首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Kyrpy Group of the East European platform is regarded by tradition as correlative with the Lower Riphean Burzyan Group of the Bashkirian meganticlinorium in the southern Urals. Age and correlation of the Kyrpy Group remain problematic, however, because of a limited geochronological information and controversial interpretation of paleontological materials. Data of C-and Sr-isotope chemostratigraphy contribute much to the problem solution. In the Kyrpy Group of the Kama-Belaya aulacogen, the Kaltasy Formation carbonates 1300 to 2400 m thick (boreholes 133 and 203 of the Azino-Pal’nikovo and Bedryazh areas) show 87Sr/86Sr ratios ranging around 0.7040 and narrow diapasons of δ13C values: about 0.5‰ (V-PDB) in shallow-water facies and-2.0‰ (V-PDB) in sediments of deeper origin. Despite the facies dependence of carbon isotope composition, δ13C variations not greater than ±1.0‰ are depicted in chemostratigraphic profiles of carbonate rocks characterizing separate stratigraphic intervals up to 800 m thick in the above borehole sections. Low 87Sr/86Sr ratios and almost invariant δ13C values in carbonates of the Kaltasy Formation are obviously contrasting with these parameters in the Middle and Upper Riphean deposits, being comparable with isotopic characteristics of the Lower Riphean sediments (Mesoproterozoic deposits older than 1300 Ma). Consequently, the results obtained evidence in favor of the Early Riphean age of the Kaltasy Formation and the Kyrpy Group as a whole.  相似文献   

2.
The paper presents original authors' data on the O, H, C, S, and Sr isotopic composition of water and sediments from the basins into which the Aral Sea split after its catastrophic shoaling: Chernyshev Bay (CB), the basin of the Great Aral in the north, Lake Tshchebas (LT), and Minor Sea (MS). The data indicate that the δ18О, δD, δ13C, and δ34S of the water correlate with the mineralization (S) of the basins (as of 2014): for CB, S = 135.6‰, δ18О = 4.8 ± 0.1‰, δD = 5 ± 2‰, δ13C (dissolved inorganic carbon, DIC) = 3.5 ± 0.1‰, δ34S = 14.5‰; for LT, S = 83.8‰, δ18О = 2.0 ± 0.1‰, δD =–13.5 ± 1.5‰, δ13C = 2.0 ± 0.1‰, δ34S = 14.2‰; and for MS, S = 9.2‰, δ18О =–2.0 ± 0.1‰, δD =–29 ± 1‰, δ13C =–0.5 ± 0.5‰, δ34S = 13.1‰. The oxygen and hydrogen isotopic composition of the groundwaters are similar to those in MS and principally different from the artesian waters fed by atmospheric precipitation. The mineralization, δ13С, and δ34S of the groundwaters broadly vary, reflecting interaction with the host rocks. The average δ13С values of the shell and detrital carbonates sampled at the modern dried off zones of the basins are similar: 0.8 ± 0.8‰ for CB, 0.8 ± 1.4‰ for LT, and –0.4 ± 0.3‰ for MS. The oxygen isotopic composition of the carbonates varies much more broadly, and the average values are as follows: 34.2 ± 0.2‰ for CB, 32.0 ± 2.2‰ for LT, and 28.2 ± 0.9‰ for MS. These values correlate with the δ18O of the water of the corresponding basins. The carbonate cement of the Late Eocene sandstone of the Chengan Formation, which makes up the wave-cut terrace at CB, has anomalously low δ13С up to –38.5‰, suggesting origin near a submarine methane seep. The δ34S of the mirabilite and gypsum (11.0 to 16.6‰) from the bottom sediments and young dried off zone also decrease from CB to MS in response to increasing content of sulfates brought by the Syr-Darya River (δ34S = 9.1 to 9.9‰) and weakening sulfate reduction. The 87Sr/86Sr ratio in the water and carbonates of the Aral basins do not differ, within the analytical error, and is 0.70914 ± 0.00003 on average. This value indicate that the dominant Sr source of the Aral Sea is Mesozoic–Cenozoic carbonate rocks. The Rb–Sr systems of the silicate component of the bottom silt (which is likely dominated by eolian sediments) of MS and LT plot on the Т = 160 ± 5 Ma, I0 = 0.7091 ± 0.0001, pseudochron. The Rb–Sr systems of CB are less ordered, and the silt is likely a mixture of eolian and alluvial sediments.  相似文献   

