首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
A high-resolution diatom record from core MD99-2275 shows a general paleoceanographic change in the northern North Atlantic since 5000 cal. a B.P. by Principle Component Analysis. Sea surface temperature (SST) increased gradually during 5000 and 3000 cal. a B.P. on the North Icelandic shelf as a result of increasing influence of warm Atlantic water mass from the Irminger Current. It apparently started to decrease since 3000 cal. a B.P. due to the weakening influence of warm water and enhanced influence of the Polar and Arctic water masses from the East Greenland Current and the East Icelandic Current. Abrupt decreases in SST and intrusions of Polar and Arctic water superimposed on the late Holocene cooling trend during 3000-2600, 1300-1000 and 600-200 cal. a B.P.. The paleoceanographic record revealed from core MD99-2275 corresponds well with δ18O record from the GISP2 and is generally consistent with other SST records based on diatom on the North Icelandic shelf. __________ Translated from Marine Science Bulletin, 2008, 27(5) [译自:海洋通报]  相似文献   

2.
An annual (July to June) precipitation reconstruction for the period AD 1760–2010 was developed from a Picea crassifolia regional tree‐ring chronology from two sites in the northern mountainous region of the Hexi Corridor, NW China. This reconstruction explains 52.1% of the actual precipitation variance during the period 1951 to 2010. Spatial correlations with gridded land‐surface data reveal that our reconstruction contains a strong regional precipitation signal for the Hexi Corridor and for the southern margin of the Badain Jaran Desert. Significant spectral peaks were identified at 31.9, 11.1, 8.0, 7.0, 3.2, 2.6 and 2.2 years. A large‐scale comparison indicates that our reconstruction is more consistent with climate records of a Westerly‐dominated Central Asia, and that the Westerlies have a greater impact on the precipitation in this region than the Asian summer monsoon. Our reconstructed precipitation series is significantly correlated with sea‐surface temperature (SST) in the tropical Atlantic Ocean (positive), the tropical Indian Ocean (positive), the western tropical Pacific Ocean (positive), and the western North Pacific Ocean (negative). The spatial correlation patterns between our precipitation reconstruction and SSTs of the Atlantic and Pacific Oceans suggest a connection between regional precipitation variations and the high‐mid‐latitude northern atmospheric circulations (Westerlies and Asian summer monsoon).  相似文献   

3.
We present a high-resolution terrestrial archive of Central American rainfall over the period 100–24 and 8.1–6.5 ka, based on δ18O time series from U-series dated stalagmites collected from a cave on the Pacific Coast of Costa Rica. Our results indicate substantial δ18O variability on millennial to orbital time scales that is interpreted to reflect rainfall variations over the cave site. Correlations with other paleoclimate proxy records suggest that the rainfall variations are forced by sea surface temperatures (SST) in the Atlantic and Pacific Oceans in a fashion analogous to the modern climate cycle. Higher rainfall is associated with periods of a warm tropical North Atlantic Ocean and large SST gradients between the Atlantic and Pacific Oceans. Rainfall variability is likely linked to the intensity and/or latitudinal position of the intertropical convergence zone (ITCZ). Periods of higher rainfall in Costa Rica are also associated with an enhanced sea surface salinity gradient on either side of the isthmus, suggesting greater freshwater export from the Atlantic Basin when the ITCZ is stronger and/or in a more northerly position. Further, wet periods in Central America coincide with high deuterium excess values in Greenland ice, suggesting a direct link between low latitude SSTs, tropical rainfall, and moisture delivery to Greenland. Our results indicate that a stronger tropical hydrological cycle during warm periods and large inter-ocean SST gradients enhanced the delivery of low latitude moisture to Greenland.  相似文献   

4.
《Quaternary Science Reviews》2005,24(14-15):1637-1653
Pollen and oceanographic data from deep ocean core MD95-2039 provide a centennial to millennial scale record of conditions offshore and of the vegetation of north-west Iberia for the period 10–65 ka. The planktonic oxygen isotope record of this core, reflecting predominantly sea surface temperature (SST), shows a pattern of millennial-scale oscillations that is very similar to climatic changes recorded by the Greenland ice core records over the same interval. In turn, tree populations show a pattern of rapid expansions and contractions that follow the pronounced and abrupt isotopic shifts recorded offshore. Through Marine Isotope Stage (MIS) 3, this millennial-scale pattern of vegetation change, alternating between steppe and open woodland, is superimposed on a longer-term pattern of shrinking ericaceous heathland and decreasing size of successive interstadial tree populations. Trees persisted during the Last Glacial Maximum (LGM), at greater abundance than during many of the coldest episodes of MIS 3. This agrees with the marine data which indicate that LGM sea surface temperatures here were significantly warmer than the minima recorded in MIS 3. Our combined marine-terrestrial record, together with data from nearby sequences, provides a stepping stone between terrestrial sequences and the Greenland ice core and North Atlantic marine records. This will permit a better understanding of the behaviour of vegetation across different regions at several scales of climatic forcing.  相似文献   

