首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper provides the first comprehensive analysis of calanoid copepod vertical zonation and community structure at midwater depths (300–1000 m) through the lower oxygen gradient (oxycline) (0.02 to 0.3 ml/L) of an oxygen minimum zone (OMZ). Feeding ecology was also analyzed. Zooplankton were collected with a double 1 m2 MOCNESS plankton net in day and night vertically-stratified oblique tows from 1000 m to the surface at six stations during four seasons as part of the 1995 US Joint Global Ocean Flux Study (JGOFS) Arabian Sea project. The geographic comparison between a eutrophic more oxygenated onshore station and an offshore station with a strong OMZ served as a natural experiment to elucidate the influence of depth, oxygen concentration, season, food resources, and predators on the copepod distributions.Copepod species and species assemblages of the Arabian Sea OMZ differed in their spatial and vertical distributions relative to environmental and ecological characteristics of the water column and region. The extent and intensity of the oxycline at the lower boundary of the OMZ, and its spatial and temporal variability over the year of sampling, was an important factor affecting distributional patterns. Calanoid copepod species showed vertical zonation through the lower OMZ oxycline. Clustering analyses defined sample groups with similar copepod assemblages and species groups with similar distributions. No apparent diel vertical migration for either calanoid or non-calanoid copepods at these midwater depths was observed, but some species had age-related differences in vertical distributions. Subzones of the OMZ, termed the OMZ Core, the Lower Oxycline, and the Sub-Oxycline, had different copepod communities and ecological interactions. Major distributional and ecological changes were associated with surprisingly small oxygen gradients at low oxygen concentrations. The calanoid copepod community was most diverse in the most oxygenated environments (oxygen >0.14 ml/L), but the rank order of abundance of species was similar in the Lower Oxycline and Sub-Oxycline. Some species were absent or much scarcer in the OMZ Core. Two copepod species common in the Lower Oxycline were primarily detritivorous but showed dietary differences suggesting feeding specialization. The copepod Spinocalanus antarcticus fed primarily on components of the vertical particulate flux and suspended material, a less versatile diet than the co-occurring copepod Lucicutia grandis. Vertical zonation of copepod species through the lower OMZ oxycline is probably a complex interplay between physiological limitation by low oxygen, potential predator control, and potential food resources. Pelagic OMZ and oxycline communities, and their ecological interactions in the water column and with the benthos, may become even more widespread and significant in the future ocean, if global warming increases the extent and intensity of OMZs as predicted.  相似文献   

2.
根据2018?2019年春季两个航次在舟山近海进行的浮游生物调查结果,对舟山近海的浮游动物群落结构(类群组成、优势种数量)年际变化进行了研究,利用典范对应分析(Canonical Correspondence Analysis, CCA)研究了两年春季浮游动物类群组成差异、优势种变化的原因,初步探讨了春季浮游动物群落结构动态变化的机制。结果表明:根据表层温度(Sea Surface Temperature,SST)、表层盐度(Sea Surface Salinity,SSS)的聚类分析,将该区域分为3个水团:杭州湾内水团(I区)、舟山本岛上升流水团II区)、舟山近海水团(III区)。不同水团对浮游动物类群组成影响显著,引起2018年和2019年春季3个水团区差异的主要贡献种(贡献率>10%)均为中华哲水蚤,同一水团两年间年际差异的贡献种如下:I区为捷氏歪水蚤(56.91%)和真刺唇角水蚤(12.34%);II区为中华哲水蚤(72.64%)、五角水母(13.35%);III区为中华哲水蚤(41.93%)、夜光虫(22.94%)。CCA分析表明,第1 CCA轴(CCA1)和第2 CCA轴(CCA2)共解释了两年春季浮游动物优势种累计方差的46.14%和物种?环境累计方差的97.82%。CCA1主要反映了空间(近海水团和湾内水团)的差异。CCA2主要反映了2018年和2019年站位的年际差异。盐度是影响春季浮游动物群落结构空间差异的主要因素,而温度、叶绿素a浓度是春季浮游动物群落结构年际差异的主要因素。  相似文献   

