首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Physics‐based models have been increasingly developed in recent years and applied to simulate the braiding process and evolution of channel units in braided rivers. However, limited attention is given to lowland braided rivers where the transport of suspended sediment plays a dominant role. In the present study, a numerical model based on the basic physics laws of hydrodynamics and sediment transport is used to simulate the evolution process of a braided river dominated by suspended load transport. The model employs a fractional method to simulate the transport of graded sediments and uses a multiple‐bed‐layer approach to represent the sediment sorting process. An idealized braided river has been produced, with the hydrodynamic, sediment transport and morphological processes being analysed. In particular, the formation process of local pool–bar units in the predicted river has been investigated. A sensitivity analysis has also been undertaken to investigate the effects of grid resolution and an upstream perturbation on the model prediction. A variety of methods are applied to analyse the geometrical and topographical properties of the modelled river. Self‐organizing characteristics related to river geometry and topography are analysed by state‐space plots, which indicate a close relationship with the periodical erosion and deposition cycles of braiding. Cross‐sectional topography and slope frequency display similar geometries to natural rivers. Scaling characteristics are found by correlation analysis of bar parameters. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
Previous analyses have identified the active width of braided rivers, the bed area over which bed load flux and short‐term morphological change occurs, as an important element of braiding dynamics and predictions of bed load flux. Here we compare theoretical predictions of active width in gravel‐bed braided rivers with observations from Sunwapta River, and from a generic physical model of gravel braided rivers, to provide general observations of the variation in active width, and to develop an understanding of the causes of variation. Bed topography was surveyed daily along a 150 m reach of the pro‐glacial Sunwapta River for a total of four weeks during summer when flow was above threshold for morphological activity. In the laboratory, detailed digital elevation models (DEMs) were derived from photogrammetric survey at regular intervals during a constant discharge run. From the field and flume observations there is considerable local and circumstantial variation in active width, but also a general trend in average active width with increasing discharge. There is also a clear relationship of active width with active braiding index (number of active branches in the braided channel network), and with dimensionless stream power, which appears to be consistent across the range of data from field and physical models. Thus there is a link between active width and the river morphology and dynamics, and the possibility of a general relationship for estimating active width from channel pattern properties or reach‐scale stream power values, from which approximate bedload flux calculations may be made. The analysis also raises questions about differences between hydraulically‐based numerical model computations of instantaneous active width and observation of time‐integrated morphological active width. Understanding these differences can give insight into the nature of bedload transport in braided rivers and the relationship to morphological processes of braiding. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
River meandering has been successfully modelled using vector based methods, but these can not simulate multiple or braided channels. Conversely, cellular braided river models fail to replicate meandering. This paper describes a new method to simulate river meandering within a cellular model (CAESAR). A novel technique for determining bend radius of curvature on a cell by cell basis is described, that importantly allows regional information on bend curvature to be transferred to local points. This local curvature is then used to drive meandering and lateral erosion through two methods. Key difficulties are identified, including the deposition of material on point bars and cut off development, but the method illustrates how meandering can be integrated within a cellular framework. This demonstrates the potential to produce a single model that can incorporate both meandering and braiding. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
We have shown in a previous paper that many of the main features of braided streams can be captured in a relatively simple cellular computer model. Here we examine some of the detailed characteristics of this model. We show the qualitative form of the braiding produced by the model is generally insensitive to changes in most of the numerical parameters used in the model. The most crucial parameter choice is the use of a non-linear exponent (>1) to describe the relation between sediment flux and local stream power. Use of water discharge instead of stream power to parameterize sediment flux produces braiding, but also unrealistically high-amplitude topography variations in the long term. Introduction of a threshold transport condition causes no noticeable change in the model's behaviour. Inclusion of lateral sediment transport due to gravitational effects on lateral slopes is not crucial to produce braiding, but is needed to provide reasonable lateral channel shifting, and to maintain a continuing dynamic behaviour. As long as lateral sediment transport is included, altering the initial topography for a run has no effect, other than a transient period of regrading. In addition, we show that there is a simple and apparently fundamental connection between braided-stream channel networks and erosional (dendritic) networks that has not been previously recognized. All that is needed to switch the model from braided to dendritic patterns is either to remove redeposition from the rules, simulating entrainment of cohesive sediment, or to add a cliff to the initial topography, making local redeposition unimportant. This result suggests that the presence or absence of significant local redeposition, which causes bar formation, channel division, and avulsion, determines whether a braided or dendritic pattern will form. © 1997 John Wiley & Sons, Ltd.  相似文献   

5.