5.
This study assesses retrospective decadal prediction skill of Sea Surface Temperature (SST) variability in initialized climate prediction experiments (INT) with the Beijing Climate Center Climate System Model (BCC_CSM1.1). Ensemble forecasts were evaluated using observations, and compared to an ensemble of uninitialized simulations (NoINT). The results show as follows: ①The warming trend of global mean SST simulated by the INT runs is closer to the observation than that in the NoINT runs.②The INT runs show high SST prediction skills over broad regions of tropical Atlantic, western tropical Pacific and tropical Indian Oceans. ③ In the North Pacific and the east-central tropical Pacific Ocean, the prediction skills are very weak, and there are few improvements coming from the initialization in the INT runs. ④ In the southern Indian Ocean, the prediction skills of the INT runs are significantly larger than that of the NoINT runs, with the maximum skill at the 3~6 and 4~7 years lead time. The above-mentioned conclusions are similar to the results of other climate models. However, the prediction skill in the North Atlantic Ocean is much lower than that of other models, especially in the subpolar region. The low skills in the Atlantic Ocean may be attributed to the misrepresentation of the lead-lag relationship between the Atlantic meridional heat transport and the SST in the BCC_CSM1.1.  相似文献   

6.
The final effort of the CLIMAP project was a study of the last interglaciation, a time of minimum ice volume some 122,000 yr ago coincident with the Substage 5e oxygen isotopic minimum. Based on detailed oxygen isotope analyses and biotic census counts in 52 cores across the world ocean, last interglacial sea-surface temperatures (SST) were compared with those today. There are small SST departures in the mid-latitude North Atlantic (warmer) and the Gulf of Mexico (cooler). The eastern boundary currents of the South Atlantic and Pacific oceans are marked by large SST anomalies in individual cores, but their interpretations are precluded by no-analog problems and by discordancies among estimates from different biotic groups. In general, the last interglacial ocean was not significantly different from the modern ocean. The relative sequencing of ice decay versus oceanic warming on the Stage 6/5 oxygen isotopic transition and of ice growth versus oceanic cooling on the Stage 5e/5d transition was also studied. In most of the Southern Hemisphere, the oceanic response marked by the biotic census counts preceded (led) the global ice-volume response marked by the oxygen-isotope signal by several thousand years. The reverse pattern is evident in the North Atlantic Ocean and the Gulf of Mexico, where the oceanic response lagged that of global ice volume by several thousand years. As a result, the very warm temperatures associated with the last interglaciation were regionally diachronous by several thousand years. These regional lead-lag relationships agree with those observed on other transitions and in long-term phase relationships; they cannot be explained simply as artifacts of bioturbational translations of the original signals.  相似文献   

7.
Core P1‐003MC was retrieved from 851 m water depth on the southern Norwegian continental margin, close to the boundary between the Norwegian Current (NC) and the underlying cold Norwegian Sea Deep Water. The core chronology was established by using 210Pb measurements and 14C dates, suggesting a sampling resolution of between 2 and 9 yr. Sea‐surface temperature (SST) variations in the NC are reconstructed from stable oxygen isotope measurements in two planktonic Foraminifera species, Neogloboquadrina pachyderma (d.) and Globigerina bulloides. The high temporal resolution of the SST proxy records allows direct comparison with instrumental ocean temperature measurements from Ocean Weather Ship (OWS) Mike in the Norwegian Sea and an air temperature record from the coastal island Ona, western Norway. The comparison of the instrumental and the proxy SST data suggests that N. pachyderma (d.) calcify during summer, whereas G. bulloides calcify during spring. The δ18O records of both species suggest that the past 70 yr have been the warmest throughout the past 600 yr. The spring and summer proxy temperature data suggest differences in the duration of the cold period of the Little Ice Age. The spring temperature was 1–3°C colder throughout most of the period between ca. AD 1400 and 1700, and the summer temperature was 1–2°C colder throughout most of the period between ca. AD 1400 and 1920. Fluctuations in the depth of the lower boundary of the NC have been investigated by examining grain size data and benthic foraminiferal assemblages. The data show that the transition depth of the lower boundary of the NC was deeper between ca. AD 1400 and 1650 than after ca. AD 1750 until present. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

