首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Regional topographic and geomorphic analyses reveal first-order topographic variations from high-elevation and low-relief interior plateau to the relatively low elevation, high-relief marginal plateau in eastern Tibet. Field investigation and slip distribution modeling after 2008 Ms. 8.0 Wenchuan earthquake indicate significant along-strike variability during the rupture that appears to correspond to different segments of a single fault system. This observation motivates a more careful examination of topographic features along the Longmen Shan to explore the connection between the seismic cycle and mountain building. Analyses of topographic relief, hillslope gradient, and channel gradient indices reveal significant differences in the character of topography along the Longmen Shan mountain front. The central portion of the range exhibits the highest slope, relief and steepness of river longitudinal profiles. Whereas the southern Longmen Shan exhibits only subtle differences associated with slightly lower hillslope and channel gradients, the northern Longmen Shan is characterized by topography of significantly lower relief, lessened hillslope gradients, and low-gradient channels. We consider two explanations for these topographic differences; first, that the differences in topographic development along the Longmen Shan reflect different stages of an evolutionary history. Alternatively, these may reflect differences in the rate of differential rock uplift relative to the stable Sichuan Basin.  相似文献   

2.
晚新生代以来天山南、北麓冲断作用的定量分析   总被引:11,自引:0,他引:11       下载免费PDF全文
利用地表地质、二维地震和钻、测井资料建立了两条横穿天山南、北麓库车河地区和金钩河—安集海河地区的构造剖面,从几何学和运动学的角度探讨新生代以来不同序次台阶状逆断层及其相关褶皱的叠加过程、以及叠加过程中断层形态、褶皱形态与位移量之间的定量关系。生长地层和生长不整合分析表明,上新世早期(4.2~5Ma)可能是天山南、北麓新生代冲断褶皱的主要形成期,发育自天山内部的台阶状逆断层在向两侧沉积盆地扩展过程中形成多个滑脱面和断坡,断层位移在断坡位置引发褶皱变形,从而形成南北方向背斜带成排分布的构造格局。在天山南麓库车河剖面中,控制库车地区构造变形的三条台阶状逆断层位移量分别为5.7km、6.3km和18km,它们的活动时代由老到新,而位移量却逐渐增大,反映新生代以来天山南麓的冲断作用可能存在一个加速的过程。按上述数值计算,渐新世(23Ma)以来的缩短速率为1.3mm/a,上新世(5.2±0.2Ma)以来的缩短速率为3.6mm/a。在天山北麓金钩河—安集海河剖面中,山前深部楔形体内的断层位移量为16.9km,但只有6km的位移量沿中上侏罗统西山窑组煤层内的滑脱面向北传递至第二排背斜带,而至第三排背斜带,位移量已递减为0.22~0.29km。以上新世早期(4.2~5Ma)作为构造活动时间,计算出该剖面上、下构造层上新世以来的缩短速率为2.6~3.1mm/a和3.8~4.5mm/a,其中下构造层内的山前深部楔形体、霍尔果斯深层背斜和安集海背斜的缩短速率分别为3.9~4.6mm/a、1.2~1.4mm/a和0.04~0.38mm/a,这说明由于断层位移量在向北传递过程中不断被褶皱作用吸收或沿反冲断层向南消减,各排背斜带的变形强度由南向北依次减弱。  相似文献   

3.
http://www.sciencedirect.com/science/article/pii/S1674987111001265   总被引:3,自引:0,他引:3  
Landscapes in tectonically active Hindu Kush(NW Pakistan and NE Afghanistan) result from a complex integration of the effects of vertical and horizontal crustal block motions as well as erosion and deposition processes.Active tectonics in this region have greatly influenced the drainage system and geomorphic expressions.The study area is a junction of three important mountain ranges (Hindu Kush-Karakorum-Himalayas) and is thus an ideal natural laboratory to investigate the relative tectonic activity resulting from the India-Eurasia collision.We evaluate active tectonics using DEM derived drainage network and geomorphic indices hypsometric integral(HI),stream-length gradient (SL).fractal dimension(FD).basin asymmetry factor(AF).basin shape index(Bs),valley floor width to valley height ratio(Vf) and mountain front sinuosity(Smf). The results obtained from these indices were combined to yield an index of relative active tectonics (IRAT) using CIS.The average of the seven measured geomorphic indices was used to evaluate the distribution of relative tectonic activity in the study area.We defined four classes to define the degree of relative tectonic activity:class 1 very high(1.0≤IRAT 1.3);class 2-high(1.3≥IRAT<1.3):class 3—moderate(1.5≥IRAT<1.8);and class 4—low(l.8≥1RAT).In view of the results.we conclude that this combinetl approach allows the identification of the highly deformed areas related to active tectonics.Landsat imagery and held observations also evidence the presence of active tectonics based on the dellected streams,deformed landforms.active mountain fronts and triangular facets.The indicative values of IRAT are consistent with the areas of known relative uplift rates,landforms and geology.  相似文献   