3.
Application of the method of isotope stratigraphy showed that the 87Sr/86Sr ratio in the least altered carbonate rocks of the Severnaya Rechka and Sukhaya Rechka formations in the Vorogovka Group of Yenisei Ridge ranges from 0.70813 to 0.70828, and δ13C varies from –0.7 to +1.8‰. Comparison of these data with similar data for the Late Precambrian sequences from other regions provides evidence for the Vendian age of the Vorogovka Group. This is supported by the results of LA ICP-MS U–Pb dating of detrital zircons from sandstone of the Severnaya Rechka Formation, which is the basal level of the group: the mid-weight age of the youngest zircon population is 584 ± 3 Ma.  相似文献   

4.
New 87Sr/86Sr, δ13C, and δ18О chemostratigraphic data were obtained for carbonate rocks of the Lower Riphean Yusmastakh and the Vendian Starorechenskaya formations. The δ13С values in dolomites of the Yusmastakh Formation varies from–0.6 to–0.1‰ and in dolomites and dolomitic limestones of the Starorechenskaya Formation, from–1.2 to–0.4‰ PDB, and δ18О values, from 24.4 to 26.4‰ and from 25.3 to 27.6‰ SMOW, respectively. The Rb–Sr systematics of carbonate rocks was studied using the refined method of stepwise dissolution of samples in acetic acid, including chemical removal of up to one-third of the ground sample by preliminary acid leaching and subsequent partial dissolution of the rest of the sample. Owing to this procedure, secondary carbonate material is removed, which enables one to improve the quality of the Sr-chemostratigraphic data obtained. The initial 87Sr/86Sr ratios in carbonate rocks of the Yusmastakh (0.70468–0.70519) and Starorechenskaya (0.70832–0.70883) formations evidence the Riphean–Vendian boundary in the Precambrian sequence of the Anabar Uplift.  相似文献   

5.
The Sr and C isotopic compositions of Precambrian carbonate rocks are determined for Amderma Rise, in the northeastern margin of Pai-Khoi Ridge. Based on the Sr isotopic chemostratigraphy, it is established for the first time that the Amderma Formation is referred to the Early Vendian, while the Morozovsk Formation is Late Riphean in age. This conclusion along with detailed mapping proves that the Precambrian “section” of the Amderma Rise is a series of tectonic plates combined in a nonchronostratigraphic order. Volcanic and sedimentary rocks of the Morozovsk and Sokolninsk formations make up the allochthon proper, while carbonate rocks of the Amderma Formation make up the para-autochthon. The high values of δ13С (up to +9.5‰) identified in limestones of both formations suggest a considerable distance of the Pai-Khoi paleobasin from the passive margin of the Baltic Region upon facies similarity to the Laurentia active margins.  相似文献   

6.
Isotopic compositions of carbon and oxygen in carbonates and sulfur in sulfates of the Verkhnyaya Lena Formation (ε2–ε3), which terminates the Cambrian section of the Irkutsk Amphitheater of the Siberian Craton, are studied. Sulfates of the Verkhnyaya Lena Formation are marked by unusually low δ34S values (4.6–12.0‰) relative to sulfates of the underlying Angara Formation. This is likely caused by variations in the facies-paleogeographic sedimentation at the transition of the Angara and Verkhnyaya Lena formations, as well as associated variations in the water and salt alimentation budget in sedimentation basins, due to their isolation from open sea and intensification of the continental and underground discharge. The δ18O(PDB) value in carbonates decreases from ?4.4‰ at bottom to ?10.4‰ at top, reflecting variation in postsedimentary transformations and probable continuous freshening of sedimentation basin. Isotopic composition of carbon in most samples shows normal marine δ13C values (0 ± 1‰). Only in some samples, does the δ13C value increase up to ?3.8 and 2.2‰ due to specific features of postsedimentary processes. The Rb-Sr systems of the clayey component of marls from the 500-m-thick section of the Angara Formation and bottom of the Verkhnyaya Lena Formation record an age of 512 ± 10 Ma, which is close to the assumed stratigraphic age of the Verkhnyaya Lena Formation. The 87Sr/86Sr initial ratio is 0.7082 ± 0.0004.  相似文献   

