首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Garnet-bearing assemblages of K-rich and K-poor metapelitesfrom the Ilesha Schist belt, SW Nigeria, are investigated. K-richsamples contain the assemblages (A) garnet–staurolite–muscovite–chlorite–magnetite,(B) andalusite–garnet–staurolite–muscovite–chlorite–magnetiteand (C) sillimanite–andalusite–garnet–muscovite–chlorite–magnetite.K-poor samples contain the assemblages (D) garnet–staurolite–cordierite–chloriteand (E) garnet–cordierite–chlorite ± staurolite.All assemblages contain quartz, plagioclase, biotite and ilmenite.PT pseudosections calculated in the system CaO–Na2O–K2O–TiO2–MnO–FeO–MgO–Al2O3–SiO2 –H2O ± O2 suggest peak metamorphismat 590 ± 20°C at 5 ± 0·5 kbar, followedby retrogression to 550°C at 3·0 kbar, in agreementwith field evidence, domain assemblages, mineral compositions,modes and geothermobarometry. The absence of compositional zonationshows that garnet in all investigated rocks nucleated and grewat constant P–T–X in equilibrium with associatedminerals on the thin-section scale. However, the garnet-in reactiondid not begin until the establishment of a significant temperatureoverstep of  相似文献   

2.
In the southern periphery of the Sausar Mobile Belt (SMB), thesouthern component of the Central Indian Tectonic Zone (CITZ),a suite of felsic and aluminous granulites, intruded by gabbro,noritic gabbro, norite and orthopyroxenite, records the polymetamorphicevolution of the CITZ. Using sequences of prograde, peak andretrograde reaction textures, mineral chemistry, geothermobarometricresults and petrogenetic grid considerations from the felsicand the aluminous granulites and applying metamorphosed maficdyke markers and geochronological constraints, two temporallyunrelated granulite-facies tectonothermal events of Pre-Grenvillianage have been established. The first event caused ultrahigh-temperature(UHT) metamorphism (M1) (T 950°C) at relatively deepercrustal levels (P 9 kbar) and a subsequent post-peak near-isobariccooling PT history (M2). M1 caused pervasive biotite-dehydrationmelting, producing garnet–orthopyroxene and garnet–rutileand sapphirine–spinel-bearing incongruent solid assemblagesin felsic and aluminous granulites, respectively. During M2,garnet–corundum and later spinel–sillimanite–biotiteassemblages were produced by reacting sapphirine–spinel–sillimaniteand rehydration of garnet–corundum assemblages, respectively.Applying electron microprobe (EMP) dating techniques to monazitesincluded in M1 garnet or occurring in low-strain domains inthe felsic granulites, the UHT metamorphism is dated at 2040–2090Ma. Based on the deep crustal heating–cooling PTtrajectory, the authors infer an overall counterclockwise PTpath for this UHT event. During the second granulite event,the Palaeoproterozoic granulites experienced crustal attenuationto 6·4 kbar at T 675°C during M3 and subsequentnear-isothermal loading to 8 kbar during M4. In the felsic granulites,the former is marked by decomposition of M1 garnet to orthopyroxene–plagioclasesymplectites. During M4, there was renewed growth of garnet–quartzsymplectites in the felsic granulites, replacing the M3 mineralassemblage and also the appearance of coronal garnet–quartz–clinopyroxeneassemblages in metamorphosed mafic dykes. Using monazites frommetamorphic overgrowths and metamorphic recrystallization domainsfrom the felsic granulite, the M4 metamorphism is dated at 1525–1450Ma. Using geochronological and metamorphic constraints, theauthors interpret the M3–M4 stages to be part of the sameMesoproterozoic tectonothermal event. The result provides thefirst documentation of UHT metamorphism and Palaeo- and Mesoproterozoicmetamorphic processes in the CITZ. On a broader scale, the findingsare also consistent with the current prediction that isobaricallycooled granulites require a separate orogeny for their exhumation. KEY WORDS: Central Indian Tectonic Zone; UHT metamorphism; counterclockwise PT path; monazite chemical dating  相似文献   

