首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Various complementary techniques were used to investigate the stormflow generating processes in a small headwater catchment in northeastern Puerto Rico. Over 100 samples were taken of soil matrix water, macropore flow, streamflow and precipitation, mainly during two storms of contrasting magnitude, for the analysis of calcium, magnesium, silicon, potassium, sodium and chloride. These were combined with hydrometric information on streamflow, return flow, precipitation, throughfall and soil moisture to distinguish water following different flow paths. Geo‐electric sounding was used to survey the subsurface structure of the catchment, revealing a weathering front that coincided with the elevation of the stream channel instead of running parallel to surface topography. The hydrometric data were used in combination with soil physical data, a one‐dimensional soil water model (VAMPS ) and a three‐component chemical mass‐balance mixing model to describe the stormflow response of the catchment. It is inferred that most stormflow travelled through macropores in the top 20 cm of the soil profile. During a large event, saturation overland flow also accounted for a considerable portion of the stormflow, although it was not possible to quantify the associated volume fully. Although the mass‐balance mixing model approach gave valuable information about the various flow paths within the catchment, it was not possible to distill the full picture from the model alone; additional hydrometric and soil physical evidence was needed to aid in the interpretation of the model results. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
A hydrological reconnaissance study in a first-order tropical rainforest catchment in western Amazonia implicated overland flow as an important hydrological pathway. A complementary hydrometric and hydrochemical approach that involved the recording of overland flow hydrographs and the determination of streamflow, overland flow, groundwater, soil water, and throughfall chemical signatures, was essential to establish unambiguously the importance of this pathway. Largely uncontrolled by topography, overland flow does occur in any season, regardless of antecedent moisture conditions, which only influence the volumes generated. The latter effect is also reflected in a close approximation of stormflow and overland flow chemical signatures, as expressed in the K/SiO ratio. We conclude that, despite its greater logistical demands, a complementary hydrometric/hydrochemical approach is essential to understand a catchment's hydrological behaviour, especially where fast pathways are at work; such pathways are apparently common in more forest ecosystems than has been previously assumed.  相似文献   

3.
Streamflow is the runoff response integrated in space and time over a complex system involving climatic and catchment physiographic factors. In the Andes, accelerating runoff process understanding is hampered by the inability to quantify heterogeneity of surface and subsurface catchment properties. Here, we present a statistical approach based on regression models and correlation analysis that links hydrological signatures and catchment properties to unveil processes in a set of volcanic mountain catchments (latitude 0°30'N) in Ecuador. The catchments represent form and function diversity in the same hydrological unit. We found that despite of similar atmospheric-water inputs the water yield in the north-east region is about 5× larger than in the south-west region and their flow regimes are asymmetric. The soil-bedrock interface and lithology exert a first-order control on hydrologic partitioning, and this allowed us to hypothesize two hydrological mechanisms. Firstly, in the north-east region, the perennial streamflow is associated with seasonal rainfall patterns, and subsequent drainage processes taking place at the surface and subsurface level. The amount of streamflow is related to landform characteristics, high canopy density and root development of forest as well as water holding capacity of organic soils. From a mechanistic standpoint, the low concentration time, steep slopes and shallow infiltration limited by high-consolidated deposits of sedimentary and volcanics suggest a lateral movement of the flow. Secondly, in the south-west region the streamflow regime is mostly groundwater-dependent and it becomes seasonally enhanced by rainfall. Larger seasonal variations of precipitation and temperature result into enhanced evapotranspiration in the drier months, limiting shallow soil infiltration. Under the soil layers, highly permeable pyroclastic deposits and andesitic lavas promote deep percolation. The results highlight the degree of dissimilarity of hydrological processes in Andean settings, but unravelling their complexity seems plausible using streamflow signatures and causal explanatory models.  相似文献   

