首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Determining sources of sediment to coastal systems is an important and complex problem that figures prominently in a myriad of geological, geomorphological, geochemical, and biological processes. Lithogenic (226Ra,228Ra,228Th,230Th,232Th) and fallout (137Cs,210Pb) isotopes were employed in conjunction with sedimentological methods to determine rates of sedimentation in the Nueces Delta and Nueces-Corpus Christi Estuary and to assess the relative importance of marine versus terrestrial sediment sources to the estuary. Similarity of lithogenic isotope ratios in surface sediments throughout the system precluded a numeric approach to discerning the importance of each of the two large scale sediment sources (terrestrial and marine). A stepwise, graphical examination of discrete lithogenic isotope activity concentrations shows more promise. Terrestrial, marine, and bay sediment means for226Ra versus232Th,226Ra versus230Th, and228Ra versus232Th show that terrestrial and marine sediment sources have different signatures, despite having similar grain size distributions (sands), and that sediment deposited in Nueces and Corpus Christi Bays are indistinguishable from the terrestrial component. Supporting evidence is provided by thorium isotopes,230Th versus232Th,228Th versus232Th, and228Th versus230Th. Nueces Delta sedimentation (0.09–0.53 g cm−2 yr−1) shows a subtle gradient, with rates generally lower in the west and progressively higher moving east, likely reflecting contrasts in land use and topography. Nueces Bay cores differ from those in Corpus Christi Bay in that sands comprise a larger percentage of their composition, and they are mixed over greater depth, most likely due to geographic and physiographic effects. Sediment accumulation rates consistently decrease over the first 20 km from the Nueces River and become constant after that, implying that the river is the most significant source of sediment to the estuary. The interpretation of sediment supply to this estuary as dominated by terrestrial inputs is based on three complimentary sets of data: sediment grain size distributions, discrete lithogenic isotope data (Ra versus Th and Th versus Th), and sediment accumulation rates for both Nueces and Corpus Christi Bays.  相似文献   

2.
Characterizing the dynamics of fluvial sediment sources over space and time is often critical in identifying human impacts on fluvial systems. Upland interfluve and subsoil sources of suspended sediment at Loco Bayou, Texas, were distinguished using 226Ra/232Th, 226Ra/230Th and, 228Ra/232Th. Source contributions were apportioned at three stations during within-bank and flood flows. 137Cs and 210Pbxs (excess 210Pb) were used to determine floodplain sedimentation; suspended sediment 210Pbxs/137Cs data mirrored results of Ra/Th, showing dominance of subsoil sources during within-bank flows, changing to interfluve sources during flood. This trend corresponds spatially to influx of sediment from ephemeral tributaries, reflecting mobilization of stored interfluvial sediments during flood stage. Upper basin sedimentation was similar but markedly less at the lowermost station. These results indicate (1) modified ephemeral tributaries store sediment derived from sheet wash, discharging them during flood, and (2) southernmost Loco Bayou is episodically re-worked, resulting in significantly reduced local rates of sedimentation.  相似文献   

3.
Several water and surface microlayer samples from Lake St. Clair, the Niagara River, and the North Shore of Lake Ontario collected during 1983–1986 have been assayed for a variety of radionuclides. In addition, the foam accumulating in the pool just below Niagara Falls was also analyzed and found to be the most efficient aqueous phase collector of137Cs,210Pb, and226Ra.The order of radioisotope specific activities from highest to lowest is: Lake Ontario sediment, Niagara River suspended solids, Niagara River foam, surface microlayer water, and subsurface water. Radiological dose rates to the sediments from137Cs,226Ra, and228Th total about 5 mGy/y.  相似文献   