This study was designed to develop a physically based hydrological model to describe the hydrological processes within forested mountainous river basins. The model describes the relationships between hydrological fluxes and catchment characteristics that are influenced by topography and land cover. Hydrological processes representative of temperate basins in steep terrain that are incorporated in the model include intercepted rainfall, evaporation, transpiration, infiltration into macropores, partitioning between preferential flow and soil matrix flow, percolation, capillary rise, surface flow (saturation‐excess and return flow), subsurface flow (preferential subsurface flow and baseflow) and spatial water‐table dynamics. The soil–vegetation–atmosphere transfer scheme used was the single‐layer Penman–Monteith model, although a two‐layer model was also provided. The catchment characteristics include topography (elevation, topographic indices), slope and contributing area, where a digital elevation model provided flow direction on the steepest gradient flow path. The hydrological fluxes and catchment characteristics are modelled based on the variable source‐area concept, which defines the dynamics of the watershed response. Flow generated on land for each sub‐basin is routed to the river channel by a kinematic wave model. In the river channel, the combined flows from sub‐basins are routed by the Muskingum–Cunge model to the river outlet; these comprise inputs to the river downstream. The model was applied to the Hikimi river basin in Japan. Spatial decadal values of the normalized difference vegetation index and leaf area index were used for the yearly simulations. Results were satisfactory, as indicated by model efficiency criteria, and analysis showed that the rainfall input is not representative of the orographic lifting induced rainfall in the mountainous Hikimi river basin. Also, a simple representation of the effects of preferential flow within the soil matrix flow has a slight significance for soil moisture status, but is insignificant for river flow estimations. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
The braiding intensity and dynamics in large braiding rivers are well known to depend on peak discharges, but the response in braiding and channel–floodplain transformations to changes in discharge regime are poorly known. This modelling study addresses the morphodynamic effects of increasing annual peak discharges in braiding rivers. The study site is a braiding reach of the Upper Yellow River. We estimated the effects on the larger‐scale channel pattern, and on the smaller‐scale bars, channel branches and floodplains. Furthermore, we determined the sensitivity of the channel pattern to model input parameters. The results showed that the dominant effect of a higher peak discharge is the development of chute channels on the floodplains, formed by connecting head‐cut channels and avulsive channels. Widening of the main channel by bank erosion was found to be less dominant. In addition, sedimentation on the bars and floodplains increased with increasing peak discharge. The model results also showed that the modelled channel pattern is especially sensitive to parametrization of the bed slope effect, whereas the effect of median grain size was found to be relatively small. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

7.
The Xinanjiang model, which is a conceptual rainfall‐runoff model and has been successfully and widely applied in humid and semi‐humid regions in China, is coupled by the physically based kinematic wave method based on a digital drainage network. The kinematic wave Xinanjiang model (KWXAJ) uses topography and land use data to simulate runoff and overland flow routing. For the modelling, the catchment is subdivided into numerous hillslopes and consists of a raster grid of flow vectors that define the water flow directions. The Xinanjiang model simulates the runoff yield in each grid cell, and the kinematic wave approach is then applied to a ranked raster network. The grid‐based rainfall‐runoff model was applied to simulate basin‐scale water discharge from an 805‐km2 catchment of the Huaihe River, China. Rainfall and discharge records were available for the years 1984, 1985, 1987, 1998 and 1999. Eight flood events were used to calibrate the model's parameters and three other flood events were used to validate the grid‐based rainfall‐runoff model. A Manning's roughness via a linear flood depth relationship was suggested in this paper for improving flood forecasting. The calibration and validation results show that this model works well. A sensitivity analysis was further performed to evaluate the variation of topography (hillslopes) and land use parameters on catchment discharge. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Hydrological effects of groundwater abstraction near a Danish river valley have been assessed by integrated hydrological modelling. The study site contains groundwater‐dependent terrestrial ecosystems in terms of fen and spring habitats that are highly dependent on regional and local scale hydrology. Fens are rare and threatened worldwide due to pressures from agriculture, to lack of appropriate management and to altered catchment hydrology. A solid foundation for hydrological modelling was established based on intensive monitoring at the site, combined with full‐scale pumping tests in the area. A regional groundwater model was used to describe the dynamics in groundwater recharge and the large‐scale discharge to streams. A local grid refinement approach was then applied in a detailed assessment of damage in order to balance the computational effort and the need for a high spatial resolution. A considerable flow reduction in the natural spring was monitored during a full‐scale pumping test while no significant effects on the water table in the fen habitats were observed. A modelled abstraction scenario predicted a lowering of 2–3 cm in the centre of the main fen area during summer periods. The predicted change in water table conditions in the fen habitat is compared to the variability found in 35 Danish fens, and the ecological response is discussed based on statistical water‐level vegetation relations. The results provide a rare quantitative foundation for decision making in relation to management of groundwater‐dependent terrestrial ecosystems. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