8.
Cyclostratigraphic analysis conducted on a continuous high-resolution marine record from the western most Mediterranean reveals well-identified paleoclimate cycles for the last 20,000 yr. The detrital proxies used (Si/Al, Ti/Al, Zr/Al, Mg/Al, K/Al, Rb/Al) are related to different sediment-transport mechanisms, including eolian dust and fluvial runoff, which involve fluctuations in the atmosphere–hydrosphere systems. These fluctuations are accompanied by changes in marine productivity (supported by Ba/Al) and bottom-water redox conditions (Cu/Al, V/Al, Zn/Al, Fe/Al, Mn/Al, U/Th). Spectral analysis conducted using the Lomb–Scargle periodogram and the achieved significance level implemented with the permutation test allowed us to establish major periodicities at 1300, 1515, 2000, and 5000 yr, and secondary peaks at 650, 1087, and 3000 yr. Some of these cycles also agree with those previously described in the North Atlantic Ocean and circum-Mediterranean records. The periodicities obtained at 2000 and 5000 yr support a global connection with records distributed at high, mid, and low latitudes associated with solar activity, monsoonal regime and orbital forcing. The 1300- and 1515-yr cycles appear to be linked with North Atlantic climate variability and the African monsoon system. Thus, the analyzed record provides evidence of climate cycles and plausible forcing mechanisms coupled with ocean–atmosphere fluctuations.  相似文献   

9.
The reconstruction of the climatic history during the past several hundred years requires a sufficient geographical coverage of combined climate proxy series. Especially in order to identify causal connections between the atmosphere and the ocean, inclusion of marine records into composite climate time series is of fundamental importance. We present two skeletal δ 18O chronologies of coral skeletons of Diploria labyrinthiformis from Bermuda fore-reef sites covering periods in the nineteenth and twentieth centuries and compare them with instrumental temperature data. Both time series are demonstrated to display sea-surface temperature (SST) variability on inter-annual to decadal time scales. On the basis of a specific modern δ 18O vs instrumental SST calibration we reconstruct a time series of SST anomalies between AD 1350 and 1630 covering periods during the Little Ice Age. The application of the coral δ 18O vs temperature relationship leads to estimates of past SST variability which are comparable to the magnitude of modern variations. Parallel to δ 18O chronologies we present time series of skeletal bulk density. Coral δ 18O and skeletal density reveal a strong similarity during Little Ice Age, confirming the reliability of both proxy climate indicators. The past coral records, presented in this study, share features with a previously published climate proxy record from Bermuda and a composite time series of reconstructed Northern Hemisphere summer temperatures. The coral proxy data presented here represent a valuable contribution to elucidate northern Atlantic subtropical climate variation during the past several centuries. Received: 9 November 1998 / Accepted: 13 September 1999  相似文献   

10.
INTERACTION BETWEEN THE ENSO AND ASIAN MONSOON RECORDED IN DASUOPU ICE CORE FROM HIMALAYAS  相似文献   

11.
High‐resolution marine palynological data have been obtained from two very long sediment cores (MD952009 and MD952010) retrieved from the southern Norwegian Sea. The dinoflagellate cyst assemblages show pronounced fluctuations in composition, which correlate strongly with magnetic susceptibility records and also mimic the δ18O signal of the GISP2 Greenland ice‐core. If focusing on the period from 48 to 30 cal. kyr BP, this correlation suggests a paradoxical response of the sea‐surface environments to the atmospheric conditions over Greenland: when the Greenland δ18O signal reflects warm interstadial conditions, the Norwegian Sea depicts cold sea‐surface temperatures with quasi‐perennial sea‐ice cover (based on dinoflagellate cysts). In contrast, when the Greenland δ18O records cold stadial periods, the Norwegian Sea‐surface temperatures are warm (based on dinoflagellate cysts), probably linked to inflow of the North Atlantic Drift. These results, similar in both cores, are contrary to those of previous studies and shed light on a possible decoupling of Norwegian sea surface‐water conditions and atmospheric conditions over Greenland. This decoupling could be linked to an atmosphere–ocean system behaving similar to that which the Northern Hemisphere is experiencing at present, i.e. strongly variable owing to the North Atlantic Oscillation. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