4.
A total of 1270 raw-water samples (before treatment) were collected from 15 principal and other major aquifer systems (PAs) used for drinking water in 45 states in all major physiographic provinces of the USA and analyzed for concentrations of the Ra isotopes 224Ra, 226Ra and 228Ra establishing the framework for evaluating Ra occurrence. The US Environmental Protection Agency Maximum Contaminant Level (MCL) of 0.185 Bq/L (5 pCi/L) for combined Ra (226Ra plus 228Ra) for drinking water was exceeded in 4.02% (39 of 971) of samples for which both 226Ra and 228Ra were determined, or in 3.15% (40 of 1266) of the samples in which at least one isotope concentration (226Ra or 228Ra) was determined. The maximum concentration of combined Ra was 0.755 Bq/L (20.4 pCi/L) in water from the North Atlantic Coastal Plain quartzose sand aquifer system. All the exceedences of the MCL for combined Ra occurred in water samples from the following 7 PAs (in order of decreasing relative frequency of occurrence): the Midcontinent and Ozark Plateau Cambro-Ordovician dolomites and sandstones, the North Atlantic Coastal Plain, the Floridan, the crystalline rocks (granitic, metamorphic) of New England, the Mesozoic basins of the Appalachian Piedmont, the Gulf Coastal Plain, and the glacial sands and gravels (highest concentrations in New England).  相似文献   

5.
South India is one of the regions in the world that has the highest background radiation levels. In this region, river sediments are used in large quantities as building material. Therefore, the knowledge of the radionuclides distribution in such sediments is important for assessing their potential adverse effects on humans residing in buildings made of sediment material. For this goal, we focus on the determination of the natural radioactivity levels and magnetic properties in sediment samples collected from 33 locations along the southwestern Bharathapuzha river originating from the Anamalai hills. The sediment samples were subdivided into two categories according to particle size. It is observed that the average activity concentrations of 226Ra, 232Th, and 40K in sediment samples varied greatly with granulometric and geological differences. The average values of 226Ra, 232Th, and 40K and its associated radiological hazard parameters for category II samples (particle size between 149 μm and 2 mm) were lower than category I sediment samples (bulk samples). Moreover, the average radionuclide activity concentrations (except for 40K) and the calculated radiation hazard parameters are higher in the lowland region compared to the highland and the midland regions. The mass-specific magnetic susceptibility values ranged widely along the river, as well as between physiographic regions, e.g., average values for category I sediment samples were 950.2 × 10?8, 351.1 × 10?8 and 131.8 × 10?8 m3 kg?1 (for high-, mid- and lowland regions, respectively). Differences between physiographic regions and sediment fractions from both radioactivity determinations and magnetic parameters were analyzed with statistical tests and multivariate analysis, which showed the advantages of using both independent techniques.  相似文献   

6.
The “Water-Sediment Regulation Scheme” (WSRS) is critically important to the hydrologic evaluation of the Yellow River estuary since a huge pulse of water and sediment are delivered into the sea during a short period. We used the natural geochemical tracers radium (223Ra, 224Ra, 226Ra) and radon (222Rn) isotopes as well as other hydrological parameters to investigate the mixing variations and submarine groundwater discharge (SGD) in the Yellow River estuary under the influence of the 2013 WSRS. Dramatically elevated radium and radon isotopic activities were observed during this WSRS compared with activities measured during a non-WSRS period. Radium “water ages” indicated that the offshore transport rate nearly tripled when the river discharge increased from 400 to 3400 m3/s. We calculated the SGD flux in the Yellow River estuary based on a radium mass balance model as well as radium and radon time-series models. The SGD flux was estimated at 0.02~0.20 m/day during a non-WSRS period and 0.67~1.22 m/day during the 2013 WSRS period. The results also indicate that large river discharge tends to lead more intense SGD along the river channel direction with a large amount of fresh SGD.  相似文献   