4.
Spatial differences of Quaternary deformation and intensity of tectonic activity are assessed through a detailed quantitative geomorphic study of the fault‐generated mountain fronts and alluvial/fluvial systems around the Maharlou Lake Basin in the Zagros Fold–Thrust Belt of Iran. The Maharlou Lake Basin is defined as an approximately northwest–southeast trending, linear, topographic depression located in the central Zagros Mountains of Iran. The lake is located in a tectonically active area delineated by the Ghareh and Maharlou faults. Combined geomorphic and morphometric data reveal differences between the Ghareh and Maharlou mountain front faults indicating different levels of tectonic activity along each mountain front. Geomorphic indices show a relatively high degree of tectonic activity along the Ghareh Mountain Front in the southwest, in contrast with less tectonic activity along the Ahmadi Mountain Front northeast of the lake which is consistent with field evidence and seismotectonic data for the study area. A ramp valley tectonic setting is proposed to explain the tectonosedimentary evolution of the lake. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
帕米尔弧形构造带是印度-欧亚板块碰撞变形最强烈的地区之一,是研究构造过程、地貌演化以及气候变化及其相互作用的理想场所。本文基于前人的研究成果,对帕米尔弧形构造带新生代构造单元、地貌特征和动力学演化模型进行了总结归纳,包括:主要构造单元的活动起止时间、活动量及活动速率;帕米尔弧形构造带现今的地貌特征(水系和冰川的分布);帕米尔弧形构造带6种主要的地球动力学演化模型的主要样式、优点及限制。论文提出了帕米尔弧形构造带晚新生代构造研究的三个重要的科学问题:精细厘定构造带内部的不同断裂带运动学特征和相互关系;深部地质过程与浅部响应相结合,探讨构造带形成的深部地质过程控制;将构造过程、气候特征与地貌演化作为一个耦合系统开展研究。  相似文献   

6.
《Geodinamica Acta》2013,26(3-4):107-122
Abstract

The results of geomorphic analysis of the Concud fault-generated mountain front (central Iberian Chain, Spain) are introduced into classifications of fault activity proposed by previous authors, and compared with slip rates calculated from geologic markers. The Concud fault is an extensional structure active since the mid Pliocene times. It gives rise to a 60 to 120 m high mountain front, where footwall rocks belonging to the Triassic and Jurassic (north-western sector) and Miocene (south-eastern sector) crop out. Conspicuous triangular facets are preserved on Jurassic rocks of the central sector, while short, generally non-incised alluvial fans make the piedmont. The value of the Mountain-front sinuosity index is Smf = 1.24 for the whole mountain front (1.17 and 1.32, respectively, for both segments showing distinct footwall lithology), as obtained by the most conservative procedure. Average valley floor width/height ratios calculated for seventeen gullies crossing the fault are Vf = 0.30 (250 m upstream from the fault trace) and Vf = 0.22 (500 m upstream). These geomorphic indices, together with qualitative features of the escarpment and piedmont landscape, indicate ‘moderate’ to ‘rapid’ fault activity. The range of slip rates estimated from such morphotectonic classification (0.03 to 0.5 mm/y) encloses the range calculated from offset Late Pliocene and Pleistocene stratigraphic markers (0.07 to 0.33 mm/y). Nevertheless, the highest potential slip rate (0.5 mm/y) clearly represents an overestimate: the mountain front could give the impression of an anomalously high level of activity owing to episodic rejuvenation caused by base level drop.  相似文献   