4.
In the Colorado Front Range, forested catchments near the rain–snow transition are likely to experience changes in snowmelt delivery and subsurface water transport with climate warming and associated shifts in precipitation patterns. Snowpack dynamics are strongly affected by aspect: Lodgepole pine forested north‐facing slopes develop a seasonal snowpack, whereas Ponderosa pine‐dotted south‐facing slopes experience intermittent snow accumulation throughout winter and spring. We tested the degree to which these contrasting water input patterns cause different near‐surface hydrologic response on north‐facing and south‐facing hillslopes during the snowmelt period. During spring snowmelt, we applied lithium bromide (LiBr) tracer to instrumented plots along a north–south catchment transect. Bromide broke through immediately at 10‐ and 30‐cm depths on the north‐facing slope and was transported out of soil waters within 40 days. On the south‐facing slope, Br? was transported to significant depths only during spring storms and remained above the detection limit throughout the study. Modelling of unsaturated zone hydrologic response using Hydrus‐1D corroborated these aspect‐driven differences in subsurface transport. Our multiple lines of evidence suggest that north‐facing slopes are dominated by connected flow through the soil matrix, whereas south‐facing slope soils experience brief periods of rapid vertical transport following snowmelt events and are drier overall than north‐facing slopes. These differences in hydrologic response were largely a function of energy‐driven differences in water supply, emphasizing the importance of aspect and climate forcing when considering contributions of water and solutes to streamflow in catchments near the snow line. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
The use of electrical resistivity tomography (ERT; non‐intrusive geophysical technique) was assessed to identify the hydrogeological conditions at a surface water/groundwater test site in the southern Black Forest, Germany. A total of 111 ERT transects were measured, which adopted electrode spacings from 0·5 to 5 m as well as using either Wenner or dipole‐dipole electrode arrays. The resulting two‐dimensional (2D) electrical resistivity distributions are related to the structure and water content of the subsurface. The images were interpreted with respect to previous classical hillslope hydrological investigations within the same research basin using both tracer methods and groundwater level observations. A raster‐grid survey provided a quasi 3D resistivity pattern of the floodplain. Strong structural heterogeneity of the subsurface could be demonstrated, and (non)connectivities between surface and subsurface bodies were mapped. Through the spatial identification of likely flow pathways and source areas of runoff, the deep groundwater within the steeper valley slope seems to be much more connected to runoff generation processes within the valley floodplain than commonly credited in such environmental circumstances. Further, there appears to be no direct link between subsurface water‐bodies adjacent to the stream channel. Deep groundwater sources are also able to contribute towards streamflow from exfiltration at the edge of the floodplain as well as through the saturated areas overlying the floodplain itself. Such exfiltrated water then moves towards the stream as channelized surface flow. These findings support previous tracer investigations which showed that groundwater largely dominates the storm hydrograph of the stream, but the source areas of this component were unclear without geophysical measurements. The work highlighted the importance of using information from previous, complementary hydrochemical and hydrometric research campaigns to better interpret the ERT measurements. On the other hand, the ERT can provide a better spatial understanding of existing hydrochemical and hydrometric data. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Tropical montane cloud forests (TMCF) receive additional (‘occult’) inputs of water from fog and wind-driven rain. Together with the concomitant reduction in evaporative losses, this typically leads to high soil moisture levels (often approaching saturation) that are likely to promote rapid subsurface flow via macropores. Although TMCF make up an estimated 6.6% of all remaining montane tropical forest and occur mostly in steep headwater areas that are protected in the expectation of reduced downstream flooding, TMCF hillslope hydrological functioning has rarely been studied. To better understand the hydrological response of a supra-wet TMCF (net precipitation up to 6535 mm y−1) on heterogeneously layered volcanic ash soils (Andosols), we examined temporal and spatial soil moisture dynamics and their contribution to shallow subsurface runoff and stormflow for a year (1 July 2003–30 June 2004) in a small headwater catchment on the Atlantic (windward) slope near Monteverde, NW Costa Rica. Particular attention was paid to the partitioning of water fluxes into lateral subsurface flow and vertical percolation. The presence of a gravelly layer (C-horizon) at ~25 cm depth of very high hydraulic conductivity (geometric mean: 502 mm h−1) intercalated between two layers of much lower conductivity (7.5 and 15.7 mm h−1 above and below, respectively), controlled both surface infiltration and delayed vertical water movement deeper into the soil profile. Soil water fluxes during rainfall were dominated by rapid lateral flow in the gravelly layer, particularly at high soil moisture levels. In turn, this lateral subsurface flow controlled the magnitude and timing of stormflow from the catchment. Stormflow amount increased rapidly once topsoil moisture content exceeded a threshold value of ~0.58 cm3 cm−3. Responses were not affected appreciably by rainfall intensity because soil hydraulic conductivities across the profile largely exceeded prevailing rainfall intensities.  相似文献   