7.
Several recent studies have suggested that submarine groundwater discharge (SGD) occurs in the Venice lagoon with discharge rates on the same order or larger than the surface runoff, as demonstrated previously in several other coastal zones around the world. Here, the first set of 222Rn data, along with new 226Ra data are reported, in order to investigate the occurrence and magnitude of SGD specifically in the southern basin of the lagoon. The independent connection with the Adriatic Sea (at the Chioggia inlet), in addition to the relative isolation of the water body from the main lagoon, make this area an interesting case study. There is probably only minimal fresh groundwater flux to the lagoon because the surrounding aquifer is subsiding and mainly has a lower hydraulic head than seawater.The data show that the Ra and Rn activities are in slight excess in the lagoon compared to the open sea, with values on the same order as those observed in the northern and central basins. Taking into account the water exchange rate between the lagoon and adjacent seawater provided by previous hydrodynamic numerical modelling, it is shown that this excess cannot be supported at steady state by only riverine input and by diffusive release from the sediment interstitial water. High activities observed in groundwater samples collected from 16 piezometers tapping into the shallow aquifer over the coastal lowland substantiate that the excess radioactivity in the lagoon may indeed be due to the advection of groundwater directly into the lagoon bottom water through the sediment interface. However, the data show that the groundwater composition is extremely heterogeneous, with high Ra activities concentrated within a narrow coastal strip where the contact between fresh and saline water takes place, while Rn strongly decreases when approaching the lagoon shore across the 20 km coastal plain. Assuming that the average groundwater activities measured in the coastal strip are representative of the SGD composition, a SGD flux of 7.7 ± 3.5 × 105 and 2.5 ± 2 × 106 m3/d is calculated using a 226Ra and 222Rn budget, respectively, (i.e. about 1-3 times the surface runoff), substantially lower than in previous studies. The influence of all assumptions on SGD estimates (groundwater heterogeneity, diffusive sediment flux, one-box versus multi-boxes model calculations) is discussed, and a sensitivity analysis of the influence of imperfect exchange and mixing at the lagoon outlets that affects the lagoon composition is provided. Finally, the results confirm that the SGD flux, calculated with these assumptions, is largely (∼80%) composed of saline lagoon water circulating through the sediment under the lagoon margin, and that the fresh water discharge associated with SGD is at most a minor term in the lagoon hydrologic balance.  相似文献   

8.
The objective of this study was chemical and radiological characterization of Kastela Bay sediments exposed to numerous anthropogenic sources like deposition of fly and bottom ash enriched in radionuclides and heavy metals, chemical plant, cement plant, iron plant, shipyard, electroplating facility, untreated industrial and domestic waste waters as well as heavy traffic. Totally, 33 samples of the mixture of fly and bottom ash, 12 sediment cores ranging from 0 to 40 cm and nine surface sediment samples were analyzed. Enrichment in heavy metals in the mixture of fly and bottom ash was ranging from 1.5 to 36 times compared to flysch soil while 226Ra and 238U were up to 50 times enriched compared to average activities characteristic for surrounding soils developed on the Middle and Upper Eocene flysch. Maximum 238U activity was approximately 32 times higher and 226Ra approximately 40 times higher in the Kastela Bay sediment compared to mean value determined for Adriatic sediments. The highest enrichment in sediment cores compared to background values were found for Zn (35.6 times), Pb (16 times), Cr (9.1 times) and Ni (4 times)  相似文献   

9.
A method is described for bringing a sediment sample into solution and subsequently carrying out analysis for 210Pb, 226Ra and 137Cs. Silica is removed from the sample by cyclic HNO3HF treatments. 137Cs is separated from 210Ra in a carbonate fusion, extracted by absorption on ammonium molybdophosphate, precipitated directly with BiI3 in presence of citric acid, and β-counted. 210Pb and 226Ra are separated out by 70–75% HNO3 precipitation. Further purification and mutual separation of the two radionuclides is achieved by solvent extraction and anion-exchange techniques. 210Pb and 226Ra are determined by β- and α- counting of their chromate precipitates, respectively, after allowing suitable ingrowth periods for their daughters. The procedural steps effectively eliminate possible interference from other natural or fall-out radioactivities.  相似文献   

10.
The activities of the most common, naturally occurring radionuclides 238U, 226Ra, 210Pb, 228Ra, 228Th, and 40K were measured by gamma-ray spectrometry in samples from reservoir rocks, geothermal fluids, and mineral precipitates at the geothermal research site Groß Schönebeck (North German Basin). Results demonstrated that the specific activity of the reservoir rock is within the range of the mean concentration in the upper earth crust of <800 Bq/kg for 40K and <60 Bq/kg for radionuclides of the 238U and 232Th series, respectively. The geothermal fluid showed elevated activity concentrations (up to 100 Bq/l) for 226Ra, 210Pb, and 228Ra, as compared to concentrations found in natural groundwater. Their concentration in filter residues even increased up to 100 Bq/g. These residues contain predominantly two different mineral phases: a Sr-rich barite (Sr, BaSO4) and laurionite (PbOHCl), which both precipitate upon cooling from the geothermal fluid. Thereby they presumably enrich the radionuclides of Ra (by substitution of Ba) and Pb. Analysis of these precipitates further showed an increased 226Ra/228Ra ratio from around 1–1.7 during the initial months of fluid production indicating a change in fluid composition over time which can be explained by different contributions of stimulated reservoir rock areas to the overall produced fluid.  相似文献   