7.
The Kemalpa?a Basin is one of the Quaternary basins in Western Anatolia and represents the south-western branch of the Gediz Graben system in this extensional province. This basin has been formed under the NNE–SSW trending extensional tectonic regime. It is bounded by a major fault, the Kemalpa?a Fault, in the south and it is bounded by a number of downstepping faults, called as Spilda?? Fault Zone, in the north. Both margin-bounding faults of the Kemalpa?a Basin are oblique-slip normal faults. In order to better understand the activities of these faults, we investigated the tectonic geomorphology of the Kemalpa?a Basin and interpreted the effect of tectonic activity on the geomorphological evolution using geomorphic markers such as drainage basin patterns, facet geometries and morphometric indices such as hypsometric curves and integral (HI), basin shape index (Bs), valley floor width-to-height ratio (Vf) and mountain front sinuosity (Smf). The morphometric analysis of 30 drainage basins in total and mountain fronts bounding the basin from both sides suggests a relatively high degree of tectonic activity. The mountain front sinuosity (Smf) generally varies from 1.1 to 1.3 in both sides of the basin suggesting the active fronts and facet slopes (12°–32°) suggest a relatively high degree of activity along the both sides of the Kemalpa?a Basin. Similarly, the valley floor width-to-height ratios (Vf) obtained from the both sides indicate low values varying from 0.043 to 0.92, which are typical values (<1) for tectonically active mountain fronts. The all values obtained are lower for the southern side. Therefore, we suggest that the tectonic activity of the Kemalpa?a Fault higher than the Spilda?? Fault Zone. This difference that can be arised from the different uplift rates also reveals the typical asymmetric characteristics of the Kemalpa?a Basin. Additionally, the trapezoidal facets which have been observed on the southern side of the basin indicate that the Kemalpa?a Fault is evolutionally more active as compared to the Spilda?? Fault Zone. The geomorphic indices indicate that the Quaternary landscape evolution of the Kemalpa?a Basin was governed by tectonic and erosional processes, and also the all results of morphometric analysis suggest a relatively high degree of tectonic activity along the faults bounding the Kemalpa?a Basin. Moreover, considering that active large normal faults with an average 15 km long can cause major earthquake, the earthquake hazard in the Kemalpa?a Basin should be investigated in detailed paleoseismological studies.  相似文献   

8.
This paper investigates the impact of active tectonics on the geomorphic processes and landscape evolution along the Kazerun Fault Zone (KFZ) in the Zagros Mountains of Iran using spatial analysis of geomorphic indices. We document how topography and morphology are influenced by active tectonic deformation. The Zagros fold–thrust belt is an area of active crustal shortening where northwest–southeast oriented fault‐related folds become younger from north to south and from southeast to northwest. This temporal and spatial evolution of the belt was tested using geomorphic indices of active tectonics that include mountain front sinuosity index (Smf), the valley width/height ratio (Vf), drainage basin asymmetry factor, hypsometric integral, drainage basin shape ratio and mean axial slope of the channel. Change in the geomorphic indices is the result of active fold growth and change in the uplift rate. Decreasing Smf and Vf values from north (Smf = 2.01; Vf = 0.5) to south (Smf = 1.12; Vf = 0.2) and from southeast (Smf = 1.84; Vf = 0.8) to northwest (Smf = 1.54; Vf = 0.1) points to a migration of the active crustal shortening towards W–SW. The combined geomorphic (field evidences) and morphometric data (quantitative analysis of geomorphic indices) provide evidence of relative variation in the tectonic activity along the Kazerun Fault Zone and related landforms. The utilization of geomorphic parameters with comparison to the field observations exhibits change in relative tectonic activities mostly corresponding to the change in mechanism of the prominent fault zones in the study area. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
柴乐  衷存堤  黄新曙  王道英  郭福生  谭玉华 《地质论评》2022,68(2):2022030003-2022030003
江西武功山花岗岩穹窿构造地貌景观类型具有多样性、典型性,具有极高的美学价值、科学价值和旅游开发价值。武功山花岗岩地貌类型可划分为花岗岩风化壳高山草甸、花岗岩侵蚀构造地貌、花岗岩流水侵蚀地貌和花岗岩崩塌堆积地貌等,而且每一类型又有多种微地貌景观,具有显著的集聚性特征,主要集中在金顶、明月山和羊狮幕地区,空间上可分为4个梯度,分别为中心高山草甸带、中心边缘构造侵蚀地貌区、外围峡谷、孤峰、瀑布、温泉区、武功山主山体前缘区。花岗岩穹窿构造核部及外缘区域的花岗岩地貌发育模式和发育阶段具有明显差异,反映了武功山不同山体单元多期差异性隆升后,在亚热带气候环境下,流水溯源侵蚀、构造、岩体性质等内外营力对原始地貌面的差异性作用过程。本研究不仅可为花岗岩穹窿构造地貌景观空间展布规律和地貌特征的研究提供有效借鉴,而且可为武功山地区地学科普、地质遗迹保护等提供支撑。  相似文献   

