首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
Double-peaked broad emission lines in active galactic nuclei are generally considered to be formed in an accretion disc. In this paper, we compute the profiles of reprocessing emission lines from a relativistic, warped accretion disc around a black hole in order to explore the possibility that certain asymmetries in the double-peaked emission-line profile which cannot be explained by a circular Keplerian disc may be induced by disc warping. The disc warping also provides a solution for the energy budget in the emission-line region because it increases the solid angle of the outer disc portion subtended to the inner portion of the disc. We adopted a parametrized disc geometry and a central point-like source of ionizing radiation to capture the main characteristics of the emission-line profile from such discs. We find that the ratio between the blue and red peaks of the line profiles becoming less than unity can be naturally predicted by a twisted warped disc, and a third peak can be produced in some cases. We show that disc warping can reproduce the main features of multipeaked line profiles of four active galactic nuclei from the Sloan Digital Sky Survey.  相似文献   

2.
We present Fe Kα line profiles from and images of relativistic discs with finite thickness around a rotating black hole using a novel code. The line is thought to be produced by iron fluorescence of a relatively cold X-ray-illuminated material in the innermost parts of the accretion disc and provides an excellent diagnostic of accretion flows in the vicinity of black holes. Previous studies have concentrated on the case of a thin, Keplerian accretion disc. This disc must become thicker and sub-Keplerian with increasing accretion rates. These can affect the line profiles and in turn can influence the estimation of the accretion disc and black hole parameters from the observed line profiles. We here embark on, for the first time, a fully relativistic computation which offers key insights into the effects of geometrical thickness and the sub-Keplerian orbital velocity on the line profiles. We include all relativistic effects such as frame-dragging, Doppler boost, time dilation, gravitational redshift and light bending. We find that the separation and the relative height between the blue and red peaks of the line profile diminish as the thickness of the disc increases. This code is also well suited to produce accretion disc images. We calculate the redshift and flux images of the accretion disc and find that the observed image of the disc strongly depends on the inclination angle. The self-shadowing effect appears remarkable for a high inclination angle, and leads to the black hole shadow being in this case, completely hidden by the disc itself.  相似文献   

3.
The central engines of active galactic nuclei (AGN) contain cold, dense material as well as hot X-ray-emitting gas. The standard paradigm for the engine geometry is a cold thin disc sandwiched between hot X-ray coronae. Strong support for this geometry in Seyferts comes from the study of fluorescent iron line profiles, although the evidence is not ubiquitously airtight. The thin disc model of line profiles in AGN and in X-ray binaries should still be benchmarked against other plausible possibilities. One proposed alternative is an engine consisting of dense clouds embedded in an optically thin, geometrically thick X-ray-emitting engine. This model is also motivated by studies of geometrically thick engines such as advection-dominated accretion flows (ADAFs). Here we compute the reprocessed iron line profiles from dense clouds embedded in geometrically thick, optically thin X-ray-emitting discs near a Schwarzschild black hole. We consider a range of cloud distributions and disc solutions, including ADAFs, pure radial infall and bipolar outflows. We find that such models can reproduce line profiles similar to those from geometrically thin, optically thick discs and might help alleviate some of the problems encountered from the latter. Thus, independent of thin discs, thick disc engines can also exhibit iron line profiles if embedded dense clouds can survive long enough to reprocess radiation.  相似文献   

4.
The broad X-ray iron line, detected in many active galactic nuclei, is likely to be produced by fluorescence from the X-ray-illuminated central parts of an accretion disc close to a supermassive black hole. The time-averaged shape of the line can be explained most naturally by a combination of special and general relativistic effects. Such line profiles contain information about the black hole spin and the accretion disc, as well as the geometry of the emitting region, and may help to test general relativity in the strong gravity regime. In this paper we embark on the computation of the temporal response of the line to the illuminating flux. Previous studies concentrated on the calculation of reverberation signatures from static sources illuminating the disc. In this paper we focus on the more physically justified case of flares located above the accretion disc and corotating with it. We compute the time-dependent iron line, taking into account all general relativistic effects, and show that its shape is of a very complex nature, and we also present light curves accompanying the iron line variability. We suggest that present and future X-ray satellites like XMM or Constellation-X may be capable of detecting features present in the computed reverberation maps.  相似文献   