11.
长江口北支水道萎缩淤浅分析   总被引:4,自引:1,他引:3  
根据1958~2009年长江口北支水下地形实测数据,基于GIS技术进行计算分析,结果表明:长江口北支水道趋于萎缩淤浅,其发展特征表现在河道宽度缩窄、水深变浅、水域面积减少以及河槽容积缩小;其驱动原因为1955年左右的自然河势调整以及几十年来沿岸人工围垦工程;北支萎缩淤浅造成了水道消亡加速、水沙倒灌风险加大。拟应采取修闸建坝等水利设施,充分利用北支水道的价值,减小其负面风险。  相似文献   

12.
《Chemical Geology》2002,182(2-4):409-421
An improved method was developed to measure 226Ra, 228Ra and 224Ra in freshwaters by gamma spectrometry. Radium was selectively extracted from acidified samples using specific filters (3M EMPORE™ Radium Rad disks). The latter was subsequently analysed by gamma spectrometry. Simultaneous and direct determination of the activities of the three isotopes was performed by comparison of gamma rays of the Radium Rad disks with those of a calibrated standard disk. This efficient and reliable method allowed a reduction of sample processing to a few hours.This technique was applied to analyse the Ra isotope compositions of several CO2-rich hydrothermal springs of the western border of the Limagne graben (French Massif Central). The studied springs emerge from a succession of granitic outcrops lined up along a major fault. Their chemical compositions evolve from calcic and magnesian chloro-bicarbonated to sodic bicarbonated. All the springs display high Ra activities, probably linked to high CO2 content and/or high cation content of these waters, with various Ra isotope ratios. 226Ra activity ranges from 588 to 2287 mBq/l and 228Ra activity from 260 to 1590 mBq/l, whereas 224Ra displays an activity between 245 and 1808 mBq/l. Four of the six analysed springs have (228Ra/226Ra) activity ratios lower than 0.7, thus, significantly lower than the ratio expected from an interaction with a calc-alkaline granitoid (typically having (232Th/238U) activity ratio between 1 and 2). Low (228Ra/226Ra) ratio (0.27) of the northern water (Montpensier) suggests the existence in this area of a zone of U concentration, possibly resulting from U mobilization and accumulation induced by previous hydrothermal events. The (224Ra/228Ra) ratios display smaller variations. They suggest short transit times from the zone of Ra leaching to the surface (a few days) or a very shallow addition of 224Ra (e.g., from a localised zone where 228Th could be preferentially adsorbed on the mineral surfaces). In some cases, these ratios might be used to infer differences in transit times of waters between neighboring springs.  相似文献   

13.
Factors controlling the groundwater transport of U, Th, Ra, and Rn   总被引:1,自引:0,他引:1  
A model for the groundwater transport of naturally occurring U, Th, Ra, and Rn nuclides in the238U and232Th decay series is discussed. The model developed here takes into account transport by advection and the physico-chemical processes of weathering, decay, α-recoil, and sorption at the water-rock interface. It describes the evolution along a flowline of the activities of the238U and232Th decay series nuclides in groundwater. Simple sets of relationships governing the activities of the various species in solution are derived, and these can be used both to calculate effective retardation factors and to interpret groundwater data. For the activities of each nuclide, a general solution to the transport equation has been obtained, which shows that the activities reach a constant value after a distance ϰi, characteristic of each nuclide. Where ϰi is much longer than the aquifer length, (for238U,234U, and232Th), the activities grow linearly with distance. Where gKi is short compared to the aquifer length, (for234Th,230Th,228Th,228Ra, and224Ra), the activities rapidly reach a constant or quasi-constant activity value. For226Ra and222Rn, the limiting activity is reached after 1 km. High δ234U values (proportional to the ratioɛ234Th/W238U) can be obtained through high recoil fraction and/or low weathering rates. The activity ratios230Th/232Th,228Ra/226Ra and224Ra/226Ra have been considered in the cases where either weathering or recoil is the predominant process of input from the mineral grain. Typical values for weathering rates and recoil fractions for a sandy aquifer indicate that recoil is the dominant process for Th isotopic ratios in the water. Measured data for Ra isotope activity ratios indicate that recoil is the process generally controlling the Ra isotopic composition in water. Higher isotopic ratios can be explained by different desorption kinetics of Ra. However, the model does not provide an explanation for228Ra/226Ra and224Ra/226Ra activity ratios less than unity. From the model, the highest222Rn emanation equals 2ɛ. This is in agreement with the hypothesis that222Rn activity can be used as a first approximation for input by recoil (Krishnaswamiet al 1982). However, high222Rn emanation cannot be explained by production from the surface layer as formulated in the model. Other possibilities involve models including surface precipitation, where the surface layer is not in steady-state.  相似文献   