7.
The Pb-Sr-O-C isotope compositions of calcite marbles of the Derbina Formation, exposed in the northwestern part of the Derbina block of the East Sayan, were studied. Rocks of the Derbina Formation were metamorphosed under high-temperature amphibolite facies conditions. The carbonate constituent of marbles contains (ppm) 15–130 Mn, 130–160 Fe, 0.008–0.039 Rb, 645–2190 Sr, 0.565–0.894 U, and 0.288–1.42 Pb. These concentrations are similar to those in modern carbonate sediments. The values of δ13C in marbles of the Derbina Formation range from–0.6 to +1.4‰ PDB; the values of δ18O range from 21.5 to 28.6‰ SMOW. The 87Sr/86Sr ratio values in the two least altered rocks, which meet geochemical criteria of the Rb-Sr system preservation in high-grade carbonate rocks, are 0.70804 and 0.70829. The protolith ages of marbles determined using Sr and C chemostratigraphy lie within the interval of 560–530 Ma, which is regarded as the period of carbonate sedimentation. The slope of the straight line on the 206Pb/204Pb–207Pb/204Pb diagram (n = 9, MSWD = 19) constructed on the basis of the data points of bulk carbonate constituents of all samples studied and those representing leachate steps of one of them in 0.5N HBr yields Late Vendian age (556 ± 31 (2σ) Ma. Taking into account the data on Sr and C isotope systematics of Derbina marbles, this age is regarded as the age of early diagenesis of carbonate sediments close to the age of sedimentation. Thus, metacarbonate rocks of the Derbina Formation preserved the pre-metamorphic chemostratigraphic and isotope-geochronological information. The age obtained testifies that formation of the carbonate cover of the Derbina block occurred in the Late Vendian. At the end of the Cambrian, carbonate deposits were metamorphosed during the Early Caledonian tectonic event in the southeastern part of the Central Asian Fold Belt.  相似文献   

8.
The Rb-Sr isochron age of igneous ankerite-calcite and siderite carbonatites in central Tuva is estimated at 118 ± 9 Ma. The following ranges of initial values of O, C, Sr, and sulfide and S isotopic compositions were established: δ18Ocarb = +(8.8?14.7)‰, δ13Ccarb = ?(3.6?4.9)‰, δ18Oquartz = +(11.6?13.7)‰, δ34Spyrite = +(0.3?1.1)‰, and (87Sr/86Sr)i =0.7042?0.7048 for ankerite-calcite carbonatite and δ18Osid = +(9.2?12.4)‰, δ13Csid = ?(3.9?5.9)‰, δ18Oquartz = +(11.2?11.4)‰, δ34Spyrite = ?(4.4–1.8)‰, δ34Ssulfate = +(8.6?14.5)‰, and (87Sr/86Sr)i = 0.7042?0.7045 for siderite carbonatite. The obtained isotopic characteristics indicate that both varieties of carbonatites are cognate and their mantle source is comparable with the sources of Late Mesozoic carbonatites in the western Transbaikal region and Mongolia. The revealed heterogeneity of isotopic compositions of carbonatites is caused by their contamination with country rocks, replacement with hydrothermal celestine, and supergene alteration.  相似文献   