7.
Water percolation and flow processes in subsurface geologic media play an important role in determining the water source for plants and the transport of contaminants or nutrients, which is essential for water resource management and the development of measures for pollution mitigation. During June 2013, the dynamics of the rainwater, soil water, subsurface flows and groundwater in a shallow Entisol on sloping farmland were monitored using a hydrometric and isotopic approach. The results showed that effective mixing of rainwater and soil water occurred in hours. The rebound phenomenon of δD profiles in soils showed that most isotope‐depleted rainwater largely bypassed the soil matrix when the water saturation in the soil was high. Preferential‐flow, which was the dominant water movement pattern in the vadose zone, occurred through the whole soil profile, and infrequent piston‐flow was mainly found at 20–40 cm in depth. The interflow in the soil layer, composed of 75.2% rainwater, was only generated when the soil profile had been saturated. Underflow in the fractured mudrock was the dominant flow type in this hillslope, and outflow was dominated by base flow (groundwater flow) with a mean contribution of 76.7%. The generation mechanism of underflow was groundwater ridging, which was superimposed upon preferential‐flow composed mainly of rainwater. The quick mixing process of rainwater and soil water and the rapid movement of the mixture through preferential channels in the study soil, which shows a typical bimodal pore size distribution, can explain the prompt release of pre‐event water in subsurface flow. Water sources of subsurface flows at peak discharge could be affected by the antecedent soil water content, rain characteristics and antecedent groundwater levels. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
Over a period of 12 months, soil moisture content and potential was monitored in an annual‐grass‐dominated 20 ha catchment in order to determine flow paths leading to exfiltration at the catchment outlet. Water was found to enter the catchment valley either through flow originating in the slopes or through surface infiltration during rainfall events. Although subsurface flow from the slopes to the catchment outlet occurred throughout the year, surface recharge was restricted to a few events during the wet season. In the deeper saturated profile of the valley, flow was directed upwards along the valley edges and gradually became horizontal towards the central axis of the valley. During the peak of the rainfall season, horizontal flow close to the catchment outlet intercepted the gradually sloping surface, resulting in exfiltration. Plants influenced the hydrology of the catchment by removing moisture from the root zone during spring and early summer, resulting in evapotranspiration losses from the vadose zone. Heterogeneities within the valley soil were evident as variable‐permeability layers that resulted in a seasonally confined water table within the valley. This investigation shows that the vadose zone plays an important role in redistributing surface recharge and emphasizes the importance of accounting for effective moisture in low‐yielding catchments with ephemeral surface runoff. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

9.
10.
The occurrence of preferential flow in the subsurface has often been shown in field experiments. However, preferential flow is rarely included in models simulating the hydrological response at the catchment scale. If it is considered, preferential flow parameters are typically determined at the plot scale and then transferred to larger-scale simulations. Here, we successfully used the optimization algorithm DiffeRential Evolution Adaptive Metropolis (DREAM) to calibrate a 3D physics-based dual-permeability model directly at the catchment scale. In order to keep computational costs of the optimization routine at a reasonable level, we limited the number of parameters to be calibrated to the ones that had been shown before to be most influential for the simulation of discharge. We also calibrated parameters of the matrix domain and the macropore domain with a fixed parameter ratio between soil layers instead of calibrating every layer separately. These ratios reflected observed depth profiles of soil hydraulic properties at our study site. The dual-permeability parameter sets identified during calibration were able to simulate observed discharge time series satisfactorily but did not outperform a calibrated single-domain reference model scenario. Saturated hydraulic conductivities of the macropore domain were calibrated such that they became very similar to matrix saturated hydraulic conductivities, thereby effectively removing the effect of macropores. This suggests that the incorporation of vertical preferential flow as represented by the dual-permeability approach was not relevant for reproducing the hydrometric response reasonably well in the studied catchment. We also tested the scale-invariance of the calibrated dual-permeability parameter sets by using the parameter sets performing best at catchment scale to simulate plot-scale bromide depth profiles obtained from tracer irrigation experiments. This parameter transfer proved to be not successful, indicating that soil hydraulic parameters are scale-variant, independent of the direction of parameter transfer.  相似文献   

