首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bianchi Type I magnetized Cosmological model for perfect fluid distribution is investigated. The magnetic field is due to an electric current produced along x-axis. The distribution consists of an electrically neutral perfect fluid with an infinite electrical conductivity. To get a determinate solution, a supplementary conditionA = BC between metric potentials is used. The behaviour of the model in presence and absence of magnetic field is also discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
A spatially-homogeneous and anisotropic magnetized cosmological model in Lyra's manifold is obtained when the source of the gravitational field is a perfect fluid distribution. The magnetic field is due to an electric current produced along thex-axis. The physical behaviour of the model is discussed.  相似文献   

3.
Cylindrically symmetric inhomogeneous cosmological model for perfect fluid distribution with electromagnetic field is obtained. The source of the magnetic field is due to an electric current produced along the z-axis. F 12 is the non-vanishing component of electromagnetic field tensor. To get the deterministic solution, it has been assumed that the expansion θ in the model is proportional to the shear σ. Physical and geometric aspects of the models are also discussed in presence and absence of magnetic field.   相似文献   

4.
The problem of electromagnetic radiation from electric and magnetic line sources interacting with a moving magnetoplasma slab backed by a finitely conducting medium is treated. The local magnetostatic field is aligned parallel with the line source and is perpendicular to the direction of slab motion. For the configuration, theE andH modes are excited independently by a magnetic and an electric line source respectively. Expressions for the far zone radiation fields and the radiation pattern have been obtained for both the line sources. It is found that the radiation due to an electric line source is not affected by the presence of a static magnetic field and the motion of the slab medium. Numerical results for the radiation pattern referring to both the line sources have been presented for a wide range of parameters characterizing the finite magnetostatic field, the conductivity of the medium backing the plasma, the thickness of the slab and the location of the line source.  相似文献   

5.
Satoshi Hinata 《Solar physics》1987,109(2):321-333
As the electrical conductivity along the magnetic field in solar atmosphere is large, parallel electric fields have been neglected in most investigations. We will first demonstrate their importance for post-flare loops, and then introduce a model for them which takes into account the effect of parallel electric fields. The electric field calculated from the model is consistent with the electric field observed by Foukal et al. (1983).  相似文献   

6.
This paper considers the two-dimensional hydromagnetic oscillatory flow of a viscous, incompressible and electrically conducting fluid, past a porous, infinite, limiting surface subjected to variable suction and moving impulsively with a constant velocity in the presence of a transverse magnetic field. Approximate solutions are obtained for the velocity field and expressions are given for the velocity, the induced magnetic field, the skin friction, and the electric current density for the magnetic Prandtl numberP m =1 and the magnetic parameterM<1. Variations of the above quantities are presented graphically, and the paper is concluded with a quantitative discussion.  相似文献   

7.
Tilted Bianchi Type I cosmological model for perfect fluid distribution in presence of magnetic field, is investigated. To get a determinate solution, it has been assumed that the universe is filled with stiff perfect fluid distribution together with A=(BC) n where A,B,C are metric potentials and n is a constant. The behaviour of the model in presence and absence of magnetic field is discussed. The various physical and geometrical aspects of the model, is also discussed. It has been shown that tilted nature of the Bianchi Type I model is preserved due to magnetic field. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
We discuss spatially homogeneous and anisotropic Bianchi type VI 0 cosmological model with anisotropic fluid and magnetic field. The energy-momentum tensor consists of anisotropic fluid with anisotropic EoS and a uniform magnetic field of energy density ρ B . Exact solution of the field equations is obtained by using the condition that expansion is proportional to the shear scalar. We focus on the future evolution of the model both in the presence and absence of magnetic field. In particular, we address the question whether these models approach to isotropy.  相似文献   