5.
The fluorescent iron K α emission-line profile provides an excellent probe of the innermost regions of active galactic nuclei. Fe  xxv and Fe  xxvi in diffuse plasma above the accretion disc can affect the X-ray spectrum by iron K α resonant absorption. This in turn can influence the interpretation of the data and the estimation of the accretion disc and black hole parameters. We embark on a fully relativistic computation of this effect and calculate the iron line profile in the framework of a specific model in which rotating, highly ionized and resonantly absorbing plasma occurs close to the black hole. This can explain the features seen in the iron K α line profile recently obtained by Nandra et al. for the type 1 Seyfert galaxy NGC 3516. We show that the redshift of this feature can be mainly gravitational in origin and accounted for without the need to invoke fast accretion of matter on to the black hole. New X-ray satellites such as XMM , ASTRO-E and Chandra provide excellent opportunities to test the model against high-quality observational data.  相似文献   

6.
We performed detailed calculations of the relativistic effects acting on both the reflection continuum and the iron line from accretion discs around rotating black holes. Fully relativistic transfer of both illuminating and reprocessed photons has been considered in Kerr space–time. We calculated overall spectra, line profiles and integral quantities, and present their dependences on the black hole angular momentum. We show that the observed EW of the lines is substantially enlarged when the black hole rotates rapidly and/or the source of illumination is near above the hole. Therefore, such calculations provide a way to distinguish between different models of the central source.  相似文献   

7.
In this paper, we consider the process of alignment of a spinning black hole and a surrounding misaligned accretion disc. We use a simplified set of equations, that describe the evolution of the system in the case where the propagation of warping disturbances in the accretion disc occurs diffusively, a situation likely to be common in the thin discs in active galactic nuclei (AGN). We also allow the direction of the hole spin to move under the action of the disc torques. In such a way, the evolution of the hole–disc system is computed self-consistently. We consider a number of different situations and we explore the relevant parameter range, by varying the location of the warp radius R w and the propagation speed of the warp. We find that the dissipation associated with the twisting of the disc results in a large increase in the accretion rate through the disc, so that AGN accreting from a misaligned disc are likely to be significantly more luminous than those accreting from a flat disc. We compute explicitly the time-scales for the warping of the disc and for the alignment process and compare our results with earlier estimates based on simplified steady-state solutions. We also confirm earlier predictions that, under appropriate circumstances, accretion can proceed in a counter-aligned fashion, so that the accreted material will spin-down the hole, rather than spinning it up. Our results have implication in a number of different observational features of AGN such as the orientation and shape of jets, the shape of X-ray iron lines and the possibility of obscuration and absorption of X-ray by the outer disc as well as the general issue of the spin history of black holes during their growth.  相似文献   

