首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Compact object mergers are one of the currently favoured models for the origin of gamma-ray bursts (GRBs). The discovery of optical afterglows and identification of the nearest, presumably host, galaxies allow the analysis of the distribution of burst sites with respect to these galaxies. Using a model of stellar binary evolution we synthesize a population of compact binary systems which merge within the Hubble time. We include the kicks in the supernovae explosions and calculate orbits of these binaries in galactic gravitational potentials. We present the resulting distribution of merger sites and discuss the results in the framework of the observed GRB afterglows.  相似文献   

3.
Supernova rates (hypernova, type II, type Ib/c and type Ia) in a particular galaxy depend on the metallicity (i.e. on the galaxy age), on the physics of star formation and on the binary population. In order to study the time evolution of the galactic supernova rates, we use our chemical evolutionary model that accounts in detail for the evolution of single stars and binaries. In particular, supernovae of type Ia are considered to arise from exploding white dwarfs in interacting binaries and we adopt the two most plausible physical models: the single degenerate model and the double degenerate model. Comparison between theoretical prediction and observations of supernova rates in different types of galaxies allows to put constraints on the population of intermediate mass and massive close binaries.

The temporal evolution of the absolute galactic rates of different types of supernovae (including the type Ia rate) is presented in such a way that the results can be directly implemented into a galactic chemical evolutionary model. Particularly for type Ia’s the inclusion of binary evolution leads to results considerably different from those in earlier population synthesis approaches, in which binary evolution was not included in detail.  相似文献   


4.
We study, through 2D hydrodynamical simulations, the feedback of a starburst on the ISM of typical gas-rich dwarf galaxies. The main goal is to address the circulation of the ISM and metals following the starburst. We assume a single-phase rotating ISM in equilibrium in the galactic potential generated by a stellar disc and a spherical dark halo. The starburst is assumed to occur in a small volume in the centre of the galaxy, and it generates a mechanical power of 3.8×1039 or 3.8×1040 erg s−1 for 30 Myr. We find, in accordance with previous investigations, that the galactic wind is not very effective in removing the ISM. The metal-rich stellar ejecta, however, can be efficiently expelled from the galaxy and dispersed in the intergalactic medium.
Moreover, we find that the central region of the galaxy is always replenished with cold and dense gas a few 100 million years after the starburst, achieving the requisite for a new star formation event in ≈0.5–1 Gyr. The hydrodynamical evolution of galactic winds is thus consistent with the episodic star formation regime suggested by many chemical evolution studies.
We also discuss the X-ray emission of these galaxies and find that the observable (emission-averaged) abundance of the hot gas underestimates the real one if thermal conduction is effective. This could explain the very low hot-gas metallicities estimated in starburst galaxies.  相似文献   

5.
The abundance patterns of the most metal‐poor stars in the Galactic halo and small dwarf galaxies provide us with a wealth of information about the early Universe. In particular, these old survivors allow us to study the nature of the first stars and supernovae, the relevant nucleosynthesis processes responsible for the formation and evolution of the elements, early star‐ and galaxy formation processes, as well as the assembly process of the stellar halo from dwarf galaxies a long time ago. This review presents the current state of the field of “stellar archaeology” – the diverse use of metal‐poor stars to explore the high‐redshift Universe and its constituents. In particular, the conditions for early star formation are discussed, how these ultimately led to a chemical evolution, and what the role of the most iron‐poor stars is for learning about Population III supernovae yields. Rapid neutron‐capture signatures found in metal‐poor stars can be used to obtain stellar ages, but also to constrain this complex nucleosynthesis process with observational measurements. Moreover, chemical abundances of extremely metal‐poor stars in different types of dwarf galaxies can be used to infer details on the formation scenario of the halo and the role of dwarf galaxies as Galactic building blocks. I conclude with an outlook as to where this field may be heading within the next decade. A table of ~ 1000 metal‐poor stars and their abundances as collected from the literature is provided in electronic format (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
The distributions of supernovae of different types and subtypes along the radius and in z coordinate of galaxies have been studied. We show that among the type Ia supernovae (SNe Ia) in spiral galaxies, SNe Iax and Ia-norm have, respectively, the largest and smallest concentration to the center; the distributions of SNe Ia-91bg and Ia-91T are similar. A strong concentration of SNe Ib/c to the central regions has been confirmed. In spiral galaxies, the supernovae of all types strongly concentrate to the galactic plane; the slight differences in scale height correlate with the extent to which the classes of supernovae are associated with star formation.  相似文献   

7.
Recent X-ray observations have shown that intracluster medium has non-primordial composition. Iron lines have been detected. We present preliminary results on modelling of the chemical evolution of the intracluster medium in galaxy clusters. We consider in detail the galactic winds driven by supernovae, taking into account the binding energy of the galactic gas. We try to explain the metallicity gradient observed in the Perseus cluster from morphological segregation of galaxies in the inner part of the cluster.  相似文献   