9.
The Patom Complex is characterized by a unique association of carbonate rocks with ultralow (≤8‰) and ultrahigh (>6‰) δ13C values. The thickness, stable isotopic composition along the strike, and lithological and geochemical parameters suggest that these rocks could not form as a result of short-term local events or epigenetic processes. Ultralow δ13C values (less than ?8‰) in carbonate rocks of the Zhuya Group, which substantially exceed all the known negative C isotope anomalies in thickness (up to 1000 m) and amplitude (δ13C = ?10 ± 2‰), point to sedimentation under conditions of extreme “contamination” of water column by oxidized isotopically light organic (hereafter, light) carbon. The decisive role in this contamination belonged to melting and oxidation of huge volumes of methane hydrates accumulated in sediments during the powerful and prolonged Early Vendian glacial epoch. The accumulation of δ13C-depleted carbonates was preceded by the deposition of carbonates with anomalously high δ13C values. These carbonates formed at high rates of the burial of organic matter and methane in sediments during periods when the sedimentation basin consumed carbon dioxide from the atmosphere and organic carbon was conserved in sediments.  相似文献   

10.
New data on Sr-and C-isotopic systematics of carbonate rocks from the Upper Riphean stratotype (Karatau Group of the southern Urals) are obtained for several southwestern sections of the Bashkirian meganticlinorium, which have not been studied before. The results obtained supplement the Sr-and C-isotopic information for the group upper horizons thus detailing chemostratigraphic characterization of the entire succession. Limestone and dolostone samples used to analyze the Sr isotope composition satisfy strict geochemical criteria of the isotopic system retentivity and have been subjected to preliminary treatment in ammonium acetate to remove secondary carbonate phases. Data on 255 samples of carbonate rocks (171 studied for the first time) show that δ13C value varies in the Karatau Group succession from ?2.8 to +5.9 ‰ V-PDB with several in-phase excursions from the general trend in all the sections studied in the area 90 × 130 km. The δ13C variation trend demarcates several levels in the carbonate succession of the Karatau Group suitable for objectives of regional stratigraphy and for C-isotope chemostratigraphic subdivision of the Upper Riphean. The results of Sr isotopic analysis of 121 samples (51 unstudied before) from the Karatau Group imply that rocks in its lower part (the Katav Formation and basal horizon of the Inzer Formation) experienced considerable secondary alterations, while limestones and dolostones of the overlying interval of the group are frequently unaltered. In the “best” samples satisfying geochemical criteria of the isotopic system retentivity, the 87Sr/86Sr initial ratio increases from 0.70521–0.70532 in the lower Inzer deposits to 0.70611 in the upper Min’yar carbonates, decreasing to <0.70600 near the top of the latter. Above the regional hiatus separating the Min’yar and Uk formation, this ratio grows from 0.70533 to 0.70605–0.70609 in the limestone succession of the last formation.  相似文献   

11.
Results of the study of isotopic compositions of C, O, S, and Sr in late Precambrian sections of the Patom Complex and its analogues are presented. Total scatter in δ13C values is more than 21‰ (from ?13.5 to 8.1‰). The sections strongly differ in thickness, but they have similar carbon isotope curves with two dramatic drops in δ13C from extremely high (>4‰) to extremely low (13C values (from 7 to 8‰) are typical of the glacial horizon underlying the Mariinsk Formation, as well as the Barakun and Valyukhta formations and their analogues, which separate negative excursions. The minimum 87Sr/86Sr ratios in limestones of the Kumukulakh (0.70725), Barakun (0.70727), Valyukhta (0.70769), Nikol’skoe (0.707904), Chencha (0.70786) and Torgo (0.70799) formations suggest the accumulation of sediments 660–580 Ma ago. Correspondingly, glacial diamictites of the Nichatka and Dzhemkukan (Bol’shoi Patom) formations can be correlated with the early stage of the Marinoan glaciation (635–665 Ma); the Zhuya Formation, with transgression that terminates the late stage of the same glaciation or the Gaskiers glaciation (580 Ma). Problems related to the genesis of carbonate rocks with extremely high and low δ13C values will be considered in the second communication.  相似文献   