9.
A class of magnetostatic equilibria with axial symmetry outside a unit sphere in the presence of plasma pressure and an r –2 gravitational field is constructed. The structure contains a localized current-carrying region confined by a background bipolar potential field, and the shape of the region changes subject to the variation of the electric current. The continuity requirement for the magnetic field and plasma pressures at the outer boundary of the cavity defines a free boundary problem, which is solved numerically using a spectral boundary scheme. The model is then used to study the expansion of the current-carrying region, caused by the buildup of magnetic shear, against the background confining field. The magnetic shear in our model is induced by the loading of an azimuthal field, accompanied by a depletion of plasma density.We show that due to the additional effect of confinement by the dense surrounding plasma, the energy of the magnetic field can exceed the energy of its associated open field, presumably a necessary condition for the onset of coronal mass ejections. (However, the plasma beta of the confining fluid is higher than that in the outer boundary of a realistic helmet-streamer structure.) Furthermore, under the assumption that coronal mass ejections are driven by magnetic buoyancy, the result from our model study lends further support to the notion of a suspended magnetic flux rope in the low-density cavity of a helmet-streamer as a promising pre-ejection configuration.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

10.
Kantowski-Sachs cosmological model in the presence of magnetized anisotropic dark energy is investigated. The energy-momentum tensor consists of anisotropic fluid with anisotropic EoS p=ωρ and a uniform magnetic field of energy density ρ B . We obtain exact solutions to the field equations using the condition that expansion is proportional to the shear scalar. The physical behavior of the model is discussed with and without magnetic field. We conclude that universe model as well as anisotropic fluid does not approach isotropy through the evolution of the universe.  相似文献   

11.
An analysis of the transverse magnetic field effects on the free convective flow of an incompressible, electrically conducting viscous fluid past an infinite non-conducting and non-magnetic, vertical limiting surface (e.g., of a star), has been carried out. The limiting surface is assumed to move after receiving an initial impulse. Exact solutions to equations governing the flow are derived with the help of the Laplace transform technique. The velocity, the induced magnetic field, the skin-friction and the electric current density are shown graphically. The effects of the Grashof numberG, the Prandtl numberP, and the magnetic parameterM are described during the course of discussion.  相似文献   

12.
An Abelian Higgs model of sunspot generalized in a Chern-Simons-like fashion is discussed. It is shown, in particular, that both themagnetic andelectric fields are present inside the sunspot, and that the latterrotates. One demonstrates that the total angular momentum of a static, cylindrically symmetric sunspot is proportional top 2, wherep — an integer — stands for the number of magnetic fluxquanta carried by the spot. Finally, the behaviour of the Higgs field amplitude, magnetic and electric field strengths are illustrated for the spots carrying one to five flux quanta, all having the penumbra-to-umbra radius ratio of the value .  相似文献   

13.
A viscous fluid cosmological model in presence of magnetic field and zero-mass scalar fields is developed. The non-negativity condition of viscous fluid pressure prescribes a certain minimum value oft vis-a-vis of the scale factorQ(t) and at this epoch the model is found to be singularity free.  相似文献   

14.
A new class of plane-symmetric inhomogeneous cosmological models of perfect fluid distribution with electro-magnetic field based on Lyra’s geometry is obtained by considering a time dependent displacement field. The source of the magnetic field is due to an electric current produced along the z-axis. Only F 12 is a non-vanishing component of electromagnetic field tensor. To get the deterministic solutions, the free gravitational field is assumed to be of Petrov type-II non-degenerate. It has been found that the displacement vector β(t) behaves like cosmological term Λ which is consistent with the recent observations of type Ia supernovae. It is also observed that β(t) affects entropy. Some geometric and physical behaviour of the models are also discussed in presence of magnetic field.   相似文献   

15.
The objective of the present paper is to study an anisotropic Bianchi-I cosmological model filled with bulk viscous fluid and magnetic field in string cosmology. The magnetic field is due to an electric current produced along the x-axis. The expansion in the model is considered to be proportional to one of the components of the shear tensor. We obtain two different quadrature forms of volume scale factor by considering two different relations between bulk viscosity and expansion scalar. We discuss the behavior of the classical potential with respect to the volume scale factor in the presence or absence of magnetic field and bulk viscosity in each case. We observe the role of bulk viscosity on the classical potential and also on the choices of bulk viscous pressure. By introduction of magnetic field or bulk viscosity or both into the model it results in changes in the potential as well as in volume scale factors. The physical and geometrical aspects of the solutions are discussed in detail.  相似文献   