A key problem in computational fluid dynamics (CFD) modelling of gravel‐bed rivers is the representation of multi‐scale roughness, which spans the range from grain size, through bedforms, to channel topography. These different elements of roughness do not clearly map onto a model mesh and use of simple grain‐scale roughness parameters may create numerical problems. This paper presents CFD simulations for three cases: a plane bed of fine gravel, a plane bed of fine gravel including large, widely‐spaced pebble clusters, and a plane gravel bed with smaller, more frequent, protruding elements. The plane bed of fine gravel is modelled using the conventional wall function approach. The plane bed of fine gravel including large, widely‐spaced pebble clusters is modelled using the wall function coupled with an explicit high‐resolution topographic representation of the pebble clusters. In these cases, the three‐dimensional Reynolds‐averaged continuity and Navier–Stokes equations are solved using the standard k ? ε turbulence model, and model performance is assessed by comparing predicted results with experimental data. For gravel‐bed rivers in the field, it is generally impractical to map the bed topography in sufficient detail to enable the use of an explicit high‐resolution topography. Accordingly, an alternative model based on double‐averaging is developed. Here, the flow calculations are performed by solving the three‐dimensional double‐averaged continuity and Navier‐Stokes equations with the spatially‐averaged 〈k ? ε〉 turbulence model. For the plane bed of fine gravel including large, widely‐spaced pebble clusters, the model performance is assessed by comparing the spatially‐averaged velocity with the experimental data. The case of a plane gravel bed with smaller, more frequent, protruding elements is represented by a series of idealized hypothetical cases. Here, the spatially‐averaged velocity and eddy viscosity are used to investigate the applicability of the model, compared with using the explicit high‐resolution topography. The results show the ability of the model to capture the spatially‐averaged flow field and, thus, illustrate its potential for representing flow processes in natural gravel‐bed rivers. Finally, practical data requirements for implementing such a model for a field example are given. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
The Earth's topography is shaped by surface processes that operate on various scales. In particular, river processes control landscape dynamics over large length scales, whereas hillslope processes control the dynamics over smaller length scales. This scale separation challenges numerical treatments of landscape evolution that use space discretization. Large grid spacing cannot account for the dynamics of water divides that control drainage area competition, and erosion rate and slope distribution. Small grid spacing that properly accounts for divide dynamics is computationally inefficient when studying large domains. Here we propose a new approach for landscape evolution modeling that couples irregular grid‐based numerical solutions for the large‐scale fluvial dynamics and continuum‐based analytical solutions for the small‐scale fluvial and hillslope dynamics. The new approach is implemented in the landscape evolution model DAC (divide and capture). The geometrical and topological characteristics of DAC's landscapes show compatibility with those of natural landscapes. A comparative study shows that, even with large grid spacing, DAC predictions fit well an analytical solution for divide migration in the presence of horizontal advection of topography. In addition, DAC is used to study some outstanding problems in landscape evolution. (i) The time to steady‐state is investigated and simulations show that steady‐state requires much more time to achieve than predicted by fixed area calculations, due to divides migration and persistent reorganization of low‐order streams. (ii) Large‐scale stream captures in a strike‐slip environment are studied and show a distinct pattern of erosion rates that can be used to identify recent capture events. (iii) Three tectono‐climatic mechanisms that can lead to asymmetric mountains are studied. Each of the mechanisms produces a distinct morphology and erosion rate distribution. Application to the Southern Alps of New Zealand suggests that tectonic advection, precipitation gradients and non‐uniform tectonic uplift act together to shape the first‐order topography of this mountain range. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