11.
Measurement uncertainty is a key hindrance to the quantification of water fluxes at all scales of investigation. Predictions of soil‐water flux rely on accurate or representative measurements of hydraulic gradients and field‐state hydraulic conductivity. We quantified the potential magnitude of errors associated with the parameters and variables used directly and indirectly within the Darcy – Buckingham soil‐water‐flux equation. These potential errors were applied to a field hydrometric data set collected from a forested hillslope in central Singapore, and their effect on flow pathway predictions was assessed. Potential errors in the hydraulic gradient calculations were small, approximately one order of magnitude less than the absolute magnitude of the hydraulic gradients. However, errors associated with field‐state hydraulic conductivity derivation were very large. Borehole (Guelph permeameter) and core‐based (Talsma ring permeameter) techniques were used to measure field‐saturated hydraulic conductivity. Measurements using these two approaches differed by up to 3\9 orders of magnitude, with the difference becoming increasingly marked within the B horizon. The sensitivity of the shape of the predicted unsaturated hydraulic conductivity curve to ±5% moisture content error on the moisture release curve was also assessed. Applied moisture release curve error resulted in hydraulic conductivity predictions of less than ±0\2 orders of magnitude deviation from the apparent conductivity. The flow pathways derived from the borehole saturated hydraulic conductivity approach suggested a dominant near‐surface flow pathway, whereas pathways calculated from the core‐based measurements indicated vertical percolation to depth. Direct tracer evidence supported the latter flow pathway, although tracer velocities were approximately two orders of magnitude smaller than the Darcy predictions. We conclude that saturated hydraulic conductivity is the critical hillslope hydrological parameter, and there is an urgent need to address the issues regarding its measurement further. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

12.
Streamwatcr chemistry was monitored for five years in six streams in a paired catchment experiment in Mendolong, Sabah, Malaysia, including controls in rain forest and secondary vegetation after the [Borneo fire] of 1982–3 and comparing the effects of different ways of establishing forest plantations with Acacia mangium. Three catchments were covered with selectively logged lowland hill dipterocarp forest (W4-W6) and three (W1-W3) with secondary vegetation after forest fires. The control catchments, W3 and W6 reported in this paper, had no treatments applied. Reference monitoring at all streams was for 25 months and the total period of study reported here is 64 months. The soils in the catchments were mainly Orthic Acrisol in W3 and Gleyic Podsol in W6 and a mix of both soil types in the other catchments. Element baseflow concentrations were generally low and not significantly different from stormflow concentrations for all streams during the reference period. Concentrations were also generally consistently low for the two control streams during the whole period of measurement. Chemical inputs as wet deposition were low as a result of a high input from local convection. The rain forest on the Podsol had a tight nutrient circulation indicated by small net losses of macronutrients. The Podsol was found to have poorer conditions for soil mineralization and more surficial runoff, resulting in higher loads of S, C and N in the organic phases, with higher organic C/N ratio, in the discharge. Nitrogen was found to accumulate in both catchments. An almost double accumulation of N in W3 was attributed to a larger biomass accumulation continuing after the forest fire 3–8 years earlier. On the other hand, the Acrisol in W3 had much larger net losses of S, Si, K, Ca, Mg and Na. Most of differences could be attributed to differences in weathering between the soils and local mineralogical differences.  相似文献   