14.
Two samples of produced-water collected from a storage tank at US Geological Survey research site B, near Skiatook Lake in northeastern Oklahoma, have activity concentrations of dissolved 226Ra and 228Ra that are about 1500 disintegrations/min/L (dpm/L). Produced-water also contains minor amounts of small (5–50 μm) suspended grains of Ra-bearing BaSO4 (barite). Precipitation of radioactive barite scale in the storage tank is probably hindered by low concentrations of dissolved SO4 (2.5 mg/L) in the produced-water. Sediments in a storage pit used to temporarily collect releases of produced-water have marginally elevated concentrations of “excess” Ra (several dpm/g), that are 15–65% above natural background values. Tank and pit waters are chemically oversaturated with barite, and some small (2–20 μm) barite grains observed in the pit sediments could be transferred from the tank or formed in place. Measurements of the concentrations of Ba and excess Ra isotopes in the pit sediments show variations with depth that are consistent with relatively uniform deposition and progressive burial of an insoluble Ra-bearing host (barite?). The short-lived 228Ra isotope (half-life = 5.76 a) shows greater reductions with depth than 226Ra (half-life = 1600 a), that are likely explained by radioactive decay. The 228Ra/226Ra activity ratio of excess Ra in uppermost pit sediments (1.13–1.17) is close to the ratio measured in the samples of produced-water (0.97, 1.14). Declines in Ra activity ratio (excess) with sediment depth can be used to estimate an average rate of burial of 4 cm/a for the Ra-bearing contaminant. Local shallow ground waters contaminated with NaCl from produced-water have low dissolved Ra (<20 dpm/L) and also are oversaturated with barite. Barite is a highly insoluble Ra host that probably limits the environmental mobility of Ra at site B.  相似文献   

15.
An unbiased estimate of the 3He/4He ratio (R) along the Earth's spreading ridge system is 9.14 ± 3.59 Ra (n = 503) where Ra is the atmospheric ratio (1.38 × 10~6). By arbitrarily excluding all values with R > 11 Ra and from ocean depths less than 2500 meters, I obtain 7.91 ± 1.50 Ra (n = 212), which is close to previous “filtered” estimates based on the hypothesis that the excluded values have been influenced by plumes. These are biased estimates.

Based on unbiased statistics, many of the socalled high-3He hotspot regions have isotopic ratios well within the MORB range, and all have absolute 3He concentrations much less than MORB. The high variance of some oceanic-island data compared to MORB reflects, in part, the difference between a small sample and a large sample, and magma-chamber processes.

Values of 11 to 15 Ra are commonly attributed to deep mantle plumes and “indicative of lower mantle involvement,” but these values are within 2σ of the mean and are not exceptional. Much higher values combined with low absolute helium concentrations are commonly associated with the onset of rifting, or volcanism, and may reflect a shallow, or lithospheric, low-238U/3He (LONU) source. The temporal progression to average MORB-like values suggests that the bulk of the magmas at spreading ridges and large oceanic constructs comes from below the LONU level. The termination of spreading is associated with low ratios, 6 to 7 Ra, similar to values associated with the high-238U/204Pb (HIMU) mantle component and some oceanic islands.  相似文献   