3.
The northern margin of the Inland Branch of the Pan-AfricanDamara Orogen in Namibia shows dramatic along-strike variationin metamorphic character during convergence between the Congoand Kalahari Cratons (M3 metamorphic cycle). Low-P contact metamorphismwith anticlockwise PT paths dominates in the westerndomains (Ugab Zone and western Northern Zone), and high-P Barrovianmetamorphism with a clockwise PT path is documented fromthe easternmost domain (eastern Northern Zone). The sequenceof M3 mineral growth in contact aureoles shows early growthof cordierite porphyroblasts that were pseudomorphed to biotite–chlorite–muscoviteat the same time as an andalusite–biotite–muscovitetransposed foliation was developed in the matrix. The peak-Tmetamorphic assemblages and fabrics were overprinted by crenulationsand retrograde chlorite–muscovite. The KFMASH PTpseudosection for metapelites in the Ugab Zone and western NorthernZone contact aureoles indicates tight anticlockwise PTloops through peak metamorphic conditions of 540–570°Cand 2·5–3·2 kbar. These semi-quantitativePT loops are consistent with average PT calculationsusing THERMOCALC, which give a pooled mean of 556 ± 26°Cand 3·2 ± 0·6 kbar, indicating a high averagethermal gradient of 50°C/km. In contrast, the eastern NorthernZone experienced deep burial, high-P/moderate-T Barrovian M3metamorphism with an average thermal gradient of 21°C/kmand peak metamorphic conditions of c. 635°C and 8·7kbar. The calculated PT pseudosection and garnet compositionalisopleths in KFMASH, appropriate for the metapelite sample fromthis region, document a clockwise PT path. Early plagioclase–kyanite–biotiteparageneses evolved by plagioclase consumption and the growthof garnet to increasing XFe, XMg and XCa and decreasing XMncompositions, indicating steep burial with heating. The developedkyanite–garnet–biotite peak metamorphic parageneseswere followed by the resorption of garnet and formation of plagioclasemoats, indicating decompression, which was followed by retrogressivecooling and chlorite–muscovite growth. The clockwise PTloop is consistent with the foreland vergent fold–thrustbelt geometry in this part of the northern margin. Earlier formed(580–570 Ma) pervasive matrix foliations (M2) were overprintedby contact metamorphic parageneses (M3) in the aureoles of 530± 3 Ma granites in the Ugab Zone and 553–514 Magranites in the western Northern Zone. Available geochronologicaldata suggest that convergence between the Congo and KalahariCratons was essentially coeval in all parts of the northernmargin, with similar ages of 535–530 Ma for the main phaseof deformation in the eastern Northern Zone and Northern Platformand 538–505 Ma high-grade metamorphism of the CentralZone immediately to the south. Consequently, NNE–SSW-directedconvergent deformation and associated M3 metamorphism of contrastingstyles are interpreted to be broadly contemporaneous along thelength of the northern margin of the Inland Branch. In the westheat transfer was dominated by conduction and externally drivenby granites, whereas in the east heat transfer was dominatedby advection and internally driven radiogenic heat production.The ultimate cause was along-orogen variation in crustal architecture,including thickness of the passive margin lithosphere and thicknessof the overlying sedimentary succession. KEY WORDS: Pan-African Orogeny; PT paths; pseudosections; low-P metamorphism; contact metamorphism; Barrovian metamorphism  相似文献   

4.
On the basis of the net transfer reactions among garnet, biotite,plagioclase and quartz (for both Mg and Fe end-member models),the garnet–biotite–plagioclase–quartz (GBPQ)geobarometer was empirically calibrated under physical conditionsof P = 1·0–11·4 kbar and T = 515–878°C,based on the input garnet–biotite temperatures and garnet–aluminosilicate–plagioclase–quartz(GASP) pressures of 224 natural aluminosilicate-bearing metapeliticsamples collated from the literature. The calibrations are internallyconsistent with the asymmetric quaternary solid solution modelof garnet, the symmetric quaternary solid solution model ofbiotite, and the Al-avoidance ternary solid solution model ofplagioclase in calibrating the garnet–biotite geothermometerand the GASP geobarometer. The resulting two GBPQ barometerformulae reproduce the input GASP pressures well within ±1·0kbar (mostly within ±0·5 kbar). For both aluminosilicate-bearingand aluminosilicate-absent metapelites, the two GBPQ barometryformulae yielded identical pressures, whether the sample wasincluded or not included in calibrating the GBPQ barometry.The random error of the GBPQ barometry may be expected as ±1·2kbar. The dP/dT slopes of these two GBPQ formulae are closeto that of the GASP barometer in PT space. Applicationsof the GBPQ barometry of aluminosilicate-absent metapelitesto the rocks within a thermal contact aureole, or rocks withina limited geographical area without post-metamorphic structuraldiscontinuity, show no obvious pressure change. It may be concludedthat the two GBPQ barometry formulae derived in this study maybe used as practical tools for metamorphic pelites under theconditions of 515–878°C and 1·0–11·4kbar, in the composition range of Xgros >3% in garnet, Xan>17% in plagioclase, and  相似文献   