This paper describes the impacts of new river geomorphic and flow parameterizations on the simulated surface waters dynamics of the Amazon River basin. Three major improvements to a hydrologic model are presented: (1) the river flow velocity equation is expanded to be dependent on river sinuosity and friction in addition to gradient forces; (2) equations defining the morphological characteristics of the river, such as river height, width and bankfull volume, are derived from 31 622 measurements of river morphology and applied within the model; (3) 1 km resolution topographic data from the Shuttle Radar Topography Mission (SRTM) are used to provide physically based fractional flooding of grid cells from a statistical representation of sub‐grid‐scale floodplain morphology. The discharge and floodplain inundation of the Amazon River is simulated for the period 1968–1998, validated against observations, and compared with results from a previous version of the model. These modifications result in considerable improvement in the simulations of the hydrological features of the Amazon River system. The major impact is that the average wet‐season flooded area on the Amazon mainstem for the period 1983–1988 is now within 5% of satellite‐derived estimates of flooded area, whereas the previous model overestimates the flooded area by about 80%. The improvements are a consequence of the new empirical river geomorphologic functions and the SRTM topography. The new formulation of the flow velocity equation results in increased river velocity on the mainstem and major tributaries and a better correlation between the mean monthly simulated and observed discharge. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
Contemporary patterns in river basin sediment dynamics have been widely investigated but the timescales associated with current sediment delivery processes have received much less attention. Furthermore, no studies have quantified the effect of recent land use change on the residence or travel times of sediment transported through river basins. Such information is crucial for understanding contemporary river basin function and responses to natural and anthropogenic disturbances or management interventions. To address this need, we adopt a process‐based modelling approach to quantify changes in spatial patterns and residence times of suspended sediment in response to recent agricultural land cover change. The sediment budget model SedNet was coupled with a mass balance model of particle residence times based on atmospheric and fluvial fluxes of three fallout radionuclide tracers (7Be, excess 210Pb and 137Cs). Mean annual fluxes of suspended sediment were simulated in seven river basins (38–920 km2) in south‐west England for three land cover surveys (1990, 2000 and 2007). Suspended sediment flux increased across the basins from 0.5–15 to 1.4–37 kt y‐1 in response to increasing arable land area between consecutive surveys. The residence time model divided basins into slow (upper surface soil) and rapid (river channel and connected hillslope sediment source area) transport compartments. Estimated theoretical residence times in the slow compartment decreased from 13–48 to 5.6–14 ky with the increase in basin sediment exports. In contrast, the short residence times for the rapid compartment increased from 185–256 to 260–368 d as the modelled connected source area expanded with increasing sediment supply from more arable land. The increase in sediment residence time was considered to correspond to longer sediment travel distances linked to larger connected source areas. This novel coupled modelling approach provides unique insight into river basin responses to recent environmental change not otherwise available from conventional measurement techniques. © 2014 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

13.
SIM‐France is a large connected atmosphere/land surface/river/groundwater modelling system that simulates the water cycle throughout metropolitan France. The work presented in this study investigates the replacement of the river routing scheme in SIM‐France by a river network model called RAPID to enhance the capacity to relate simulated flows to river gauges and to take advantage of the automated parameter estimation procedure of RAPID. RAPID was run with SIM‐France over a 10‐year period and results compared with those of the previous river routing scheme. We found that while the formulation of RAPID enhanced the functionality of SIM‐France, the flow simulations are comparable in accuracy to those previously obtained by SIM‐France. Sub‐basin optimization of RAPID parameters was found to increase model efficiency. A single criterion for quantifying the quality of river flow simulations using several river gauges globally in a river network is developed that normalizes the square error of modelled flow to allow equal treatment of all gauging stations regardless of the magnitude of flow. The use of this criterion as the cost function for parameter estimation in RAPID allows better results than by increasing the degree of spatial variability in optimization of model parameters. Likewise, increased spatial variability of RAPID parameters through accounting for topography is shown to enhance model performance. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