12.
Ten of eleven analyzed water samples from mud volcanoes of the Taman Peninsula are characterized by 87Sr/86Sr ratio within 0.70734–0.70957, which overlaps the values typical of the Mesozoic and Cenozoic sedimentary carbonates, but sharply differs from the value in the clayey sediments of the Maikop Group (0.7157 ± 0.0022). These data indicate that the strontium isotopic composition is mainly defined by carbonate reservoirs, with relatively little effect of elision solutions, input of which is noticeable only in the water of Gladkovsky Volcano (87Sr/86Sr = 0.71076). The high δ18O in mud volcanic waters (up to 14.2‰) can also be attributed to ionic exchange with sedimentary carbonates at temperatures around 150°C.  相似文献   

13.
The Rb-Sr and U-Pb systematics are studied in carbonate deposits of the Satka and Suran formations corresponding to middle horizons of the Lower Riphean Burzyan Group in the Taratash and Yamantau anticlinoria, respectively, the southern Urals. The least altered rock samples retaining the 87Sr/86Sr ratio of sedimentation basin have been selected for analysis using the original method of leaching the secondary carbonate phases and based on strict geochemical criteria of the retentivity (Mn/Sr < 0.2, Fe/Sr < 5 and Mg/Ca < 0.024). The stepwise dissolution in 0.5 N HBr has been used to enrich samples in the primary carbonate phase before the Pb-Pb dating. Three (L-4 to L-6) of seven consecutive carbonate fractions obtained by the step-wise leaching are most enriched in the primary carbonate (in terms of the U-Pb systematics). In the 206Pb/204Pb-207Pb/204Pb diagram, data points of these fractions plot along an isochron determining age of 1550 ± 30 Ma (MSWD = 0.7) for the upper member of the Satka Formation. The initial 87Sr/86Sr ratio in the least altered limestones of this formation is within the range of 0.70460–0.70480. Generalization of the Sr isotopic data published for the Riphean carbonates from different continents showed that 1650–1350 Ma ago the 87Sr/86Sr ratio in the world ocean was low, slightly ranging from 0.70456 to 0.70494 and suggesting the prevalent impact of mantle flux.  相似文献   

14.
The main objective of this work is the generalization of lithostratigraphic, biostratigraphic and isotopic-geochronological data characterizing carbonate rocks from type succession of the broadly acknowledged chronostratigraphic subdivision of the Lower Riphean, such as the Burzyan Group of the Southern Urals and its analogs. Using an original approach to investigation of the Rb-Sr and Pb-Pb isotopic systems in carbonates and strict criteria of their retentivity, we studied the least altered (“best”) samples of the Burzyan carbonates, which retain the 87Sr/86Sr ratio of the sedimentation environment. As long ago as 1550 ± 30 and 1430 ± 30 Ma, that ratio corresponded to 0.70460–0.70480 and 0.70456–0.70481. The results confirm the influx of the mantle material predominantly into the World Ocean of the Early Riphean. The influence of meteoric diagenesis was likely responsible for local declines of δ18O in the Burzyan carbonates down to the values of −2.5 to −1.5‰ V-PDB. In the “best” samples, this parameter ranges from −0.7 to 0‰, which is consistent with the assumption that δ18O values (0 ± 1‰) characterized the stasis of the carbonate carbon isotopic composition in oceanic water 2.06–1.25 Ga ago. C-isotopic data on carbonate from the Paleoproterozoic-Lower Riphean boundary formations of the Urals, India, North America and Siberia suggest that the mentioned stasis ended by the commencement of the Early Riphean ca. 1.6–1.5 Ga ago. In the least altered carbonates of the Early Riphean, the δ18O variation range corresponds to 4.0–4.5‰.  相似文献   