5.
The Kyffhäuser Crystalline Complex, Central Germany, formspart of the Mid-German Crystalline Rise, which is assumed torepresent the Variscan collision zone between the East Avalonianterrane and the Armorican terrane assemblage. High-precisionU–Pb zircon and monazite dating indicates that sedimentaryrocks of the Kyffhäuser Crystalline Complex are youngerthan c. 470 Ma and were intruded by gabbros and diorites between345 ± 4 and 340 ± 1 Ma. These intrusions had magmatictemperatures between 850 and 900°C, and caused a contactmetamorphic overprint of the sediments at PT conditionsof 690–750°C and 5–7 kbar, corresponding toan intrusion depth of 19–25 km. At 337 ± 1 Ma themagmatic–metamorphic suite was intruded by granites, syenitesand diorites at a shallow crustal level of some 7–11 km.This is inferred from a diorite, and conforms to PT pathsobtained from the metasediments, indicating a nearly isothermaldecompression from 5–7 to 2–4 kbar at 690–750°C.Subsequently, the metamorphic–magmatic sequence underwentaccelerated cooling to below 400°C, as constrained by garnetgeospeedometry and a previously published K–Ar muscoviteage of 333 ± 7 Ma. With respect to PTDtdata from surrounding units, rapid exhumation of the KCC canbe interpreted to result from NW-directed crustal shorteningduring the Viséan. KEY WORDS: contact metamorphism; U–Pb dating; hornblende; garnet; Mid-German Crystalline Rise; PT pseudosection  相似文献   

6.
Mineralogical, isotopic, geochemical and geochronological evidencedemonstrates that the Friningen body, a garnet peridotite bodycontaining garnet pyroxenite layers in the Seve Nappe Complex(SNC) of Northern Jämtland, Sweden, represents old, certainlyProterozoic and possibly Archean, lithosphere that became incorporatedinto the Caledonian tectonic edifice during crustal subductioninto the mantle at c. 450 Ma. Both garnet peridotite and pyroxenitecontain two (M1 and M2) generations of garnet-bearing assemblagesseparated by the formation of two-pyroxene, spinel symplectitearound the M1 garnet and the crystallization of low-Cr spinel1Cin the matrix. These textures suggest initial high-pressure(HP) crystallization of garnet peridotite and pyroxenite succeededby decompression into the spinel stability field, followed byrecompression into the garnet peridotite facies. Some pyroxenitelayers appear to be characterized solely by M2 assemblages withstretched garnet as large as several centimeters. Laser ablationmicroprobe–inductively coupled plasma mass spectrometryRe–Os analyses of single sulfide grains generally definemeaningless model ages suggesting more than one episode of Reand/or Os addition and/or loss to the body. Pentlandite grainsfrom a single polished slab of one garnet peridotite, however,define a linear array on an Re–Os isochron diagram that,if interpreted as an errorchron, suggests an Archean melt extractionevent that left behind the depleted dunite and harzburgite bodiesthat characterize the SNC. Refertilization of this mantle bymelts associated with the development of the pyroxenite layersis indicated by enriched clinopyroxene Sr–Nd isotope ratios,and by parallel large ion lithophile-enriched trace elementpatterns in clinopyroxene from pyroxenite and the immediatelyadjacent peridotite. Clinopyroxene and whole-rock model Sm–Ndages (TDM = 1·1–2·2 Ga) indicate that fertilizationtook place in Proterozoic times. Sm–Nd garnet2–clinopyroxene2–wholerock ± orthopyroxene2 mineral isochrons from three pyroxenitelayers define overlapping ages of 452·1 ± 7·5and 448 ± 13 Ma and 451 ± 43 Ma (2  相似文献   