16.
The evolution of the current sheet in the electric current direction (in the guiding magnetic field direction) is studied numerically in the 3-D particle-in-cell model with two current sheets and periodic boundary conditions. In the regime with (where v D and are the electric current drift and electron thermal velocities, respectively) the current sheets are unstable owing to the Buneman and kink instabilities and become strongly fragmented. During their evolution, in addition to an increase of the energy of the electric field component in the guiding magnetic field direction, the energies of the electric field components in the perpendicular direction are even more enhanced. In the current sheet the anomalous resistivity (η anom/η C∼7×105, where η C is the classical resistivity) is generated and thus the magnetic field dissipates. Most of the dissipated magnetic energy is transformed into the electron kinetic energy in the direction of the electric current. The associated electric field accelerates the electrons from the tail of the distribution function.  相似文献   

17.
The oscillations of a homogeneous, compressible, self gravitating fluid spheroid in static equilibrium with a poloidal magnetic field inside and a dipole type field outside are studied using the second order tensor virial equations. It is found that for small values of the eccentricity, the equilibrium model is dynamically stable provided the usual criterion of pulsative stability in the absence of a magnetic field (>4/3) is satisfied. The magnetic field removes the accidental degeneracy of the radial and the non-radial modes of oscillation which exists for =1.6 in the absence of a magnetic field.  相似文献   

18.
The instability of a supercritical Taylor‐Couette flow of a conducting fluid with resting outer cylinder under the influence of a uniform axial electric current is investigated for magnetic Prandtl number Pm = 1. In the linear theory the critical Reynolds number for axisymmetric perturbations is not influenced by the current‐induced axisymmetric magnetic field but all axisymmetric magnetic perturbations decay. The nonaxisymmetric perturbations with m = 1 are excited even without rotation for large enough Hartmann numbers (“Tayler instability”). For slow rotation their growth rates scale with the Alfvén frequency of the magnetic field but for fast rotation they scale with the rotation rate of the inner cylinder. In the nonlinear regime the ratio of the energy of the magnetic m = 1 modes and the toroidal background field is very low for the non‐rotating Tayler instability but it strongly grows if differential rotation is present. For super‐Alfv´enic rotation the energies in the m = 1 modes of flow and field do not depend on the molecular viscosity, they are almost in equipartition and contain only 1.5 % of the centrifugal energy of the inner cylinder. The geometry of the excited magnetic field pattern is strictly nonaxisymmetric for slow rotation but it is of the mixed‐mode type for fast rotation – contrary to the situation which has been observed at the surface of Ap stars. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
Reliable measurements of the solar magnetic field are restricted to the level of the photosphere. For about half a century attempts have been made to calculate the field in the layers above the photosphere, i.e. in the chromosphere and in the corona, from the measured photospheric field. The procedure is known as magnetic field extrapolation. In the superphotospheric parts of active regions the magnetic field is approximately force-free, i.e. electric currents are aligned with the magnetic field. The practical application to solar active regions has been largely confined to constant-α or linear force-free fields, with a spatially constant ratio, α, between the electric current and the magnetic field. We review results obtained from extrapolations with constant-α force-free fields, in particular on magnetic topologies favourable for flares and on magnetic and current helicities. Presently, different methods are being developed to calculate non-constant-α or nonlinear force-free fields from photospheric vector magnetograms. We also briefly discuss these methods and present a comparison of a linear and a nonlinear force-free magnetic field extrapolation applied to the same photospheric boundary data. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
A problem of static plane symmetric metric in the perfect fluid, the mesonic massive scalar field and in their coupling is studied in Rosen’s (1973) bimetric theory of relativity. It was found that the matter field like either perfect fluid or mesonic massive scalar field or their coupling does not survive in bimetric theory of gravitation when the space–time is governed by n-dimensional static plane symmetric metric.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号