12.
Millennial to submillennial marine oscillations that are linked with the North Atlantic's Heinrich events and Dansgaard–Oeschger cycles have been reported recently from the Alboran Sea, revealing a close ocean-atmosphere coupling in the Mediterranean region. We present a high-resolution record of lithogenic fraction variability along IMAGES Core MD 95-2043 from the Alboran Sea that we use to infer fluctuations of fluvial and eolian inputs to the core site during periods of rapid climate change, between 28,000 and 48,000 cal yr B.P. Comparison with geochemical and pollen records from the same core enables end-member compositions to be determined and to document fluctuations of fluvial and eolian inputs on millennial and faster timescales. Our data document increases in northward Saharan dust transports during periods of strengthened atmospheric circulation in high northern latitudes. From this we derive two atmospheric scenarios which are linked with the intensity of meridional atmospheric pressure gradients in the North Atlantic region.  相似文献   

13.
H2事件是发生于末次冰盛期的一次显著的气候突变事件,对理解千年气候事件和内部机制具有重要意义.然而,目前具有高精度和精确定年的H2事件气候记录依然很少,这在很大程度上限制了对H2事件起止时间、内部细节和触发机制的进一步研究.本研究基于印度东北部乞拉朋齐洞(Cherrapunji Cave)具有年纹层的石笋CHE-2 (总长940 mm)的21个U-Th年代、 2701条纹层的计数和259个δ18O数据,重建了25. 50~24. 76 ka B. P.和24. 38~22. 42 ka B. P.(99. 5~437. 0 mm样品段)期间石笋δ18O的高分辨率(24. 38~23. 08 ka B. P.时段平均分辨率8年,其他时段平均分辨率14年)、精确时间序列,刻画了印度东北部地区H2事件的结束过程和精细结构.研究表明,乞拉朋齐洞石笋记录的H2事件结束时段为 24. 280±0. 028~23. 436±0. 028 ka B. P.,共持续 844±3年,振幅约为1. 9‰,事件发生时间在误差范围内与东亚季风区石笋记录和格陵兰冰芯记录同步,在此期间,δ18O记录呈现了两次负偏过程(24. 28~24. 17 ka B. P.和23. 90~23. 44 ka B. P.)和一段相对稳定过程(24. 17~23. 90 ka B. P.),叠加了多个百年-十年际尺度的气候振荡.本研究得到的高分辨率δ18O精确时间序列对于改善气候模型和检验气候事件假说有一定意义.从亚洲季风区与高纬地区同时段H2事件记录的对比来看,其发生机制可能主要包括以下几个方面: 1)淡水注入北大西洋导致AMOC减弱,北高纬温度降低,推动ITCZ南移;北高纬温度变化的信号通过西风带和蒙古冷高压传递到亚洲季风区,从而影响亚洲夏季风;2)H2事件结束过程可能受到南极缓慢变暖的影响;3)低纬和青藏高原的变化也可能对H2事件产生复杂的影响.这些依然有待更多的高分辨率记录和气候模拟结果的进一步验证.  相似文献   

14.
The DUPAL anomaly, a radiogenic isotope anomaly discovered in the Indian Ocean mantle, has been interpreted as due to a large-scale mantle heterogeneity. To provide new constraints on the DUPAL origin, we analyzed isotope ratios of Li, Sr, and Nd in fresh N-MORB glasses recovered from the Rodrigues Triple Junction in the Indian Ocean, and from the North Atlantic. The Li isotopic compositions of the Indian Ocean DUPAL N-MORBs were comparable to those of the North Atlantic non-DUPAL N-MORBs. The source of the DUPAL signature in Indian Ocean MORBs and the E-MORB-type enriched mantle source have quite different Li isotopic compositions. The 143Nd/144Nd values of both sources are significantly lower than those of the North Atlantic N-MORBs. The δ7Li values of most oceanic island basalts with similar low 143Nd/144Nd signatures are also higher than those of the North Atlantic N-MORBs, except for several Koolau lavas. The Li isotope results support the recent proposal that significant amounts of recycled lower continental crust might produce the radiogenic isotope signatures of the Indian Ocean DUPAL source.  相似文献   