16.
Denitrification rates along a salinity gradient in the eutrophic Neuse River Estuary, North Carolina, were quantified using membrane inlet mass spectrometry (MIMS) within short-term batch incubations. Denitrification rates within the system were highly variable, ranging from 0 to 275 μmol N m−2 h−1. Intrasite variability increased with salinity, but no significant differences were observed across the salinity gradient. Denitrification rates were positively correlated with sediment oxygen demand at the upstream sampling site where sediment organic carbon levels were lowest. This relationship was not observed in the more saline sampling sites. Denitrification rates were highest during winter. On an annual basis, denitrification accounted for 26% of the dissolved inorganic nitrogen and 12% of the total nitrogen supplied to the system.  相似文献   

17.
The correlation between specific activities of some natural radionuclides (238U, 226Ra, 232Th, 40K) measured in sediment taken from river bottom was studied. The sediment was taken from the Serbian part of the Danube River. Good correlation between some of the isotopes is observed, so that their specific activity ratios are spread over a lower range than specific activities themselves. This suggests that evaluation of specific activity ratios of some natural radionuclides could be a more sensitive method for the determination of increased levels of some of them than the straightforward analysis of specific activities.  相似文献   

18.
Naturally-occurring radionuclides (uranium, radium, and radon), major dissolved constituents, and trace elements were investigated in fresh groundwater in 117 wells in fractured crystalline rocks from the Piedmont region (North Carolina, USA). Chemical variations show a general transition between two water types: (1) slightly acidic (pH 5.0–6.0), oxic, low-total dissolved solids (TDS) waters, and (2) near neutral, oxic to anoxic, higher-TDS waters. The uranium, radium, and radon levels in groundwater associated with granite (Rolesville Granite) are systematically higher than other rock types (gneiss, metasedimentary, and metavolcanic rocks). Water chemistry plays a secondary role on radium and radon distributions as the 222Rn/226Ra activity ratio is correlated with redox-sensitive solutes such as dissolved oxygen and Mn concentrations, as well as overall dissolved solids content including major divalent cations and Ba. Since 224Ra/228Ra activity ratios in groundwater are close to 1, we suggest that mobilization of Ra and Rn is controlled by alpha recoil processes from parent nuclides on fracture surfaces, ruling out Ra sources from mineral dissolution or significant long-distance Ra transport. Alpha recoil is balanced by Ra adsorption that is influenced by redox conditions and/or ion concentrations, resulting in an approximately one order of magnitude decrease (~ 20,000 to ~ 2000) in the apparent Ra distribution coefficient between oxygen-saturated and anoxic conditions and also across the range of dissolved ion concentrations (up to ~ 7 mM). Thus, the U and Th content of rocks is the primary control on observed Ra and Rn activities in groundwater in fractured crystalline rocks, and in addition, linked dissolved solids concentrations and redox conditions impart a secondary control.  相似文献   

19.
Interpretation of Deep Sea Drilling Project results and air-gun seismic profiles suggests that about 106 km3 of sediment have been eroded from eastern North America and southern Greenland and deposited in the adjacent North Atlantic since the beginning of continental glaciation. This volume is a minimum estimate which does not account for sediment beneath the continental shelf nor that portion carried south of the Blake-Bahama Outer Ridge by the Western Boundary Undercurrent. It represents erosion of about 100 m of solid rock and indicates that more than 90% of the sediment eroded from these areas was deposited as sands, silts, and clays in the adjacent western North Atlantic. Glaciation accounts for between 55 and 95 m of this average 100 m, and fluvial processes account for the remainder. The documented erosion in part substantiates W. A. White's (1972, Geological Society of America Bulletin83, 1037–1056) hypothesis of deep erosion and exhumation of shield regions, but is not in agreement with the entire volume of erosion implied by his model.  相似文献   

20.
Levels of naturally occurring radioactivity in sediment samples of Beni Haroun dam have been investigated. The activity concentrations of 238U and 232Th decay chains and 40K primordial radionuclide have been measured using high-resolution HPGe detector. Activity concentrations of 226Ra, 232Th, and 40K radionuclides were found in the ranges 9–66, 14–37, and 177–288 Bq/kg with the mean values 24.67, 25.98, and 208.10 Bq/kg, respectively. Radiological hazard parameters were estimated based on the activity concentrations for 226Ra, 232Th, and 40K to find out any radiation hazard associated with the sediments. Correlation studies between pairs of radionuclides were performed and discussed, and the obtained results are compared with international recommended values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号