15.
《Gondwana Research》2001,4(3):387-394
The rocks of Marwar Supergroup in the trans-Aravalli sector in western India are presumed to span the time interval between Neoproterozoic and early Cambrian. This, predominantly unfossiliferous, marine sedimentary sequence is characterized by a lower arenaceous facies (Jodhpur Group), middle carbonate facies (Bilara Group) and upper argillaceous— arenaceous facies (Nagaur Group) rocks. The sedimentation has been essentially in a shallow basin, described either as the fore-land slope of the rising Aravalli mountains or a sag-basin which developed and evolved due to subsidence of the updomed crust during Neoproterozoic Malani magmatism that failed to open rifts. The carbon isotopic profile for the Bilara Group carbonate rocks in the lower part shows marked oscillations and broadly negative δ13C character with negative anomalies as low as <−4.3‰PDB, observed near the base of Dhanapa Formation (lower unit) and <−6.5‰PDB in the overlying Gotan Formation (middle unit). The upper part of the profile shows a gradual positive shift. The carbon isotopic signatures of the Bilara Group rocks can be correlated with the end-Neoproterozoic — early Cambrian (Vendian — Tommotian) carbon isotopic evolution curve. Extremely low δ13C values indicate the glaciation related cold climatic postulates of the end-Neoproterozoic, followed by the warmer climatic conditions as indicated by the positive shift. The carbon isotopic data for Gotan Formation carbonates, at variance with the globally observed δ13C trends for early Tertiary, do not support the recently proposed Tertiary age for the Bilara Group.  相似文献   

16.
《Precambrian Research》2002,113(1-2):43-63
Carbon, oxygen and strontium isotope compositions of carbonate rocks of the Proterozoic Vindhyan Supergroup, central India suggest that they can be correlated with the isotope evolution curves of marine carbonates during the latter Proterozoic. The carbonate rocks of the Lower Vindhyan Supergroup from eastern Son Valley and central Vindhyan sections show δ13C values of ∼0‰ (V-PDB) and those from Rajasthan section are enriched up to +2.8‰. In contrast, the carbonate rocks of the Upper Vindhyan succession record both positive and negative shifts in δ13C compositions. In the central Vindhyan section, the carbonates exhibit positive δ13C values up to +5.7‰ and those from Rajasthan show negative values down to –5.2‰. The δ18O values of most of the carbonate rocks from the Vindhyan Supergroup show a narrow range between –10 and –5‰ (V-PDB) and are similar to the ‘best preserved’ 18O compositions of the Proterozoic carbonate rocks. In the central Vindhyan and eastern Son Valley sections, carbonates from the Lower Vindhyan exhibit best-preserved 87Sr/86Sr compositions of 0.7059±6, which are lower compared to those from Rajasthan (0.7068±4). The carbonates with positive δ13C values from Upper Vindhyan are characterized by lower 87Sr/86Sr values (0.7068±2) than those with negative δ13C values (0.7082±6). A comparison of C and Sr isotope data of carbonate rocks of the Vindhyan Supergroup with isotope evolution curves of the latter Proterozoic along with available geochronological data suggest that the Lower Vindhyan sediments were deposited during the Mesoproterozoic Eon and those from the Upper Vindhyan represent a Neoproterozoic interval of deposition.  相似文献   

17.
The Bangbu gold deposit is a large orogenic gold deposit in Tibet formed during the AlpineHimalayan collision. Ore bodies(auriferous quartz veins) are controlled by the E-W-trending Qusong-Cuogu-Zhemulang brittle-ductile shear zone. Quartz veins at the deposit can be divided into three types: pre-metallogenic hook-like quartz veins, metallogenic auriferous quartz veins, and postmetallogenic N-S quartz veins. Four stages of mineralization in the auriferous quartz veins have been identified:(1) Stage S1 quartz+coarse-grained sulfides,(2) Stage S2 gold+fine-grained sulfides,(3) Stage S3 quartz+carbonates, and(4) Stage S4 quartz+ greigite. Fluid inclusions indicate the oreforming fluid was CO_2-N_2-CH_4 rich with homogenization temperatures of 170–261°C, salinities 4.34–7.45 wt% Na Cl equivalent. δ~(18)Ofluid(3.98‰–7.18‰) and low δDV-SMOW(-90‰ to-44‰) for auriferous quartz veins suggest ore-forming fluids were mainly metamorphic in origin, with some addition of organic matter. Quartz vein pyrite has δ~(34)SV-CDT values of 1.2‰–3.6‰(an average of 2.2‰), whereas pyrite from phyllite has δ~(34)SV-CDT 5.7‰–9.9‰(an average of 7.4‰). Quartz vein pyrites yield 206Pb/204 Pb ratios of 18.662–18.764, 207Pb/204 Pb 15.650–15.683, and ~(208)Pb/204 Pb 38.901–39.079. These isotopic data indicate Bangbu ore-forming materials were probably derived from the Langjiexue accretionary wedge. 40Ar/39 Ar ages for sericite from auriferous sulfide-quartz veins yield a plateau age of 49.52 ± 0.52 Ma, an isochron age of 50.3 ± 0.31 Ma, suggesting that auriferous veins were formed during the main collisional period of the Tibet-Himalayan orogen(~65–41 Ma).  相似文献   