3.
The identification of bacterial community structure has led, since the beginning of the 1990s, to the idea that bacterioplankton populations are stratified in the water column and that diverse lineages with mostly unknown phenotypes dominate marine microbial communities. The diversity of depth-related assemblages is also reflected in their patterns of activities, as bacteria affiliated to different groups can express different activities in a given ecosystem. We analysed bacterial assemblages (DGGE fingerprinting) and their activities (prokaryotic carbon production, protease, phosphatase, chitinase, beta-glucosidase and lipase activities) in two areas in the Ross Sea, differing mainly in their productivity regime: two stations are located in the Terra Nova Bay polynya area (highly productive during summer) and two close to Cape Adare (low phytoplankton biomass and activity). At every station a pronounced stratification of bacterial assemblages was identified, highlighting epipelagic communities differing substantially from the mesopelagic and the bathypelagic communities. Multivariate analysis suggested that pressure and indirectly light-affected variables (i.e. oxygen and fluorescence) had a great effect on the bacterial communities outcompeting the possible influences of temperature and dissolved organic carbon concentration. Generally activities decreased with depth even though a signal of the Circumpolar Deep Water (CDW) at one of the northern stations corresponded to an increase in some of the degradative activities, generating some ‘hot spots’ in the profile. We also found that similar assemblages express similar metabolic requirements reflected in analogous patterns of activity (similar degradative potential and leucine uptake rate). Furthermore, the presence of eukaryotic chloroplasts’ 16S rDNA in deep samples highlighted how in some cases the dense surface-water formation (in this case High Salinity Shelf Water—HSSW) and downwelling can affect, at least for some phylotypes, the bacterial (16S rDNA based) community structure of the dark ocean.  相似文献   

4.
The vertical profiles of temperature and salinity are classified by using the contemporary array of actual and monthly average archive oceanographic data. A scheme of decomposition of the investigated water area into zones according to the typical features of vertical stratification of the thermohaline field is proposed. The criterion of maximum of the horizontal temperature and salinity gradients is used to select and map the principal large-scale frontal boundaries. The parameters of fronts and some regularities of their seasonal variability are described and the data on water masses interacting in the analyzed system of fronts are presented.  相似文献   

5.
The inner shelf waters off Southeastern Brazil are periodically enriched by bottom intrusions of the cold and nutrient‐rich South Atlantic Central Water (SACW), which is transported offshore by the Brazil Current. This study examined the temporal contrasts in abundance and structure of pelagic copepod assemblages in a neritic station off Ubatuba, in relation to hydrography and phytoplankton biomass, to investigate the effects of SACW bottom intrusions on copepod population dynamics during three consecutive years. The water‐column characteristics shifted from a well‐mixed, more turbid and phytoplankton‐poor scenario during subsidence conditions to a stratified, less turbid and high Chl‐a concentration scenario during SACW bottom intrusions, leading to increased copepod diversity, abundance, and biomass. The rise in copepod diversity during SACW intrusions was related to the contribution of oceanic species in addition to coastal water species. The copepod community was numerically dominated by small‐sized species, such as Oncaea waldemari, Oithona plumifera, and clausocalanid and paracalanid copepodids, regardless of seasonality and SACW intrusions. Some large calanoid species contributed considerably to the total copepod biomass during intrusions. In addition to confirming that SACW seasonal intrusions play a key role in pelagic processes off Southeast Brazil, this study showed that the multiannual variability of SACW seasonal intrusions is important in regulating the structure and dynamics of copepod communities in this subtropical area.  相似文献   

6.
The distribution of five dominant calanoid copepods was related to different water masses in the Angola-Benguela Front system. Five water bodies were identified by principal component analysis, on the basis of abiotic parameter such as temperature, salinity, dissolved oxygen, phosphate, silicate, nitrate and nitrite. These parameters were reduced to single factors and arranged along two principal component axes. The copepod species incuded females and copepodites C5 of Calanoides carinatus and females of Metridia lucens, Centropages brachiatus, Nannocalanus minor and Aetideopsis carinata. The water bodies identified in the frontal system were related to currents, upwelling processes, an oxygen minimum layer and biological modification. The different copepod species, as well as the two ontogenetic stages of C. carinatus, showed clear preference for specific water bodies, and their behavioural and physiological adaptations to the environment are discussed.  相似文献   