Hydrological connectivity between floodplain wetlands and rivers is one of the principal driving mechanisms for the diversity, productivity and interactions of the major biota in river–floodplain systems. This article describes a method of quantifying flood‐induced overbank connectivity using a hydrodynamic model (MIKE 21) to calculate the timing, the duration and the spatial extent of the connections between several floodplain wetlands and rivers in the Tully–Murray catchment, north Queensland, Australia. Areal photogrammetry and field surveyed stream cross data were used to reproduce floodplain topography and rivers in the model. Laser altimetry (LiDAR)–derived fine resolution elevation data, for the central floodplain, were added to the topography model to improve the resolution of key features including wetlands, flow pathways and natural and artificial flow barriers. The hydrodynamic model was calibrated using a combination of in‐stream and floodplain gauge records. A range of off‐stream wetlands including natural and artificial, small and large were investigated for their connectivity with two main rivers (Tully and Murray) flowing over the floodplain for flood events of 1‐, 20‐ and 50‐year recurrence intervals. The duration of the connection of individual wetlands varied from 1 to 12 days, depending on flood magnitude and location in the floodplain, with some wetlands only connected during large floods. All of the wetlands studied were connected to the Tully River for shorter periods than they were to the Murray River because of the higher bank heights and levees on the Tully River and wetland proximity to the Murray River. Other than hydrology, land relief, riverbank elevation and levee banks along the river were found key factors controlling the degree of connectivity. These variations in wetland connectivity could have important implications for aquatic biota that move between rivers and off‐stream habitats during floods. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
The morphological active width, defined as the lateral extent of bed material displacement over time, is a fundamental parameter in multi‐threaded gravel‐bed rivers, linking complex channel dynamics to bedload transport. Here, results are presented from five constant discharge experiments, and three event hydrographs, covering a range of flow strengths and channel configurations for which morphological change, bedload transport rates, and stream power were measured in a physical model. Changes in channel morphology were determined via differencing of photogrammetrically‐derived digital elevation models (DEMs) of the model surface generated at regular intervals over the course of ~115 h of experimental runs. Independent measures of total bedload output were made using downstream sediment baskets. Results indicate that the morphological active width increases with total and dimensionless stream power and is strongly and positively correlated with bulk change (total volume of bed material displaced over time) and active braiding intensity (ABI). Although there is considerable scatter due to the inherent variability in braided river morphodynamics, the active width is positively correlated with independent measurements of bedload transport rate. Active width, bulk change, and bedload transport rates were all negligible below a dimensionless stream power threshold value of ~ 0.09, above which all increase with flow strength. Therefore, the active width could be used as a general predictor of bulk change and bedload transport rates, which in turn could be approximated from total and dimensionless stream power or ABI in gravel‐bed braided rivers. Furthermore, results highlight the importance of the active width, rather than the morphological active depth, in predicting volumes of change and bedload transport rates. The results contribute to the larger goals of better understanding braided river morphodynamics, creating large high‐resolution datasets of channel change for model calibration and validation, and developing morphological methods for predicting bedload transport rates in braiding river systems. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

16.
A sustained dynamic inflow perturbation and bar–floodplain conversion are considered crucial to dynamic meandering. Past experiments, one-dimensional modelling and linear theory have demonstrated that the initiation and persistence of dynamic meandering require a periodic transverse motion of the inflow. However, it remains unknown whether the period of the inflow perturbation affects self-formed meander dynamics. Here, we numerically study the effect of the inflow perturbation period on the development and meander dynamics of a chute-cutoff-dominated river, which requires two-dimensional modelling with vegetation forming floodplain on bars. We extended the morphodynamic model Nays2D with growth and mortality rules of vegetation to allow for meandering. We tested the effect of a transversely migrating inflow boundary by varying the perturbation period between runs over an order of magnitude around typical modelled meander periods. Following the cutoff cascade after initial meander formation from a straight channel, all runs with sufficient vegetation show series of growing meanders terminated by chute cutoffs. This generates an intricate channel belt topography with point bar complexes truncated by chutes, oxbow lakes, and scroll-bar-related vegetation age patterns. The sinuosity, braiding index and meander period, which emerge from the inherent biomorphological feedback loops, are unrelated to the inflow perturbation period, although the spin-up to dynamic equilibrium takes a longer time and distance for weak and absent inflow perturbations. This explains why, in previous experimental studies, dynamic meandering was only accomplished with a sustained upstream perturbation in flumes that were short relative to the meander wavelength. Our modelling of self-formed meander patterns is evidence that scroll-bar-dominated and chute-cutoff-dominated meanders develop from downstream convecting instabilities. This insight extends to many more fluvial, estuarine and coastal systems in morphological models and experiments, which require sustained dynamic perturbations to form complex patterns and develop natural dynamics. © 2019 The Authors. Earth Surface Processes and Landforms Published by John Wiley & Sons Ltd.  相似文献   

17.