7.
Talc–kyanite schists (whiteschists), magnesiohornblende–kyanite–talc–quartzschists and enstatite–sapphirine–chlorite schistsoccur at Mautia Hill in the East African Orogen of Tanzania.They are associated with metapelites and garnet–clinopyroxene–quartzmetabasites. Geobarometry (GASP/GADS equilibria) applied tothe latter two rock types indicates a peak pressure of P = 10–11kbar. These results are confirmed by the high fO2 assemblagehollandite–kyanite–quartz and late-stage manganianandalusite that contains up to 19·5 mol. % Mn2SiO5. Maximumtemperatures of T = 720°C are inferred from late-stage yoderite+ quartz. A clockwise PT evolution is constrained byprograde kyanite inclusions in metapelitic garnet and late-stagereaction rims of cordierite between green yoderite and talcthat reflect conditions at least 3–4 kbar below the peakpressure. Oxidizing conditions are recorded throughout the metamorphichistory of the whiteschists and chlorite schists, as indicatedby the presence of haematite coexisting with pseudobrookiteand/or rutile. Increasing water activity near peak pressuresis thought to have led to the breakdown of the high-pressureassemblages (Tlc–Ky–Hem and Mg-Hbl–Ky–Hem)and the subsequent formation of certain uncommon minerals, e.g.yellow sapphirine, Mn–andalusite, green and purple yoderite,piemontite and boron-free kornerupine. The proposed increasein water activity is attributed to fluid infiltration resultingfrom the devolatilization of underlying sediments during metamorphism. KEY WORDS: fluid infiltration; high-pressure amphibolite facies; East African Orogen; Pan-African; whiteschist  相似文献   

8.
Al2SiO5 reaction textures in aluminous schist and quartziteof the northern Picuris range, north-central New Mexico, recorda paragenetic sequence of kyanite to sillimanite to andalusite,consistent with a clockwise PT loop, with minor decompressionnear the Al2SiO5 triple-point. Peak metamorphic temperaturesare estimated at 510–525°C, at 4·0–4·2kbar. Kyanite and fibrolite are strongly deformed; some prismaticsillimanite, and all andalusite are relatively undeformed. Monaziteoccurs as inclusions within kyanite, mats of sillimanite andcentimetre-scale porphyroblasts of andalusite, and is typicallyaligned subparallel to the dominant regional foliation (S0/S1or S2) and extension lineation (L1). Back-scatter electron imagesand X-ray maps of monazite reveal distinct core, intermediateand rim compositional domains. Monazite–xenotime thermometryfrom the intermediate and rim domains yields temperatures of405–470°C (±50°C) and 500–520°C(±50°C), respectively, consistent with the progradeto peak metamorphic growth of monazite. In situ, ion microprobeanalyses from five monazites yield an upper intercept age of1417 ± 9 Ma. Near-concordant to concordant analyses yield207Pb–206Pb ages from 1434 ± 12 Ma (core) to 1390± 20 Ma (rim). We find no evidence of older regionalmetamorphism related to the 1650 Ma Mazatzal Orogeny. KEY WORDS: Al2SiO5; metamorphism; monazite; thermochronometry; triple-point  相似文献   

9.
Extensive high-grade polydeformed metamorphic provinces surroundingArchaean cratonic nuclei in the East Antarctic Shield recordtwo tectono-thermal episodes in late Mesoproterozoic and lateNeoproterozoic–Cambrian times. In Western Dronning MaudLand, the high-grade Mesoproterozoic Maud Belt is juxtaposedagainst the Archaean Grunehogna Province and has traditionallybeen interpreted as a Grenvillian mobile belt that was thermallyoverprinted during the Early Palaeozoic. Integration of newU–Pb sensitive high-resolution ion microprobe and conventionalsingle zircon and monazite age data, and Ar–Ar data onhornblende and biotite, with thermobarometric calculations onrocks from the H.U. Sverdrupfjella, northern Maud Belt, resultedin a more complex PTt evolution than previouslyassumed. A c. 540 Ma monazite, hosted by an upper ampibolite-faciesmineral assemblage defining a regionally dominant top-to-NWshear fabric, provides strong evidence for the penetrative deformationin the area being of Pan-African age and not of Grenvillianage as previously reported. Relics of an eclogite-facies garnet–omphaciteassemblage within strain-protected mafic boudins indicate thatthe peak metamorphic conditions recorded by most rocks in thearea (T = 687–758°C, P = 9·4–11·3kbar) were attained subsequent to decompression from P >12·9 kbar. By analogy with limited U–Pb singlezircon age data and on circumstantial textural grounds, thisearlier eclogite-facies metamorphism is ascribed to subductionand accretion around 565 Ma. Post-peak metamorphic K-metasomatismunder amphibolite-facies conditions is ascribed to the intrusionof post-orogenic granite at c. 480 Ma. The recognition of extensivePan-African tectonism in the Maud Belt casts doubts on previousRodinia reconstructions, in which this belt takes a pivotalposition between East Antarctica, the Kalahari Craton and Laurentia.Evidence of late Mesoproterozoic high-grade metamorphism duringthe formation of the Maud Belt exists in the form of c. 1035Ma zircon overgrowths that are probably related to relics ofgranulite-facies metamorphism recorded from other parts of theMaud Belt. The polymetamorphic rocks are largely derived froma c. 1140 Ma volcanic arc and 1072 ± 10 Ma granite. KEY WORDS: Maud Belt; Pan-African orogeny; geochronology; PTt path, East Antarctica  相似文献   