10.
Photogrammetric analysis of aerial photographs is used to investigate morphological changes in two large landslides located adjacent to the active Marathias normal fault along the Gulf of Corinth, Greece. This E–W trending fault intersects at almost right angles a series of west-verging and east-dipping thrust faults, and has a clear geomorphic expression. The fault's structural signature, such as the trace length, displacement, segmentation, and scarp freshness resembles other normal faults within the Gulf of Corinth. Along this fault we mapped a series of landslides that are mainly concentrated at the near tip areas. Two of them are hosted in the damage zone formed by the intersecting normal and reverse faults. The Marathias and Sergoula landslides show a significant geomorphic evolution on aerial photographs from 1945 to 1991.

Evolution of landslides in the study area appears to be correlated with two earthquake clusters that drive mass wasting in the order of 106 m3, significant drainage adjustment, and triggering of post-landslide river incision. We infer the following process sequence for these presumably earthquake-triggered landslides in the region: eroded material in Marathias landslide and reactivation of movement within the main body of the Sergoula landslide were observed in 1969 aerial photographs. Both landslides are deep-seated rotational rockslides. Obstruction or abandonment of channels due to the landslides establishes river incision and a dramatic increase of the rate of fan-delta progradation in the order of 1 m/yr. These large landslides are related to strong (M > 6.5) earthquakes concentrated along faults, and their reactivation period is almost a century, based on seismological or paleoseismological analyses.  相似文献   


11.
跨越中蒙边境线的戈壁天山断裂带是一条大型左旋走滑断裂带,东西展布约700 km。通过解译分析Landsat ETM卫星遥感影像和SRTM数字高程模型(DEM)数据,对戈壁天山断裂带晚新生代构造活动及其地貌特征进行了研究。结果表明,沿戈壁天山断裂带发育了一系列断层陡坎、系统的水系错位、挤压脊等典型的走滑构造地貌类型。遥感影像解译结果还显示3处系统水系错位,均受戈壁天山断裂左旋走滑运动的影响,表现出系统的左旋水平位错。结合历史地震数据、先存的基底构造和断层系统,本区地震活动性呈现出不可预测性和复杂性。此外,发育在断裂带上的3个大型挤压脊构造中:Karlik Tagh和Gurvan Sayhan就位于走滑断裂的终端,其走滑分量减弱并逐渐转为以逆冲分量为主的构造特征。Nemegt Uul位于2条不连续的走滑断裂的汇合和叠置部位。走滑断层均穿过了挤压脊构造,同时伴随有逆冲作用分量,造成了挤压脊沿走向和垂直走向上的构造地貌生长,显示了是陆内造山带演化的重要过程。  相似文献   