13.
In New Caledonia wildfires and invasive mammals (deer and wild pigs) constitute the major agents of land surface degradation. Our study reveals the linkage between land cover and water balance on the northeast coast of New Caledonia (2400 mm annual rainfall) located on a micaschist basement. The hydrological regime of characteristic and representative land surfaces is assessed using a 1-year record from three 100 m2 plots each, located in a forest area degraded by an invasive fauna, in a woody savannah which is regularly burned, and in a healthy forest area. The three plots present highly contrasting hydrological regimes, with annual and maximum runoff/rain ratios during a rain event of, respectively, 0.82, 0.16, 0.03, and 2.7, 0.7, 0.2, for the degraded forest, the savannah and the healthy forest. Such results suggest that subsurface flow originating from the contributing area above the degraded forest plot should exfiltrate inside the plot. A conceptual model for the degraded forest plot shows that water exfiltrating inside the plot represents 61% of the observed runoff. In savannahs, water should mainly be transferred downstream by subsurface flow within a thick organic soil layer limited by an impervious clay layer at a 20–30 cm depth. Savannahs are generally located above forests and generate the transfer of rainwater to downslope forests. Exfiltration into the forests can be the result of this transfer and depends on the thickness and permeability of the forest topsoils and on topographic gradients. Water exfiltration in forest areas highly degraded by pigs and deer enhances erosion and increases further degradation. It probably also limits percolation in the areas located downstream by increasing the amount of superficial runoff concentrated in gullies.  相似文献   

14.
The processes of stormflow generation were studied in a hill pasture catchment near Hamilton, New Zealand. Although rainfall was relatively evenly distributed throughout the year, stormflow was highly seasonal and over 65 per cent occurred during the winter. Three main processes contributing to stormflow were identified which could be related to soil type and physiographic position. On gleyed soils derived from rhyolitic colluvium, saturation overland flow was the dominant process. Hydrographs from ‘Whipkey’ throughflow troughs also indicated that there was a subsurface response (saturated wedge) from this soil type. On steeper convex slopes, more permeable soils were derived from weathered greywacke. The presence of ephemeral springs on the hillslopes and direct observation during storm events indicated that storm runoff was generated as return flow from this soil. It was noted that nitrate concentrations from subsurface sources were 5–10 times higher than surface runoff. This difference in concentration was utilized in a chemical mixing equation which partitioned stormflow sources. This was compared with the stormflow predicted from rain falling on to saturated areas. There was good agreement between the two models for winter-spring events with respect to the volumes of surface runoff predicted, however the saturated areas model underestimated total stormflow. The results of the study are briefly discussed in terms of the potential for water quality management.  相似文献   

15.
The headwaters of mountainous, discontinuous permafrost regions in north‐eastern Mongolia are important water resources for the semi‐arid country, but little is known about hydrological processes there. Run‐off generation on south‐facing slopes, which are devoid of permafrost, has so far been neglected and is totally unknown for areas that have been affected by recent forest fires. To fill this knowledge gap, the present study applied artificial tracers on a steppe‐vegetated south‐facing and on two north‐facing slopes, burned and unburned. Combined sprinkling and dye tracer experiments were used to visualize processes of infiltration and water fluxes in the unsaturated zone. On the unburned north‐facing slope, rapid and widespread infiltration through a wet organic layer was observed down to the permafrost. On the burned profile, rapid infiltration occurred through a combusted organic and underlying mineral layer. Stained water seeped out at the bottom of both profiles suggesting a general tendency to subsurface stormflow (SSF). Ongoing SSF could directly be studied 24 h after a high‐intensity rainfall event on a 55‐m hillslope section in the burned forest. Measurements of water temperature proved the role of the permafrost layer as a base horizon for SSF. Repeated tracer injections allowed direct insights into SSF dynamics: A first injection suggested rather slow dispersive subsurface flow paths; whereas 18 h later, a second injection traced a more preferential flow system with 20 times quicker flow velocities. We speculate that these pronounced SSF dynamics are limited to burned slopes where a thermally insulating organic layer is absent. On three south‐facing soil profiles, the applied tracer remained in the uppermost 5 cm of a silt‐rich mineral soil horizon. No signs of preferential infiltration could be found, which suggested reduced biological activity under a harsh, dry and cold climate. Instead, direct observations, distributed tracers and charcoal samples provided evidence for the occurrence of overland flow. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
In this study, we investigate the surface flow time of rise in response to rainfall and snowmelt events at different spatial scales and the main sources originating channel runoff and spring water in a steep nested headwater catchment (Rio Vauz, Italian Dolomites), characterized by a marked elevation gradient. We monitored precipitation at different elevations and measured water stage/streamflow at the outlet of two rocky subcatchments of the same size, representative of the upper part of the catchment dominated by outcropping bedrock, at the outlet of a soil‐mantled and vegetated subcatchment of similar size but different morphology, and at the outlet of the main catchment. Hydrometric data are coupled with stable isotopes and electrical conductivity sampled from different water sources during five years, and used as tracers in end‐member mixing analysis, application of two component mixing models and analysis of the slope of the dual‐isotope regression line. Results reveal that times of rise are slightly shorter for the two rocky subcatchments, particularly for snowmelt and mixed rainfall/snowmelt events, compared to the soil‐mantled catchment and the entire Rio Vauz Catchment. The highly‐variable tracer signature of the different water sources reflects the geomorphological and geological complexity of the study area. The principal end‐members for channel runoff and spring water are identified in rainfall and snowmelt, which are the dominant water sources in the rocky upper part of the study catchment, and soil water and shallow groundwater, which play a relevant role in originating baseflow and spring water in the soil‐mantled and vegetated lower part of the catchment. Particularly, snowmelt contributes up to 64 ± 8% to spring water in the concave upper parts of the catchment and up to 62 ± 11% to channel runoff in the lower part of the catchment. These results offer new experimental evidences on how Dolomitic catchments capture and store rain water and meltwater, releasing it through a complex network of surface and subsurface flow pathways, and allow for the construction of a preliminary conceptual model on water transmission in snowmelt‐dominated catchments featuring marked elevation gradients.  相似文献   