7.
In this study we examined the spatial and temporal dynamics of planktonic bacterial assemblages at four different sites in the Lagoon of Venice. Samples were collected in January, April, July and October 2005 and several parameters (temperature, salinity, dissolved oxygen, chlorophyll a, dissolved macronutrients, dissolved and particulate organic carbon, viral and heterotrophic nanoplanktonic abundances) were determined in order to highlight the most important factors which are implied in shaping such assemblages. Furthermore we tested the relationship between similar assemblages and the patterns of activities (prokaryotic carbon production and several hydrolytic activities) that they perform in order to establish if, in this highly variable environment, similar assemblages behave in analogous ways. Results indicate that seasonality act as the main forcing on the communities. Moreover, we found a mismatch between community structure and patterns of activity possibly as a consequence of the heterogeneity of the lagoon which can affect in turn the assemblages' metabolic requirements (and thus their responses).  相似文献   

8.
Marine macrophytes sustain valuable epiphytic biodiversity. Nonindigenous macroalgae may induce changes in composition and structure of epifaunal assemblages and therefore support different assemblages from those associated with native species. In this study, differences in faunal community structure between the introduced fucoid Sargassum muticum and the native seagrass Cymodocea nodosa were tested over a year on an intertidal shallow sandy bottom at the southern introduction front, the El Jadida coastline (NW Morocco). Epifaunal community structure consistently differed between macrophytes through seasons, with more species‐rich assemblages associated with S. muticum than C. nodosa despite comparable abundances. The significantly greater epifauna diversity on S. muticum may be related to its structural complexity. However, the species contributing most to differences in assemblages between both macrophytes, such as Steromphala umbilicalis and S. pennanti, were found on both habitats with temporally varying abundances. Some species‐specific affinities were detected (Stenosoma cf. acuminatum, Elasmopus vachoni, Chauvetia brunnea). Nitrogen, dissolved oxygen, suspended matter and temperature were identified as the best explanatory variables contributing to the observed macroepifaunal patterns. This study provides evidence that S. muticum acts as a favourable and additional habitat for epifaunal species and supports a more diverse epifaunal assemblage in this Moroccan seagrass meadow.  相似文献   

9.
I~IOWThe area north of Taiwan is a mixing waters with complicate hydrographic features because itis influenced by the pushing and mixing of different water masses such as the Zhejiang -- Fujiancoastal water, the Taiwan Strait water, the Kuroshio surface water, the KurOShio sub-surfacewater and so on. The planktonic copepods in the area are also very complex and various. From research on species compoSition and ~nal variation, diversity and characteristics of copeal community in the area, …  相似文献   

10.
Spatial patterns of nematode community structure from two geographically spaced intermediate, micro-tidal beaches (i.e. Mediterranean and Baltic) were investigated. Differences in the nematode assemblages were found to be significantly different and related to the morphodynamic characteristics of the studied zones (upper beach, swash/breakers and subtidal). Highest nematode densities and species diversities were recorded on the coarse-grained, more physically controlled, Italian beach in contrast to the more chemically controlled Polish beach. This is in contrast to the worldwide patterns of macrofaunal communities. As demonstrated by higher taxonomic distinctness measurements, upper beaches were found to harbour species from both the marine and terrestrial ecosystem and are considered to be important ecotones between these adjacent systems. The swash/breaker zones are characterised by the loss of distinctive species caused by the high water percolation in these zones. The concept of parallel ecological communities ‘isocommunities’ is only supported for the upper beach zones.  相似文献   

11.
用模糊集合观点讨论水团的有关概念   总被引:1,自引:0,他引:1  
本文将划分水团的基本原则,概括为水团内部特征的相对均一性及其与外部海水的明显差异性。用模糊集合讨论了水型、水团和水系等有关概念。提出了用模糊集合观点定义水团及其核心、本体、边界与混合区的建议,并以1979年8月黄海和东海表层为例,给出了各水团的隶属函数。计算了其核心、本体、边界、混合区及贴近度,按其模糊性排出了顺序。  相似文献   