10.
A suite of garnetiferous amphibolites and mafic granulites occuras small boudins within layered felsic migmatite gneiss in thenorthern part of the Sausar Mobile Belt (SMB), the latter constitutingthe southern component of the Proterozoic Central Indian TectonicZone (CITZ). Although the two types of metabasites are in variousstages of retrogression, textural, compositional and phase equilibriastudies attest to four distinct metamorphic episodes. The earlyprograde stage (Mo) is represented by an inclusion assemblageof hornblende1 + ilmenite1 + plagioclase1 ± quartz andgrowth zoning preserved in garnet. The peak assemblage (M1)consists of porphyroblastic garnet + clinopyroxene ±quartz ± rutile ± hornblende in mafic granulitesand garnet + quartz + hornblende in amphibolites and stabilizedat pressure–temperature conditions of 9–10 kbarand 750–800°C and 8 kbar and 675°C, respectively.This was followed by near-isothermal decompression (M2), andpost-decompression cooling (M3) events. In mafic granulites,the former resulted in the development of early clinopyroxene2A–hornblende2A–plagioclase2Asymplectites at 8 kbar and 775°C (M2A stage), synchronouswith D2 and later anhydrous clinopyroxene2B–plagioclase2B–ilmenite2Bsymplectites and coronal assemblages at 7 kbar, 750°C (M2Bstage) and post-dating D2. In amphibolites, ilmenite + plagioclase+ quartz ± hornblende symplectites appeared during M2at 6·4 kbar and 700°C. During M3, coronal garnet+ clinopyroxene + quartz ± hornblende-bearing symplectitesin metabasic dykes and hornblende3–plagioclase3 symplectitesembaying garnet in mafic granulites were formed. PT estimatesshow near-isobaric cooling from 7 kbar and 750°C to 6 kbarand 650°C during M3. It is argued that the decompressionin the mafic granulites is not continuous, being punctuatedby a distinct heating (prograde?) event. The latter is alsocoincident with a period of extension, marked by mafic dykeemplacement. The combined PT path of evolution has aclockwise sense and provides evidence for a major phase of earlycontinental subduction in parts of the CITZ. This was followedby a later continent–continent collision event duringwhich granulites of the first phase became tectonically interleavedwith younger lithological units. This tectonothermal event,of possibly Grenvillian age, marks the final amalgamation ofthe North and the South Indian Blocks along the CITZ to producethe Indian subcontinent. KEY WORDS: Central Indian Tectonic Zone; clockwise PT path; continental collision; metabasite  相似文献   