15.
The Indian monsoon carries large amounts of freshwater to the northern Indian Ocean and modulates the upper ocean structure in terms of upwelling and productivity. Freshwater-induced stratification in the upper ocean of the Bay of Bengal is linked to the changes in the Indian monsoon. In this study, we test the usefulness of δ18O and δ13C variability records for Globigerina bulloides and Orbulina universa to infer Indian monsoon variability from a sediment core retrieved from the southwestern Bay of Bengal encompassing the last 46 kyr record. Results show that the northeast monsoon was dominant during the Last Glacial Maximum. Remarkable signatures are observed in the δ18O and δ13C records during the Marine Isotope Stage (MIS) 3 to MIS-1. Our study suggests that Indian monsoon variability is controlled by a complex of factors such as solar insolation, North Atlantic climatic shifts, and coupled ocean–atmospheric variability during the last 46 kyr.  相似文献   

16.
《Quaternary Science Reviews》2007,26(19-21):2322-2336
According to tree ring and other records, a series of severe droughts that lasted for decades afflicted western North America during the Medieval period resulting in a more arid climate than in subsequent centuries. A review of proxy evidence from around the world indicates that North American megadroughts were part of a global pattern of Medieval hydroclimate that was distinct from that of today. In particular, the Medieval hydroclimate was wet in northern South America, dry in mid-latitude South America, dry in eastern Africa but with strong Nile River floods and a strong Indian monsoon. This pattern is similar to that accompanying persistent North American droughts in the instrumental era. This pattern is compared to that associated with familiar climate phenomena. The best fit comes from a persistently La Niña-like tropical Pacific and the warm phase of the so-called Atlantic Multidecadal Oscillation. A positive North Atlantic Oscillation (NAO) also helps to explain the Medieval hydroclimate pattern. Limited sea surface temperature reconstructions support the contention that the tropical Pacific was cold and the subtropical North Atlantic was warm, ideal conditions for North American drought. Tentative modeling results indicate that a multi-century La Niña-like state could have arisen as a coupled atmosphere–ocean response to high irradiance and weak volcanism during the Medieval period and that this could in turn have induced a persistently positive NAO state. A La Niña-like state could also induce a strengthening of the North Atlantic meridional overturning circulation, and hence warming of the North Atlantic Ocean, by (i) the ocean response to the positive NAO and by shifting the southern mid-latitude westerlies poleward which (ii) will increase the salt flux from the Indian Ocean into the South Atlantic and (iii) drive stronger Southern Ocean upwelling.  相似文献   

17.
Oxygen isotope variations spanning the last glacial cycle and the Holocene derived from ice‐core records for six sites in Greenland (Camp Century, Dye‐3, GRIP, GISP2, Renland and NorthGRIP) show strong similarities. This suggests that the dominant influence on oxygen isotope variations reflected in the ice‐sheet records was regional climatic change. Differences in detail between the records probably reflect the effects of basal deformation in the ice as well as geographical gradients in atmospheric isotope ratios. Palaeotemperature estimates have been obtained from the records using three approaches: (i) inferences based on the measured relationship between mean annual δ18O of snow and of mean annual surface temperature over Greenland; (ii) modelled inversion of the borehole temperature profile constrained either by the dated isotopic profile, or (iii) by using Monte Carlo simulation techniques. The third of these approaches was adopted to reconstruct Holocene temperature variations for the Dye 3 and GRIP temperature profiles, which yields remarkably compatible results. A new record of Holocene isotope variations obtained from the NorthGRIP ice‐core matches the GRIP short‐term isotope record, and also shows similar long‐term trends to the Dye‐3 and GRIP inverted temperature data. The NorthGRIP isotope record reflects: (i) a generally stronger isotopic signal than is found in the GRIP record; (ii) several short‐lived temperature fluctuations during the first 1500 yr of the Holocene; (iii) a marked cold event at ca. 8.2 ka (the ‘8.2 ka event’); (iv) optimum temperatures for the Holocene between ca. 8.6 and 4.3 ka, a signal that is 0.6‰ stronger than for the GRIP profile; (v) a clear signal for the Little Ice Age; and (vi) a clear signal of climate warming during the last century. These data suggest that the NorthGRIP stable isotope record responded in a sensitive manner to temperature fluctuations during the Holocene. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