8.
The X‐ray spectra of Active Galactic Nuclei (AGN) are complex and vary rapidly in time as seen in recent observations. Magnetic flares above the accretion disk can account for the extreme variability of AGN. They also explain the observed iron Kα fluorescence lines. We present radiative transfer modeling of the X‐ray reflection due to emission from magnetic flares close to the marginally stable orbit. The hard X‐ray primary radiation coming from the flare source illuminates the accretion disk. A Compton reflection/reprocessed component coming from the disk surface is computed for different emission directions. We assume that the density structure remains adjusted to the hydrostatic equilibrium without external illumination because the flare duration is only a quarter‐orbit. The model takes into account the variations of the incident radiation across the hot spot underneath the flare source. The integrated spectrum seen by a distant observer is computed for flares at different orbital phases close to the marginally stable orbit of a Schwarzschild black hole and of a maximally rotating Kerr black hole. The calculations include relativistic and Doppler corrections of the spectra using a ray tracing technique. We explore the practical possibilities to map out the azimuthal irradiation pattern of the inner accretion disks and conclude that the next generation of X‐ray satellites should reveal this structure from iron Kα line profiles and X‐ray lightcurves. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
We present an ASCA observation of the broad-line radio galaxy 3C 111. The X-ray spectrum is well described by a model consisting of a photoelectrically absorbed power-law form. The inferred absorbing column density is significantly greater than expected on the basis of 21-cm measurements of Galactic H  I . Whilst this may be the result of intrinsic absorption from a circumnuclear torus or highly warped accretion disc, inhomogeneities and molecular gas within the foreground giant molecular cloud may also be responsible for some of this excess absorption. We also claim a marginal detection of a broad iron Kα line which is well explained as being a fluorescent line originating from the central regions of a radiatively efficient accretion disc. This line appears weak in comparison to those found in (radio-quiet) Seyfert nuclei. We briefly discuss the implications of this fact.  相似文献   

10.
We use a combination of a cosmological N -body simulation of the concordance Λ cold dark matter paradigm and a semi-analytic model of galaxy formation to investigate the spin development of central supermassive black holes (BHs) and its relation to the BH host galaxy properties. In order to compute BH spins, we use the α model of Shakura & Sunyaev and consider the King et al. warped disc alignment criterion. The orientation of the accretion disc is inferred from the angular momentum of the source of accreted material, which bears a close relationship to the large-scale structure in the simulation. We find that the final BH spin depends almost exclusively on the accretion history and only weakly on the warped disc alignment. The main mechanisms of BH spin-up are found to be gas cooling processes and disc instabilities, a result that is only partially compatible with Monte Carlo models where the main spin-up mechanisms are major mergers and disc instabilities; the latter results are reproduced when implementing randomly oriented accretion discs in our model. Regarding the BH population, we find that more massive BHs, which are hosted by massive ellipticals, have higher spin values than less massive BHs, hosted by spiral galaxies. We analyse whether gas accretion rates and BH spins can be used as tracers of the radio loudness of active galactic nuclei (AGN). We find that the current observational indications of an increasing trend of radio-loud AGN fractions with stellar and BH mass can be easily obtained when placing lower limits on the BH spin, with a minimum influence from limits on the accretion rates; a model with random accretion disc orientations is unable to reproduce this trend. Our results favour a scenario where the BH spin is a key parameter to separate the radio-loud and radio-quiet galaxy populations.  相似文献   

11.
In this paper we look at one of the effects of irradiation on a warped accretion disc in the context of active galactic nuclei (AGN). A warp will catch a substantial amount of the radiation emitted by the central object. We consider the fluid motions that may arise inside a warped disc when the surface is subject to a radiation stress, and also the net mass flows that result. We find that, to first order, we have a balance of the viscous and Coriolis-type forces. The radial radiation stress causes outward motion of the surface layer, but only the azimuthal Poynting–Robertson drag leads to an increase in the net accretion rate. We investigate the distribution of the velocity perturbations and find them to be significant in determining the local structure of the disc.
An unexpected result is that the picture changes significantly when we take into account the periodic illumination of the warped disc. A type of resonance at the local Keplerian rotation frequency causes a flow that penetrates the whole thickness of the disc; these flows are faster than the flows due to unchanging illumination. They totally dominate the induced flows in terms of sheer mass, but significant impact on disc structure still occurs only near the surface, where velocity perturbations typically go up to some kilometres per second.  相似文献   

12.
The broad X-ray iron line observed in many active galactic nuclei spectra is thought to originate from the accretion disc surrounding the putative supermassive black hole. We show here how to perform the analytical integration of the geodesic equations that describe the photon trajectories in the general case of a rotating black hole (Kerr metric), in order to write a fast and efficient numerical code for modelling emission line profiles from accretion discs.  相似文献   