18.
The carbonate sediments from the Vendian–Cambrian shelf of the Tuva-Mongolian microcontinent were dated by Sr and C isotope chemostratigraphy. Analysis of the Sr-isotopic characteristics (0.70725–0.70873) and δ13C variations (+ 10.5 to –3.5‰), as well as their comparison with the data on the key sections of Siberia, Africa, Central Asia, Australia, South America, and Spitsbergen, showed that the carbonate sedimentary cover of the Tuva-Mongolian microcontinent accumulated at 600–520 Ma and the carbonate sediments of the Muren Formation and the basal beds of the Bokson Group near the Ukha-Gol River are the oldest. Their sedimentation followed the Marinoan global glaciation.  相似文献   

19.
Dolomites from the productive Osa horizon (upper subformation of the Lower Cambrian Bilir Formation) in the Talakan petroleum field show a prominent 1–2‰ decrease in δ18O (from 23–24 to 21–22‰), which presumably marks a zone of relatively high water/rock ratios. Productive boreholes are characterized by moderate δ34S values (from 25.1 to 30.6‰) and negative correlation between δ34S in anhydrite and δ18O in associated dolomite, which points to a partial sulfate reduction during catagenesis. In nonproductive borehole, δ34S values increase significantly (from 31.4 to 35.6‰) and show positive correlation with δ18O in dolomite. Rocks recovered by nonproductive borehole possibly recrystallized during early diagenesis, and, correspondingly lost their permeability and capacity to form pores. Limestones and dolomites of the Osa horizon have a carbon isotopic composition within the range of normal marine carbonates (δ13C = 0 ± 1 ‰), which does not indicate a significant role of organic matter in postsedimentary recrystallization of carbonate sediments. A positive δ13C excursion up to 4.5‰ recorded in the lower subformation of the Bilir Formation presumably occurred at the sedimentation stage under conditions of high rates of bioproductivity and organic matter burial in sediments.  相似文献   

20.
This study provides 87Sr/86Sr, δ13C and δ18O data from the best-preserved limestone and dolomite of the Ediacaran carbonate-dominated Khorbusuonka Group of the Olenek Uplift, NE Siberian Craton, as well as detrital zircon geochronological data from both underlying and overlying sandstones. The Maastakh Formation is characterized by 87Sr/86Sr ratios of ca. 0.70822 and δ13C values between + 4.8 and + 6.0‰. 87Sr/86Sr ratios in limestones of the Khatyspyt Formation are fairly uniform, ranging from 0.70783 to 0.70806. The carbon isotopic composition slowly decreases from bottom (+ 3.7‰) to top (− 0.2‰) of section. The Sr isotopic composition of the Turkut Formation varies from 0.70824 to 0.70914, value of δ13C is about zero: − 0.7…+0.7 ‰. The youngest population of detrital zircons from Maastakh Formation indicates that these rocks were formed not later than 630 Ma. U–Pb detrital zircons data of Kessyusa Group has a single peak at about 543 Ma, which is almost identical to the earlier dating. Based on biostratigraphy and isotopic data, the Sr isotopic compositions from the Khatyspyt Formation (87Sr/86Sr = 0.70783–0.70806) represent the composition of seawater at 560–550 Ma. Such low values of 87Sr/86Sr ratio in Ediacaran water were probably caused by the quick opening of Iapetus Ocean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号