12.
To study neotectonics, the structural and morphotectonic aspects are studied along a part of mountain front region of Northeast Himalaya, Arunachal Pradesh, India. Unpaired river terraces are recognized near north of transverse Burai River exit, which is cut by an oblique fault. Across this fault, fluvial terraces are located at heights of 22.7 and 3 m, respectively, on the left and right banks. A water gap is formed along the river channel where the uplifted Middle Siwalik sandstone beds dipping 43° towards ENE direction, thrust over the Quaternary deposit consisting of boulders, cobbles, pebbles and sandy matrix. This river channel incised the bedrock across the intraformational Ramghat Thrust along which the rocks of the Middle Siwalik Formation thrust over the Upper Siwalik Formation. Recent reactivated fault activity is suggested north of the Himalayan Frontal Thrust that forms the youngest deforming front of the Himalaya. The uplifting along the stream channel is noticed extended for a distance of ~130 m and as a result the alluvial river channel became a bedrock river. The relative displacement of rocks is variable along the length of strike–slip faults developed later within the Ramghat Thrust zone. Longitudinal and Channel gradient profiles of Burai River exhibit knick points and increase in river gradient along the tapering ends of the profiles. The study suggests active out-of-sequence neotectonically active thrusting along the mountain front. Neotectonics combined with climatic factor during the Holocene times presents a virgin landscape environment for studying tectonic geomorphology.  相似文献   

13.
Previous studies indicate that a small quantity of recharge occurs from infiltration of streamflow in intermittent streams in the upper Mojave River basin, in the western Mojave Desert, near Victorville, California. Chloride, tritium, and stable isotope data collected in the unsaturated zone between 1994 and 1998 from boreholes drilled in Oro Grande and Sheep Creek Washes indicate that infiltration of streamflow occurs to depths below the root zone, and presumably to the water table, along much of Oro Grande Wash and near the mountain front along Sheep Creek Wash. Differences in infiltration at sites along each wash are the result of hydrologic variables such as proximity to the mountain front, quantity of streamflow, and texture of the subsurface deposits. Differences in infiltration between the washes are the result of large-scale geomorphic processes. For example, Oro Grande wash is incised into the Victorville fan and infiltration has occurred at approximately the same location over recent geologic time. In contrast, Sheep Creek Wash overlies an active alluvial fan and the stream channel can move across the fan surface through time. Infiltration does not occur to depths below the root zone at control sites outside of the washes. Electronic Publication  相似文献   

14.
Tectonically active areas, such as forearc regions, commonly show contrasting relief, differential tectonic uplift, variations in erosion rates, in river incision, and in channel gradient produced by ongoing tectonic deformation. Thus, information on the tectonic activity of a defined area could be derived via landscape analysis. This study uses topography and geomorphic indices to extract signals of ongoing tectonic deformation along the Mexican subduction forearc within the Guerrero sector. For this purpose, we use field data, topographical data, knickpoints, the ratio of volume to area (RVA), the stream-length gradient index (SL), and the normalized channel steepness index (ksn).The results of the applied landscape analysis reveal considerable variations in relief, topography and geomorphic indices values along the Guerrero sector of the Mexican subduction zone. We argue that the reported differences are indicative of tectonic deformation and of variations in relative tectonic uplift along the studied forearc. A significant drop from central and eastern parts of the study area towards the west in values of RVA (from ~500 to ~300), SL (from ~500 to ca. 400), maximum SL (from ~1500–2500 to ~1000) and ksn (from ~150 to ~100) denotes a decrease in relative tectonic uplift in the same direction. We suggest that applied geomorphic indices values and forearc topography are independent of climate and lithology. Actual mechanisms responsible for the observed variations and inferred changes in relative forearc tectonic uplift call for further studies that explain the physical processes that control the forearc along strike uplift variations and that determine the rates of uplift. The proposed methodology and results obtained through this study could prove useful to scientists who study the geomorphology of forearc regions and active subduction zones.  相似文献   