13.
We consider a thin accretion disc warped due to the Bardeen–Petterson effect, presenting both analytical and numerical solutions for the situation in which the two viscosity coefficients vary with radius as a power law, with the two power-law indices not necessarily equal. The analytical solutions are compared with numerical ones, showing that our new analytical solution is more accurate than the previous one, which overestimated the inclination change in the outer disc. Our new analytical solution is appropriate for moderately warped discs, while for extremely misaligned discs only a numerical solution is appropriate.  相似文献   

14.
We consider the properties of the warped accretion disc in NGC 4258 which is delineated by maser emission. We use our analytical models to consider whether the disc could be warped by Lense–Thirring precession. We show that such models fit the shape of the disc well and we determine the goodness of fit for various combinations of the warp radius and the disc and black hole configurations. Though the fits are compelling evidence, we note that such a model has implications for the formation and longevity of the disc which might be problematic for the current understanding of Seyfert galaxies.  相似文献   

15.
The accretion disc in active galactic nucleus (AGN) is expected to produce strong outflows, in particular an ultraviolet (UV)-line-driven wind. Several observed spectral features, including the soft X-ray excess, have been associated with the accretion disc wind. However, current spectral models of the X-ray spectrum of AGN observed through an accretion disc wind, known to provide a good fit to the observed X-ray data, are ad hoc in their treatment of the outflow velocity and density of the wind material. In order to address these limitations we adopt a numerical computational method that links a series of radiative transfer calculations, incorporating the effect of a global velocity field in a self-consistent manner { xstar Simulation Chain for Outflows with Radiative Transfer ( xscort )}. We present a series of example spectra from the xscort code that allow us to examine the shape of AGN X-ray spectra seen through a smooth wind with terminal velocity of 0.3 c , as appropriate for a UV-line-driven wind. We calculate spectra for a range of different acceleration laws, density distributions, total column densities and ionization parameters, but all these have sharp features that contrast strongly with both the previous 'smeared absorption' models, and with the observed smoothness of the soft X-ray excess. This rules out absorption in a radiatively driven accretion disc wind as the origin of the soft X-ray excess, though a larger terminal velocity, possibly associated with material in a magnetically driven outflow/jet, may allow outflow models to recover a smooth excess.  相似文献   

16.
We have calculated the relativistic reflection component of the X-ray spectra of accretion disks in active galactic nuclei (AGN). Our calculations have shown that the spectra can be significantly modified by the motion of the accretion flow, and the gravity and rotation of the central black hole. The absorption edges in the spectra suffer severe en- ergy shifts and smearing, and the degree of distortion depends on the system parameters, in particular, the inner radius of the accretion disk and the disk viewing inclination angles. The effects are significant. Fluorescent X-ray emission lines from the inner accretion disk could be a powerful diagnostic of space-time distortion and dynamical relativistic effects near the event horizons of accreting black holes. However, improper treatment of the re- flection component in fitting the X-ray continuum could give rise to spurious line-like features. These features mimic the true fluorescent emission lines and may mask their relativistic signatures. Fully relativistic models for reflection continua together with the emission lines are needed in order to extract black-hole parameters from the AGN X-ray spectra.  相似文献   

17.
Strong evidence for the presence of a warped Keplerian accretion disc in NGC 4258 (M 106) has been inferred from the kinematics of water masers detected at subparsec scales. Assuming a power-law accretion disc and using constraints on the disc parameters derived from observational data, we have analysed the relativistic Bardeen–Petterson effect driven by a Kerr black hole as the potential physical mechanism responsible for the disc warping. We found that the Bardeen–Petterson radius is comparable to or smaller than the inner radius of the maser disc (independent of the allowed value for the black hole spin parameter). Numerical simulations for a wide range of physical conditions have shown that the evolution of a misaligned disc due to the Bardeen–Petterson torques usually produces an inner flat disc and a warped transition region with a smooth gradient in the tilt and twist angles. Since this structure is similar to that seen in NGC 4258, we propose that the Bardeen–Petterson effect may be responsible for the disc warping in this galaxy. We estimated the time-scale necessary for the disc inside of the Bardeen–Petterson radius to align with the black hole's equator, as a function of the black hole spin. Our results show that the Bardeen–Petterson effect can align the disc within a few billion years in the case of NGC 4258. Finally, we show that if the observed curvature of the outer anomalous arms in the galactic disc of NGC 4258 is associated with the precession of its radio jet/counterjet, then the Bardeen–Petterson effect can provide the required precession period.  相似文献   