8.
A two-dimensional chemodynamical model of the Milky Way Galaxy is presented that can account for the structural, kinematical, and chemical pecularities of the galactic components in a self-consistent way. The dynamics of three stellar components and the multi-phase interstellar medium consisting of clouds and intercloud gas are followed in detail. Mass interchange and energetic interaction processes between the stars and the gas phases are treated simultaneously according to the astrophysical experience including star formation, supernovae type I and II, planetary nebulae, stellar winds, evaporation and condensation, drag, cloud collisions, heating and cooling, and stellar nucleosynthesis. These processes are coupling large ranges on temporal and spatial scales, and allow for feedback and self-regulation mechanisms, which play a significant role in galactic evolution. In comparison with observations the capability of the chemodynamical treatment is convincingly proved by the excellent agreement with various observations. In addition, also well-known problems (G-dwarf problem, the discrepancy between local effective yields, etc.), which so far could be only explained by artificial constraints, are solved in the global scenario. Here we wish also to focus on temporal behaviours of the radial abundance gradient and abundance ratios in order to stimulate further more specific observations and to make particular predictions which can test the validity of used model ingredients like stellar yields. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
By means of a detailed chemical evolution model, we follow the evolution of barium (Ba) and europium (Eu) in four Local Group Dwarf Spheroidal (dSph) galaxies, in order to set constraints on the nucleosynthesis of these elements and on the evolution of this type of galaxies compared with the Milky Way. The model, which is able to reproduce several observed abundance ratios and the present-day total mass and gas mass content of these galaxies, adopts up-to-date nucleosynthesis and takes into account the role played by supernovae (SNe) of different types (II, Ia) allowing us to follow in detail the evolution of several chemical elements (H, D, He, C, N, O, Mg, Si, S, Ca, Fe, Ba and Eu). By assuming that Ba is a neutron-capture element produced in low-mass asymptotic giant branch stars by s-process but also in massive stars (in the mass range 10–30 M) by r-process, during the explosive event of SNe of Type II, and that Eu is a pure r-process element synthesized in massive stars also in the range of masses 10–30 M, we are able to reproduce the observed [Ba/Fe] and [Eu/Fe] as functions of [Fe/H] in all four galaxies studied. We confirm also the important role played by the very low star formation (SF) efficiencies (ν= 0.005–0.5 Gyr−1) and by the intense galactic winds (6–13 times the star formation rate) in the evolution of these galaxies. These low SF efficiencies (compared to the one for the Milky Way disc) adopted for the dSph galaxies are the main reason for the differences between the trends of [Ba/Fe] and [Eu/Fe] predicted and observed in these galaxies and in the metal-poor stars of our Galaxy. Finally, we provide predictions for Sagittarius galaxy for which data of only two stars are available.  相似文献   

10.
We describe the Sternberg Astronomical Institute (SAI) catalog of supernovae. We show that the radial distributions of type-Ia, type-Ibc, and type-II supernovae differ in the central parts of spiral galaxies and are similar in their outer regions, while the radial distribution of type-Ia supernovae in elliptical galaxies differs from that in spiral and lenticular galaxies. We give a list of the supernovae that are farthest from the galactic centers, estimate their relative explosion rate, and discuss their possible origins.  相似文献   

11.
Observed supernovae rates in Sb and Sc galaxies, and a recent re-examination of the mean gas density in these galactic types, implies that if the clumpiness of gas in the disks of Sb and Sc galaxies is similar, the gas density isnot the primary factor in determining the overall present stellar birthrate.  相似文献   

12.
星系的恒星视向速度分布是星系动力学模型的重要观测约束,其特征参数包括速度弥散度、分布轮廓以及红移。这些参数对研究星系的动力学、结构和演化以及中央黑洞的质量等都具有重要的价值。该文全面总结了从星系光谱归算星系的恒星视向速度分布及其弥散度的各种方法,以及对观测和处理的一些要求。这些方法都假设星系谱线可看作是模板星光谱经多普勒位移并加宽后的线性叠加。提取尽可能多的星系内部恒星运动信息、减少模板星失配的影响、简化误差分析,是这些方法追求的目标。  相似文献   

13.
14.
太阳系原始同位素组成是研究太阳系起源和演化的基础。评述了太阳星云的原始放射性核素丰度特征及解释此丰度特征的分子云自增丰模型、AGB星污染模型和散裂反应模型。陨石包体中前太阳矿物颗粒的同位素组成异常表明,前太阳颗粒中低密度石墨、X型碳硅石可能来源于超新星爆发,而AGB星或红巨星被认为是尖晶石和碳硅石的最可能的恒星来源。太阳系中比较特殊的氖和氙的同位素组成异常也与超新星爆发密切相关。  相似文献   