15.
The morphometric analysis of river basins represents a simple procedure to describe hydrologic and geomorphic processes operating on a basin scale. A morphometric analysis was carried out to evaluate the drainage characteristics of two adjoining, mountain river basins of the southern Western Ghats, India, Muthirapuzha River Basin (MRB) in the western slopes and Pambar River Basin (PRB) in the eastern slopes. The basins, forming a part of the Proterozoic, high-grade, Southern Granulite Terrain of the Peninsular India, are carved out of a terrain dominantly made of granite- and hornblende-biotite gneisses. The Western Ghats, forming the basin divide, significantly influences the regional climate (i.e., humid climate in MRB, while semi-arid in PRB). The Survey of India topographic maps (1:50,000) and Shuttle Radar Topographic Mission digital elevation data were used as the base for delineation and analysis. Both river basins are of 6th order and comparable in basin geometry. The drainage patterns and linear alignment of the drainage networks suggest the influence of structural elements. The Rb of either basins failed to highlight the structural controls on drainage organization, which might be a result of the elongated basin shape. The irregular trends in Rb between various stream orders suggest the influence of geology and relief on drainage branching. The Dd values designate the basins as moderate- to well-drained with lower infiltration rates. The overall increasing trend of Rl between successive stream orders suggests a geomorphic maturity of either basins and confirmed by the characteristic I hyp values. The Re values imply an elongate shape for both MRB and PRB and subsequently lower vulnerability to flash floods and hence, easier flood management. The relatively higher Rr of PRB is an indicative of comparatively steeply sloping terrain and consequently higher intensity of erosion processes. Further, the derivatives of digital elevation data (slope, aspect, topographic wetness index, and stream power index), showing significant differences between MRB and PRB, are useful in soil conservation plans. The study highlighted the variation in morphometric parameters with respect to the dissimilarities in topography and climate.  相似文献   

16.
《Geodinamica Acta》2001,14(5):265-287
In this paper we concentrate particularly on the geomorphological indicators left by active tectonics. In the central foothills of Taiwan, we used topography, drainage pattern and structural data to perform quantitative morphometric analysis and to determine relative age of fault-related anticlines. The Tiehchen, Tatu and Pakua ridge belt is a fault-related anticline system located in the hanging wall of the Changhua fault along the western thrust front of the foothills. Geomorphic systems are analysed with intent to detect the various responses of landforms and drainage pattern to late Quaternary deformation. Topography and drainage basin register uplift and are valuable tools to discriminate lateral propagation of an active frontal fold. Geomorphic field evidence and quantitative morphometric parameters are used to define the evolution of the rising anticline ridges and to infer tectonism style along an active front. Geometry of alluvial fans, formed along the frontal side of the anticlines, and weathered terrace deposits provide relevant information on neotectonics. Knowledge concerning these younger anticline ridges, makes this area a good example of an actively forming mountain front. We discuss in detail the origin of N045°, N095 and N120° trending oblique fault scarps which delimite numerous fault blocks. The fault scarps morphology is characterized by imbricate talus facets. Steeper topography accompanied by breaks in the slope along some transverse profiles, seems to correspond to the traces of successive uplifts.  相似文献   

17.
A fault scaling law suggests that, over eight orders of magnitude, fault length L is linearly related to maximum displacement D. Individual faults may therefore retain a constant ratio of D/L as they grow. If erosion is minor compared with tectonic uplift, the length and along‐strike relief of young mountain ranges should thus reflect fault growth. Topographic profiles along the crests of mountain ranges in the actively deforming foreland of north‐east Tibet exhibit a characteristic shape with maximum height near their centre and decreasing elevation toward the tips. We interpret the along‐strike relief of these ranges to reflect the slip distribution on high‐angle reverse faults. A geometric model illustrates that the lateral propagation rate of such mountain ranges may be deciphered if their length‐to‐height ratio has remained constant. As an application of the model, we reconstruct the growth of the Heli Shan using a long‐term uplift rate of ~1.3 mm yr?1 derived from 21Ne and 10Be exposure dating.  相似文献   

