position relative to the vertical have been studied during the real balloon flight with the help of the navigation GPS receivers. The deviations of the measuring base within 5°, which can sometimes reach 15°, have been obtained. This results in a decrease in the magnetic gradient measurement accuracy due to the errors introduced in the specification of the normal magnetic field used to detect magnetic anomalies. To eliminate this error, a GPS receiver was built in each magnetometer in order to observe magnetometers during synchronous measurements and to correct the measurements for the normal magnetic field. It has been indicated that the effect of deviations of the measuring base position on the results is not more than 2% of the measured value at such organization of a gradiometer.  相似文献   

16.
Extending electromagnetic methods to map coastal pore water salinities   总被引:1,自引:0,他引:1  
The feasibility of mapping pore water salinity based on surface electromagnetic (EM) methods over land and shallow marine water is examined in a coastal wetland on Tampa Bay, Florida. Forward models predict that useful information on seabed conductivity can be obtained through <1.5 m of saline water, using floating EM-31 and EM-34 instruments from Geonics Ltd. The EM-31 functioned as predicted when compared against resistivity soundings and pore water samples and proved valuable for profiling in otherwise inaccessible terrain due to its relatively small size. Experiments with the EM-34 in marine water, however, did not reproduce the theoretical instrument response. The most effective technique for predicting pore water conductivities based on EM data entailed (1) computing formation factors from resistivity surveys and pore water samples at representative sites and (2) combining these formation factors with onshore and offshore EM-31 readings for broader spatial coverage. This method proved successful for imaging zones of elevated pore water conductivities/salinities associated with mangrove forests, presumably caused by salt water exclusion by mangrove roots. These zones extend 5 to 10 m seaward from mangrove trunks fringing Tampa Bay. Modeling indicates that EM-31 measurements lack the resolution necessary to image the subtle pore water conductivity variations expected in association with diffuse submarine ground water discharge of fresher water in the marine water of Tampa Bay. The technique has potential for locating high-contrast zones and other pore water salinity anomalies in areas not accessible to conventional marine- or land-based resistivity arrays and hence may be useful for studies of coastal-wetland ecosystems.  相似文献   

17.
Soil salinization of the reclaimed tidelands is problematic. Therefore, there is a need to characterize the spatial variability of soil salinity associated with soil moisture and other soil properties across the reclaimed tidelands. One approach is the use of easily-acquired ancillary data as surrogates for the arduous conventional soil sampling. In a reclaimed coastal tideland in the south of Hangzhou Gulf, backscattering coefficient (σ0) from remotely sensed ALOS/PALSAR radar imagery (HH polarization mode) and apparent soil electrical conductivity (ECa) from a proximally sensed EM38 were used to indicate the spatial distribution of soil moisture and salinity, respectively. After that, response surface methodology (RSM) was employed to determine an optimal set of 12 soil samples using spatially referenced σ0 and ECa data. Spatial distributions of three soil chemical properties [i.e. soil organic matter (SOM), available nitrogen (AN), and available potassium (AK)] were predicted using inverse distance weighted method based on the 12 samples and were then compared with the predictions generated using 42 samples obtained from a conventional grid sampling scheme. It was concluded that combination of radar imagery and EM induction data can delineate the spatial variability of two key soil properties (i.e. moisture and salinity) across the study area. Besides, RSM-based sampling using radar imagery and EM induction data was highly effective in characterizing the spatial variability of SOM, AN and AK, compared with the conventional grid sampling. This new approach may be used to assist site specific management in precision agriculture.  相似文献   

18.
Shotpoint gathers from conventional reflection seismic surveys contain both reflected and refracted waves. In this study shot records were processed and analyzed, and the data were modeled with reflected, refracted, and reflected-refracted waves to fit the recorded data. The result is a detailed velocity model. The inverse problem for refracted waves was solved by using the Wiechert-Herglotz inversion. A 500-km-long 26-fold reflection seismic line from the Barents Sea, north of Norway, has been investigated. The data show high velocities, multiple reflections, and various types of noise. To test the method a total of 34 shot gathers were analyzed along this line. The aim of the interpretation was to determine the velocity in the seafloor and the near-surface sediments. It is possible to map the vertical as well as the lateral velocity distribution in detail. Depending on the length of the streamer and the velocity gradient in the sediments, the calculated depth varies between 300 and 500 m below the seafloor. These velocities were also compared to the stacking velocities obtained from the reflection seismic data to see how the velocities determined by different methods were related. The velocity distribution in the sediments is one of the key factors in seismic interpretation. The technique discussed in this paper can contribute to velocity information both in the processing and interpretation of seismic data.  相似文献   

19.
位场各阶垂向导数换算的新正则化方法   总被引:3,自引:1,他引:2       下载免费PDF全文
位场垂向导数大量应用于位场数据处理与解释中.当前广泛采用的位场各阶垂向导数换算方法为基于Laplace方程并结合波数域和空间域方法的具有递推特性的ISVD(integrated second vertical derivative)算法.本文在位场垂向导数换算的正则化方法和径向平均功率谱的基础上,提出一种位场各阶垂向导数换算的新正则化方法.新正则化方法仅需通过分析位场径向平均功率谱来确定一个截止波数,即可稳定换算位场各阶垂向导数.理论模型和实测数据实验结果表明:(1)新正则化方法物理意义明确、计算简单,且各阶垂向导数换算的稳定性和精度明显优于ISVD算法;(2)在用新正则化方法求得各阶垂向导数的基础上,利用泰勒级数法可以获得大深度、高精度的位场向下延拓结果.  相似文献   

20.
Induction studies with satellite data   总被引:2,自引:0,他引:2  
The natural variations of the Earth's magnetic field of periods spanning from milliseconds to decades can be used to infer the conductivity-depth profile of the Earth's interior. Satellites provide a good spatial coverage of magnetic measurements, and forthcoming missions will probably allow for observations lasting several years, which helps to reduce the statistical error of the estimated response functions.Two methods are used to study the electrical conductivity of the Earth's mantle in the period range from hours to months. In the first, known as the potential method, a spherical harmonic analysis of the geomagnetic field is performed, and the Q-response, which is the transfer function between the internal (induced) and the external (inducing) expansion coefficients is determined for a specific frequency. In the second approach, known as the geomagnetic depth sounding method, the C-response, which is the transfer function between the magnetic vertical component and the horizontal derivative of the horizontal components, is determined. If one of these transfer functions is known for several frequencies, models of the electrical conductivity in the Earth's interior can be constructed.This paper reviews and discusses the possibilities for induction studies using high-precision magnetic measurements from low-altitude satellites. The different methods and various transfer functions are presented, with special emphasis on the differences in analysing data from ground stations and from satellites. The results of several induction studies with scalar satellite data (from the POGO satellites) and with vector data (from the Magsat mission) demonstrate the ability to probe the Earth's conductivity from space. However, compared to the results obtained with ground data the satellite results are much noisier, which presumably is due to the shorter time series of the satellite studies.The results of a new analysis of data from the Magsat satellite indicate higher resistivity in oceanic areas than in continental areas. However, since this holds for the whole range of periods between 2 and 20 days, this difference probably is not caused purely by differences in mantle conductivity (for which one would expect less difference for the longer periods). Further studies with data from recently launched and future satellites are needed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号