17.
18.
Soil water, stream water, groundwater and rain water were sampled through a storm event in a moorland catchment. Samples were analysed for major ions and deuterium. Chloride and deuterium are used as tracers to enable separation of the stream runoff hydrograph into three components: rain, soil and groundwater. The results indicate that rain water arrives in the stream quickly during the event and contributes a significant volume to the runoff peak. The chemical signal in the rain water is, however, significantly damped, apparently due to mixing with soil water held in the catchment before the event. This is further modified before reaching the stream, apparently through mixing with a deeper groundwater component. Interpretation of tracer, chemistry and hydrological data to present an integrated picture of catchment hydrochemical response is difficult due to problems in the chemical and conceptual definition of the flow components.  相似文献   

19.
Preferential flow pathways, such as soil pipes, are usually present in the soil of slopes. Subsurface flow through the soil pipes affects the subsurface drainage system and is responsible for sediment removal from slopes. However, a record of the inner structure of soil pipes has rarely been reported for slopes. A fibrescope examination of the morphology and flow phases in soil pipes in hillslopes underlain by a Quaternary sand–gravel formation provided the following information: the main pores of the soil pipes ran mostly parallel with the slope gradient; the cross‐sections of the soil pipes were approximately circular; and occurred on a few occasions; with some triple junctions being present. In addition, both full flow and partly full‐depth conditions occurred simultaneously in the soil pipe. The full flow condition has long been used in hydrological studies to model the pipe flow mechanism. Both the full flow condition and the partly full‐depth condition, however, must be examined closely in order to evaluate the subsurface hydrology in heterogeneous soil and the hydrogeomorphological processes of subsurface hydraulic erosion. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

20.
Two tracer experiments have been carried out at an enclosed catchment in southern Norway. The catchment was brought to steady state with respect to rainfall and runoff prior to the tracer addition. A known concentration of lithium bromide was then added to the rainfall for the duration of each event. The tight control on tracer concentration and rainfall amount enabled assessment of the contribution of old and new water to runoff, the dominant flow pathways and soil water residence times during a storm event. A significant volume of ‘old’ water contributes to runoff despite the hydrologically responsive nature of the catchment and several hours of tracer injected rainfall are required before ‘new’ water becomes the dominant runoff source. After 34 h of tracer injection, ‘new’ water apparently contributes c. 83% to instantaneous flow and c. 55% of the total tracer input to the catchment has been lost in runoff. Recovery of the tracer from soil water indicates that the organic soil surface layer is the dominant flow pathway for rainwater through the catchment and that a significant pathway also exists at the soil–bedrock interface. New water is retained in deep pockets of soil for several days. Assessment of the conservative behaviour of the tracer suggests that 10–14% of the input Br is retained in the soil and the tracer is not conservative. Laboratory experiments indicate that sorption of Br to organic soil is the likely mechanism of retention. This process is probably concentration dependent and will have occurred predominantly during the initial period of tracer application. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号