18.
Over the last few years X-ray observations of broad-line radio galaxies (BLRGs) by ASCA , RXTE and BeppoSAX have shown that these objects seem to exhibit weaker X-ray reflection features (such as the iron K α line) than radio-quiet Seyferts. This has lead to speculation that the optically thick accretion disc in radio-loud active galactic nuclei (AGN) may be truncated to an optically thin flow in the inner regions of the source. Here, we propose that the weak reflection features are a result of reprocessing in an ionized accretion disc. This would alleviate the need for a change in accretion geometry in these sources. Calculations of reflection spectra from an ionized disc for situations expected in radio-loud AGN (high accretion rate, moderate-to-high black hole mass) predict weak reprocessing features. This idea was tested by fitting the ASCA spectrum of the bright BLRG 3C 120 with the constant density ionized disc models of Ross & Fabian. A good fit was found with an ionization parameter of   ξ ∼4000 erg cm s-1  and the reflection fraction fixed at unity. If observations of BLRGs by XMM-Newton show evidence for ionized reflection then this would support the idea that a high accretion rate is likely required to launch powerful radio jets.  相似文献   

19.
We use morphological information of X-ray selected active galactic nuclei (AGN) hosts to set limits on the fraction of the accretion density of the Universe at   z ≈ 1  that is not likely to be associated with major mergers. Deep X-ray observations are combined with high-resolution optical data from the Hubble Space Telescope in the All-wavelength Extended Groth strip International Survey, Great Observatories Origins Deep Survey (GOODS) North and GOODS South fields to explore the morphological breakdown of X-ray sources in the redshift interval  0.5 < z < 1.3  . The sample is split into discs, early-type bulge-dominated galaxies, peculiar systems and point sources in which the nuclear source outshines the host galaxy. The X-ray luminosity function and luminosity density of AGN at   z ≈ 1  are then calculated as a function of morphological type. We find that disc-dominated hosts contribute  30 ± 9  per cent to the total AGN space density and  23 ± 6  per cent to the luminosity density at   z ≈ 1  . We argue that AGN in disc galaxies are most likely fuelled not by major merger events but by minor interactions or internal instabilities. We find evidence that these mechanisms may be more efficient in producing luminous AGN     compared to predictions for the stochastic fuelling of massive black holes in disc galaxies.  相似文献   

20.
Spectra of Seyfert 1s are commonly modelled as emission from an X-ray-illuminated flat accretion disc orbiting a central black hole. This provides both reprocessed and direct components of the X-ray emission, as required by observations of individual objects, and possibly a fraction of the cosmological X-ray background. There is some observational motivation for us to at least consider the role that an effectively concave disc surface might play: (1) a reprocessed fraction ≳1/2 in some Seyferts and possibly in the X-ray background, and (2) the commonality of a sharp iron line peak for Seyferts at 6.4 keV despite a dependence of peak location on inclination angle for flat disc models. Here it is shown that a concave disc may not only provide a larger total fraction of reprocessed photons, but can also reprocess a much larger fraction of photons in its outer regions compared with a flat disc. This reduces the sensitivity of the 6.4-keV peak location to the inner disc inclination angle because the outer regions are less affected by Doppler and gravitational effects. If the X-ray source is isotropic, the reprocessed fraction is directly determined by the concavity. If the X-ray source is anisotropic, the location of iron line peak can still be determined by concavity but the total reflected fraction need not be as large as for the isotropic emitter case. The geometric calculations herein are applicable to general accretion disc systems illuminated from the centre.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号