15.
We review the methodology adopted in computing chemical evolution models of galaxies of different morphological type (ellipticals, spirals and irregulars). We discuss the importance of the history of star formation in different galaxies in order to interpret the observed abundances. In particular, we discuss the time-delay model which allows us to interpret the observed abundance patterns in galaxies as due to the different contributions of supernovae II and Ia. We show that the time-delay model applied to galaxies of different morphological type predicts different [X/Fe] versus [Fe/H] relations in different galaxies. As a consequence of this, these relations can be used to infer the nature and to date high redshift objects. Finally, we show our predictions for the cosmic star formation rate.  相似文献   

16.
We have modelled the evolution of hot superbubbles in starbursts, taking into account the rapid changes in the chemical composition of the interior of the superbubbles resulting from the large stellar mass loss, i.e. stellar winds from massive young stars and type II supernovae. We have followed in detail the time-dependent production and mixing of oxygen and iron in the interior of the hot superbubbles and showed that while the oxygen abundance rapidly climbs to over solar values in less than 10 Myr, iron abundance remains always under solar. This highly enhanced oxygen metallicity boosts the early X-ray luminosity of superbubbles while keeping the iron abundance subsolar. This brings theory and X-ray observations of the luminosity and metal content of young starbursts closer together.  相似文献   

17.
Binary interactions lead to the formation of intriguing objects, such as compact binaries, supernovae, gamma ray bursts, X-ray binaries, pulsars, novae, cataclysmic variables, hot subdwarf stars, barium stars and blue stragglers. To study the evolution of binary populations and the consequent formation of these objects, many methods have been developed over the years, for which a robust approach named binary population synthesis(BPS) warrants special attention. This approach has seen widespread application in many areas of astrophysics, including but not limited to analyses of the stellar content of galaxies, research on galactic chemical evolution and studies concerning star formation and cosmic re-ionization. In this review,we discuss the role of BPS, its general picture and the various components that comprise it. We pay special attention to the stability criteria for mass transfer in binaries, as this stability largely determines the fate of binary systems. We conclude with our perspectives regarding the future of this field.  相似文献   

18.
One of the complexities in modelling integrated spectra of stellar populations is the effect of interacting binary stars besides Type Ia supernovae (SNeIa). These include common envelope systems, cataclysmic variables, novae, and are usually ignored in models predicting the chemistry and spectral absorption line strengths in galaxies. In this paper, predictions of chemical yields from populations of single and binary stars are incorporated into a galactic chemical evolution model to explore the significance of the effects of these other binary yields. Effects on spectral line strengths from different progenitor channels of SNeIa are also explored. Small systematic effects are found when the yields from binaries, other than SNeIa, are included, for a given star formation history. These effects are, at present, within the observational uncertainties on the line strengths. More serious differences can arise in considering different types of SNIa models, their rates and contributions.  相似文献   

19.
恒星尘埃的实验室研究--实验天体物理学   总被引:1,自引:0,他引:1  
原始球粒陨石含有来自恒星的微小固体颗粒(微米级),这些尘埃的同位素组成与太阳系物质截然不同,它们是目前唯一能直接获得的恒星固体样品.已发现的恒星尘埃有金刚石、石墨、碳化硅、刚玉、尖晶石、氮化物、和硅酸盐等,它们的母体恒星包括红巨星,AGB恒星、新星和超新星.对恒星尘埃的研究,使得更深入地了解星系的化学演化历史、恒星内部的核反应和湍流机制、恒星大气中尘埃的形成、星际介质物理现象等.恒星尘埃把天体物理领域延伸到了微观世界,它有机地结合了地球化学实验技术和天体物理理论,开辟了一门崭新的天文学分支实验天体物理学.  相似文献   

20.
We investigate the history of galactic feedback and chemical enrichment within a sample of 15 X-ray bright groups of galaxies, on the basis of the inferred Fe and Si distributions in the hot gas and the associated metal masses produced by core-collapse and Type Ia supernovae (SNe). Most of these cool-core groups show a central Fe and Si excess, which can be explained by prolonged enrichment by SN Ia and stellar winds in the central early-type galaxy alone, but with tentative evidence for additional processes contributing to core enrichment in hotter groups. Inferred metal mass-to-light ratios inside r 500 show a positive correlation with total group mass but are generally significantly lower than in clusters, due to a combination of lower global intracluster medium (ICM) abundances and gas-to-light ratios in groups. This metal deficiency is present for products from both SN Ia and SN II, and suggests that metals were either synthesized, released from galaxies or retained within the ICM less efficiently in lower mass systems. We explore possible causes, including variations in galaxy formation and metal release efficiency, cooling out of metals, and gas and metal loss via active galactic nuclei (AGN) – or starburst-driven galactic winds from groups or their precursor filaments. Loss of enriched material from filaments coupled with post-collapse AGN feedback emerges as viable explanations, but we also find evidence for metals to have been released less efficiently from galaxies in cooler groups and for the ICM in these to appear chemically less evolved, possibly reflecting more extended star formation histories in less massive systems. Some implications for the hierarchical growth of clusters from groups are briefly discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号