12.
13.
作者提出叶绿素是海洋浮游植物生物量的一个重指标,在两水系交汇的锋区,由于浮游植物大量繁殖,叶绿素富集,处于高生产力状态。同步获取黄海叶绿素在富集带及邻近外区的分布,可以确定水团边界。对此,作者根据卫星图象经几何纠正后,通过与黄海叶绿素a的边缘效应信息及区域分布态势比较并解译,将冬季黄海的水团划分为八种。本文还引证了遥感与其它常规资料佐证。  相似文献   

14.
The study was conducted during two cruises of June–August 2006 (summer),and January–February 2007 (winter) in the Huanghai (Yellow) Sea and East China Sea.Spatial and temporal variations of zooplankton abundance,biomass and community structure and its relation to currents and water masses over the continental shelf were examined.A total of 584 zooplankton species/taxa and 28 planktonic larvae were identified during the two surveys.Copepods were the most abundant component among these identified groups.Zooplankton abundance and biomass fluctuated widely and showed distinct heterogeneity in the shelf waters.Five zooplankton assemblages were identified with hierarchical cluster analysis during this study,and they were Huanghai Sea Assemblage,Changjiang Estuary Assemblage,Coastal Assemblage,East China Sea Mixed-water Assemblage and East China Sea Offshore Assemblage.Seasonal changes of zooplankton community composition and its geographical distribution were detected,and the locations of the faunistic areas overlap quite well with water masses and current systems.So we suggest that the zooplankton community structure and its changes were determined by the water masses in the Huanghai Sea and East China Sea.The results of this research can provide fundamental information for the long-term monitoring of zooplankton ecology in the shelf of Huanghai Sea and East China Sea.  相似文献   

15.
The aim of the present study was to evaluate whether the variability in the structure of the epiphytic assemblages of leaves and rhizomes of the Mediterranean seagrass Posidonia oceanica differed between depths at a large spatial scale. A hierarchical sampling design was used to compare epiphytic assemblages at two different depths (10 and 20 m) in terms of both species composition and abundance and patterns of spatial variability in the Tuscan Archipelago (North Western Mediterranean Sea, Italy). Results showed significant differences in the structure of assemblages on rhizomes and leaves at different depths. These differences were related to species composition and abundance; differences were not significant for total biomass, total percentage cover and percentage cover of animals and algae. Whereas the higher variability was observed among shoots in all the studied systems, patterns of spatial variability at the other spatial scales investigated differed between the two studied depths. Moreover, in the present study, analogous patterns between depths resulted for both the assemblages of leaves and rhizomes, suggesting that factors that change with depth can be responsible for the spatial variability of both the assemblages (leaves and rhizomes), and operate regardless of the microclimatic conditions and the structure of assemblages.  相似文献   

16.
This study focuses on the comparison of oceanic and coastal cold-core eddies with inner-shelf and East Australian Current (EAC) waters at the time of the spring bloom (October 2008). The surface water was biologically characterised by the phytoplankton biomass, composition, photo-physiology, carbon fixation and by nutrient-enrichment experiments. Marked differences in phytoplankton biomass and composition were observed. Contrasted biomarker composition suggests that biomarkers could be used to track water masses in this area. Divinyl chlorophyll a, a biomarker for tropical Prochlorophytes, was found only in the EAC. Zeaxanthin a biomarker for Cyanophytes, was found only within the oceanic eddy and in the EAC, whereas chlorophyll b (Chlorophytes) was only present in the coastal eddy and at the front between the inner-shelf and EAC waters.This study showed that cold-core eddies can affect phytoplankton, biomass, biodiversity and productivity. Inside the oceanic eddy, greater phytoplankton biomass and a more complex phytoplankton community were observed relative to adjacent water masses (including the EAC). In fact, phytoplankton communities inside the oceanic eddy more closely resembled the community observed in the inner-shelf waters. At a light level close to half-saturation, phytoplankton carbon fixation (gC d−1) in the oceanic eddy was 13-times greater than at the frontal zone between the eddy and the EAC and 3-times greater than in the inner-shelf water. Nutrient-enrichment experiments demonstrated that nitrogen was the major macronutrient limiting phytoplankton growth in water masses associated with the oceanic eddy. Although the effective quantum yield values demonstrate healthy phytoplankton communities, the phytoplankton community bloomed and shifted in response to nitrogen enrichments inside the oceanic eddy and in the frontal zone between this eddy and the EAC. An effect of Si enrichment was only observed at the frontal zone between the eddy and the EAC. No response to nutrient enrichment was observed in the inner-shelf water where ambient NOx, Si and PO4 concentrations were up to 14, 4 and 3-times greater than in the EAC and oceanic eddy. Although results from the nutrient-enrichment experiments suggest that nutrients can affect biomass and the composition of the phytoplankton community, the comparison of all sites sampled showed no direct relationship between phytoplankton biomass, nutrients and the depth of the mixed layer. This is probably due to the different timeframe between the rapidly changing physical and chemical oceanography in the separation zone of the EAC.  相似文献   