18.
Diana Necea  W. Fielitz  L. Matenco   《Tectonophysics》2005,410(1-4):137-156
The Romanian East Carpathians display large-scale heterogeneities along the mountain belt, unusual foredeep geometries, significant post-collisional and neotectonic activity, and major variations in topography, mostly developed in the aftermath of late Miocene (Sarmatian; 11 Ma) subduction/underthrusting and continental collision between the East European/Scythian/Moesian foreland and the inner Carpathians Tisza-Dacia unit. In particular, the SE corner of the arcuate orogenic belt represents the place of still active large-scale differential vertical movements between the uplifting mountain chain and the subsiding Focşani foredeep basin. In this key area, we have analysed the configuration of the present day landforms and the drainage patterns in order to quantify the amplitude, timing and kinematics of these post-collisional late Pliocene–Quaternary vertical movements. A river network is incising in the upstream a high topography consisting of the external Carpathians nappes and the Pliocene–Lower Pleistocene sediments of the foreland. Further eastwards in the downstream, this network is cross-cutting a low topography consisting of the Middle Pleistocene–Holocene sediments of the foreland. Geological observations and well-preserved geomorphic features demonstrate a complex succession of geological structures. The late Pliocene–Holocene tectonic evolution is generally characterised by coeval uplift in the mountain chain and subsidence in the foreland. At a more detailed scale, these vertical movements took place in pulses of accelerated motion, with laterally variable amplitude both in space and in time. After a first late Pliocene uplifting period, subsidence took place during the Earliest Pleistocene resulting in a basal Quaternary unconformity. This was followed by two, quantifiable periods of increased uplift, which affected the studied area at the transition between the Carpathians orogen and the Focşani foreland basin in the late Early Pleistocene and the late Middle to late Pleistocene. Both large-scale deformation events affected the western Focşani basin flank, tilting the entire structure with 9° during the late Early Pleistocene and uplifted it as a block during the early Late Pleistocene. The late Early Pleistocene tilting resulted in 750 m uplift near the frontal monocline and by extrapolation in a presumed 3000 m uplift near the central parts of the Carpathians. The late Middle to late Pleistocene cumulative uplift reaches 250 m and correlates with a contemporaneous progradation of the uplifted areas towards the Focşani Basin. The uplifting events are separated by a second Quaternary unconformity. On the whole, the late Pliocene–Quaternary evolution of the Carpathians orogen/Focşani basin structure indicate large-scale differential uplift during the latest stages of a continuous post-collisional orogenic evolution.  相似文献   

19.
宇宙成因核素~(10)Be揭示的北祁连山侵蚀速率特征   总被引:1,自引:0,他引:1  
山脉侵蚀速率的大小和时空分布信息是研究山脉构造—气候相互作用和地貌演化的关键切入点,其大小是受气候还是构造控制争论已久。宇宙成因核素10Be方法为从千年至万年尺度上定量研究流域平均侵蚀速率提供了一种先进和快捷的技术手段,为揭示侵蚀速率与现代气候和构造地貌因子的关系并进行相关分析提供了基础。利用该方法对北祁连山近现代侵蚀速率进行了研究。所采集的9个流域现代河沙样品,结合前人数据进行共同分析,结果显示该区侵蚀速率的变化范围为18.7~833 mm/ka,北祁连山中段的侵蚀速率约为323 mm/ka,该区侵蚀速率与降雨量没有明显的对应关系,但与流域平均坡度呈现很好的非线性关系,揭示坡度是该区侵蚀速率的最主要控制因素。通过对比北祁连山地表平均侵蚀速率和该区域的断层垂直滑动速率发现整体上该区域地表侵蚀速率要低于祁连山北缘断层的垂直滑动速率,反映了北祁连山正处于地形抬升和生长的过程之中。  相似文献   

20.
Economic concentrations of detrital gold are rare in young foreland basins due to paucity of significant gold sources, and a paucity of sediment recycling processes during filling of the foreland basin. Gold shed into the foreland basins is typically widely dispersed in an overwhelming volume of immature basin-fill detritus of no economic significance. In the actively forming Canterbury Basin of New Zealand, minor gold concentration occurs at the mountain front in the bed of the Rakaia River, and 60 km downstream on beaches and the crest of foredunes at the river mouth. The Cretaceous–Tertiary Denver and Western Canada Basins in North America also have minor gold concentrations at the mountain front, and minor gold dispersal into the basin. Tectonic quiescence in the middle Tertiary in the Denver Basin kept gold within 20 km of the mountain front, where renewed uplift in late Tertiary caused minor economic concentrations to form in modern streams. Gold has been transported ca. 200 km across the Western Canada basin by progressive recycling of gravel during slow (ca. 10 to 50 m/Ma) middle Tertiary–Recent regional uplift and tilting, but little concentration has occurred. Development of significant placers in a foreland basin, the generally accepted setting for the Witwatersrand Au-U palaeoplacers, appears to require specific tectonic conditions during and/or after basin evolution to drive the sedimentary recycling necessary for significant placer development. Such tectonic conditions have not occurred in an any of the three young foreland basins examined in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号