River discharges vary strongly through time and space, and quantifying this variability is fundamental to understanding and modelling river processes. The river basin is increasingly being used as the unit for natural resource planning and management; to facilitate this, basin‐scale models of material supply and transport are being developed. For many basin‐scale planning activities, detailed rainfall‐runoff modelling is neither necessary nor tractable, and models that capture spatial patterns of material supply and transport averaged over decades are sufficient. Nevertheless, the data to describe the spatial variability of river discharge across large basins for use in such models are often limited, and hence models to predict river discharge at the basin scale are required. We describe models for predicting mean annual flow and a non‐dimensional measure of daily flow variability for every river reach within a drainage network. The models use sparse river gauging data, modelled grid surfaces of mean annual rainfall and mean annual potential evapotranspiration, and a network accumulation algorithm. We demonstrate the parameterization and application of the models using data for the Murrumbidgee basin, in southeast Australia, and describe the use of these predictions in modelling sediment transport through the river network. The regionalizations described contain less uncertainty, and are more sensitive to observed spatial variations in runoff, than regionalizations based on catchment area and rainfall alone. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
C. Fleurant  B. Kartiwa  B. Roland 《水文研究》2006,20(18):3879-3895
The rainfall‐runoff modelling of a river basin can be divided into two processes: the production function and the transfer function. The production function determines the proportion of gross rainfall actually involved in the runoff. The transfer function spreads the net rainfall over time and space in the river basin. Such a transfer function can be modelled using the approach of the geomorphological instantaneous unit hydrograph (GIUH). The effectiveness of geomorphological models is actually revealed in rainfall‐runoff modelling, where hydrologic data are desperately lacking, just as in ungauged basins. These models make it possible to forecast the hydrograph shape and runoff variation versus time at the basin outlet. This article is an introduction to a new GIUH model that proves to be simple and analytical. Its geomorphological parameters are easily available on a map or from a digital elevation model. This model is based on general hypotheses on symmetry that provide it with multiscale versatile characteristics. After having validated the model in river basins of very different nature and size, we present an application of this model for rainfall‐runoff modelling. Since parameters are determined relying on real geomorphological data, no calibration is necessary, and it is then possible to carry out rainfall‐runoff simulations in ungauged river basins. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
The resolution of a digital elevation model (DEM) is a crucial factor in watershed hydrologic and environmental modelling. DEM resolution can cause significant variability in the representation of surface topography, which further affects quantification of hydrologic connectivity and simulation of hydrologic processes. The objective of this study is to examine the effects of DEM resolution on (1) surface microtopographic characteristics, (2) hydrologic connectivity, and (3) the spatial and temporal variations of hydrologic processes. A puddle‐to‐puddle modelling system was utilized for surface delineation and modelling of the puddle‐to‐puddle overland flow dynamics, surface runoff, infiltration, and unsaturated flow for nine DEM resolution scenarios of a field plot surface. Comparisons of the nine modelling scenarios demonstrated that coarser DEM resolutions tended to eliminate topographic features, reduce surface depression storage, and strengthen hydrologic connectivity and surface runoff. We found that reduction in maximum depression storage and maximum ponding area was as high as 97.56% and 76.36%, respectively, as the DEM grid size increased from 2 to 80 cm. The paired t‐test and fractal analysis demonstrated the existence of a threshold DEM resolution (10 cm for the field plot), within which the DEM‐based hydrologic modelling was effective and acceptable. The effects of DEM resolution were further evaluated for a larger surface in the Prairie Pothole Region subjected to observed rainfall events. It was found that simulations based on coarser resolution DEMs (>10 m) tended to overestimate ponded areas and underestimate runoff discharge peaks. The simulated peak discharge from the Prairie Pothole Region surface reduced by approximately 50% as the DEM resolution changed from 2 to 90 m. Fractal analysis results elucidated scale dependency of hydrologic and topographic processes. In particular, scale analysis highlighted a unique constant–threshold–power relationship between DEM scale and topographic and hydrologic parameters/variables. Not only does this finding allow one to identify threshold DEM but also further develop functional relationships for scaling to achieve valid topographic characterization as well as effective and efficient hydrologic modelling. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
This study discusses the reproducibility of a numerical model for simulating the morphodynamics involved in the transport of large pieces of wood in a braided river, considering the root wad effect and jam formation. The developed numerical model can simulate the behaviour of large pieces of wood using a two-dimensional depth-averaged Eulerian flow model that calculates the water flow and bed morphology. A Lagrange-type wood transport model is used herein, and the applicability of the combined model is discussed through a comparison with obtained experimental results. From the simulation results, we calculate the total braiding index and estimate the deposition patterns of wood pieces for comparison with the experimental results. We then analyse the bed morphology responses and wood deposition patterns in terms of the root wad effect and input supply. Moreover, we discuss the advantages and limitations of the proposed model to predict the large wood dynamics considering the bed morphology. © 2019 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号