17.
We analysed the consistence of vertical patterns of distribution (i.e. zonation) for macrofauna at different spatial scales on four intermediate exposed beaches in the North of Portugal. We tested the hypothesis that biological zonation on exposed sandy beaches would vary at the studied spatial scales. For this aim, abundance, diversity and structure of macrobenthic assemblages were examined at the scales of transect and beach. Moreover, the main environmental factors that could potentially drive zonation patterns were investigated. Univariate and multivariate analyses revealed that the number of biological zones ranged from two to three depending on the beach and from indistinct zonation to three zones at the scale of transect. Therefore, results support our working hypothesis because zonation patterns were not consistent at the studied spatial scales. The median particle size, sorting coefficient and water content were significantly correlated with zonation patterns of macrobenthic assemblages. However, a high degree of correlation was not reached when the total structure of the assemblage was considered.  相似文献   

18.
The fundamental principle for differentiating water masses is a strict consideration of their relative "interior homogeneity" and obvious "exterior differences" with others in characteristics. The conceptions of water type, water mass and water system are dealt with on the basis of the theory of fuzzy sets. A proposal to apply the theory of fuzzy sets to define the water mass and its core, independent area, boundary and mixing area is put forward.As an example, the membership function of the surface water masses in the Yellow Sea and East China Sea in August, 1979, are considered. Their cores, independent areas, boundaries, mixing areas and the approximation degrees between different water masses are calculated respectively. The water masses are ranged according to their fuzzy degrees.  相似文献   

19.
The sea-surface distribution of four selected fossilizable phytoplankton groups (coccolithophores, diatoms, silicoflagellates and dinoflagellates) has been studied along a transect from Cape Town (34°S) to South Sandwich Islands (57°S) during the late austral summer. The observed distribution of these groups shows that their biogeographical distribution is significantly constrained by the water masses and associated frontal systems of the Southern Ocean. Coccolithophores are the dominant group and show cell abundances up to 51×103 cells/l down to 57°S. Three restricted areas are marked by particularly high cell densities: the continental shelf of South Africa, the area between the Sub-Tropical Convergence and the Sub-Antarctic Front, and the southern border of the Antarctic Polar Front, where the highest abundances are recorded (>650×103 cells/l). The species composition of the various assemblages representative of the four groups defines distinct biogeographical zones bounded by marked sea-surface temperature gradients. This biogeographical distribution is confirmed by factor analysis of the coccolithophore (5 factors, 85% of the total variance) and diatom and silicoflagellate (7 factors, 87.5% of the total variance) populations. When compared with the distribution pattern of siliceous fossil assemblages in surface sediments, our data show a more accurate coupling between the various water-masses of the South Atlantic Ocean and the living siliceous population.  相似文献   

20.
The structure of the assemblages associated with the mussel aggregations of Bathymodiolus azoricus was investigated. The mussel beds were found on the hydrothermal vent fields on the Mid-Atlantic Ridge (the Menez Gwen, Lucky Strike, and Rainbow areas) at the depths of 850–2400 m. The community structure of the mussel bed assemblages varied between the studied areas. Large number of species was unique to Menez Gwen mussel beds; the most observed taxa were not specialized hydrothermal species. All the other, nonunique species were found for the Lucky Strike region. The lowest mussel assemblage structure evenness was observed in the shallowest area, the Menez Gwen area (850 m depth). We assume that two types of mussel assemblages—nematode-dominated and copepod-dominated ones—exist in the Lucky Strike field. The assemblages of B. azoricus differ significantly from the assemblages of B. thermophilus inhabiting the Pacific hydrothermal vents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号