18.
《Quaternary Science Reviews》2005,24(14-15):1691-1701
High-resolution pollen data (average interval between samples<15 years) are reported on part of a varved sediment core from Lake Suigetsu, Japan, spanning the interval 15,701 to 10,217 SG vyr BP (Suigetsu varve years Before Present). This new record is compared with a previously proposed event stratigraphy based on pollen-based reconstructed changes of mean annual temperature. The deglacial climate history reconstructed at Lake Suigetsu resembles that observed in the North Atlantic, although the major boundaries of pollen zones are asynchronous with those in the North Atlantic event stratigraphy by several centuries. The onset of the Late Glacial interstadial occurred earlier in Japan than in the North Atlantic. This demonstrates that the climate in Japan was closely linked to the low-latitude Pacific Sea Surface Temperatures that first reacted to orbital forcing. Conversely, the onset of the subsequent cold reversal phase in Japan lagged that of the North Atlantic (Younger Dryas) by several centuries. The duration of this cold phase was about the same as the Younger Dryas event, but the amplitude was much reduced (4±2 °C in Δmean annual temperature). These findings support the hypothesis that this pan-hemispheric cooling event was triggered by North Atlantic forcing, most probably by a meltwater pulse and an associated change in the North Atlantic thermohaline circulation. However, the mechanism which transmitted the change in the North Atlantic to the Far East is unknown.  相似文献   

19.
A paleoclimate reconstruction for the Holocene based upon variations of δ18O in a U-Th dated stalagmite from southwestern Mexico is presented. Our results indicate that the arrival of moisture to the area has been strongly linked to the input of glacial meltwaters into the North Atlantic throughout the Holocene. The record also suggests a complex interplay between Caribbean and Pacific moisture sources, modulated by the North Atlantic SST and the position of the ITCZ, where Pacific moisture becomes increasingly more influential through ENSO since ~ 4.3 ka. The interruption of stalagmite growth during the largest climatic anomalies of the Holocene (10.3 and 8.2 ka) is evidenced by the presence of hiatuses, which suggest a severe disruption in the arrival of moisture to the area. The δ18O record presented here has important implications for understanding the evolution of the North American Monsoon and climate in southwestern Mexico, as it represents one of the most detailed archives of climate variability for the area spanning most of the Holocene.  相似文献   

20.
《Quaternary Science Reviews》2007,26(5-6):732-742
The radiocarbon reservoir age of high latitude North Atlantic Ocean surface water is essential for linking the continental and marine climate records, and is expected to vary according to changes in North Atlantic deep water (NADW) production. Measurements from this region also provide important input and/or tests of oceanic radiocarbon using 3-D global ocean circulation models. Here, we present a surface water radiocarbon reservoir age record of the high latitude western North Atlantic for the deglacial period via the use of fossil cold-water corals growing in waters that are rapidly exchanged with nearby surface waters. The reservoir age of high latitude North Atlantic surface waters was computed from the radiocarbon age difference between our radiocarbon calibration record (http://radiocarbon.LDEO.columbia.edu) and our marine radiocarbon data. 230Th/234U/238U dates provide the absolute coral ages. Our high latitude North Atlantic Ocean reservoir age data combined with recalculated reservoir ages based on published coexisting terrestrial and marine material and Vedde ash radiocarbon dates from central and eastern North Atlantic show modern values (380±140 year, n=14) during the Bolling and Allerod warm period and a 200 year increase in reservoir age (590±130 year, n=10) during the entire Younger Dryas (YD) cold episode. The reservoir age then decreased to 270±20 year (n=2) at the Preboreal/YD transition, although the dates are too sparse for us to be confident in this estimate. We are not able to resolve the timing of the transition to increased reservoir ages from the mid-Allerod to the YD due to the relatively small change and correspondingly large uncertainty in the estimates. The atmospheric Δ14C record derived from our atmospheric radiocarbon record displays a 40 per mil increase from 12,900 to 12,650 cal years BP, coincident with the shift to high reservoir ages in the early YD cold event. Intrusion of 14C depleted Antarctic Intermediate Water (AAIW) to the high latitude North Atlantic and reduction of NADW formation are possible causes for the coincident shift to high reservoir ages in the North Atlantic surface ocean and increased atmospheric Δ14C during the beginning of the YD event.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号