11.
Petrology and phase equilibria of rocks from two profiles inEastern Nepal from the Lesser Himalayan Sequences, across theMain Central Thrust Zone and into the Greater Himalayan Sequencesreveal a Paired Metamorphic Mountain Belt (PMMB) composed oftwo thrust-bound metamorphic terranes of contrasting metamorphicstyle. At the higher structural level, the Greater HimalayanSequences experienced high-T/moderate-P metamorphism, with ananticlockwise P–T path. Low-P inclusion assemblages ofquartz + hercynitic spinel + sillimanite have been overgrownby peak metamorphic garnet + cordierite + sillimanite assemblagesthat equilibrated at 837 ± 59°C and 6·7 ±1·0 kbar. Matrix minerals are overprinted by numerousmetamorphic reaction textures that document isobaric coolingand re-equilibrated samples preserve evidence of cooling to600 ± 45°C at 5·7 ±1·1 kbar.Below the Main Central Thrust, the Lesser Himalayan Sequencesare a continuous (though inverted) Barrovian sequence of high-P/moderate-Tmetamorphic rocks. Metamorphic zones upwards from the loweststructural levels in the south are: Zone A: albite + chlorite + muscovite ± biotite; Zone B: albite + chlorite + muscovite + biotite + garnet; Zone C: albite + muscovite + biotite + garnet ± chlorite; Zone D: oligoclase + muscovite + biotite + garnet ± kyanite; Zone E: oligoclase + muscovite + biotite + garnet + staurolite+ kyanite; Zone F: bytownite + biotite + garnet + K-feldspar + kyanite± muscovite; Zone G: bytownite + biotite + garnet + K-feldspar + sillimanite+ melt ± kyanite. The Lesser Himalayan Sequences show evidence for a clockwiseP–T path. Peak-P conditions from mineral cores average10·0 ± 1·2 kbar and 557 ± 39°C,and peak-metamorphic conditions from rims average 8·8± 1·1 kbar and 609 ± 42°C in ZonesD–F. Matrix assemblages are overprinted by decompressionreaction textures, and in Zones F and G progress into the sillimanitefield. The two terranes were brought into juxtaposition duringformation of sillimanite–biotite ± gedrite foliationseams (S3) formed at conditions of 674 ± 33°C and5·7 ± 1·1 kbar. The contrasting averagegeothermal gradients and P–T paths of these two metamorphicterranes suggest they make up a PMMB. The upper-plate positionof the Greater Himalayan Sequences produced an anticlockwiseP–T path, with the high average geothermal gradient beingpossibly due to high radiogenic element content in this terrane.In contrast, the lower-plate Lesser Himalayan Sequences weredeeply buried, metamorphosed in a clockwise P–T path anddisplay inverted isograds as a result of progressive ductileoverthrusting of the hot Greater Himalayan Sequences duringprograde metamorphism. KEY WORDS: thermobarometry; P–T paths; Himalaya; metamorphism; inverted isograds; paired metamorphic belts  相似文献   

12.
Spinel granulites, with or without sapphirine, occur as lensesin garnetiferous quartzofeldspathic gneisses (leptynites) nearGokavaram in the Eastern Ghats Belt, India. Spinel granulitesare mineralogically heterogeneous and six mineral associationsoccur in closely spaced domains. These are (I) spinel–quartz–cordierite,(II) spinel–quartz–cordierite–garnet–orthopyroxene–sillimanite,(III) spinel–cordierite–orthopyroxene–sillimanite,(IV) spinel–quartz–sapphirine–sillimanite–garnet,(V) spinel–quartz-sapphirine–garnet and (IV) rhombohedral(Fe–Ti) oxide–cordierite–orthopyroxene–sillimanite.Common to all the associations are a porphyroblastic garnet(containing an internal schistosify defined by biotite, sillimaniteand quartz), perthite and plagioclase. Spinel contains variableamounts of exsolved magnetite and is distinctly Zn rich in thesapphirine-absent associations. XMg in the coexisting phasesdecreases in the order cordierite–biotite–sapphirine–orthopyroxene–spinel–garnet–(Fe–Ti)oxides. Textural criteria and compositional characteristicsof the phases document several retrograde mineral reactionswhich occurred subsequent to prograde dehydration melting reactionsinvolving biotite, sillimanite, quartz, plagioclase and spinel.The following retrograde mineral reactions are deduced: (1)spinel + quartz cordierite, (2) spinel + quartz garnet + sillimanite,(3) garnet + quartz cordierite + orthopyroxene, (4) garnet+ quartz + sillimanite cordierite, (5) spinel + cordierite orthopyroxene + sillimanite, (6) spinel + sillimanite + quartz sapphirine, (7) spinel + sapphirine + quartz garnet + sillimanite,and (8) spinel + quartz sapphirine + garnet. A partial petrogeneticgrid for the system FeO–MgO–Al2O3–SiO2–K2O–H2Oat high fo2, has been constructed and the effects of ZnO andFe2O3 on this grid have been explored Combining available experimentaland natural occurrence data, the high fo2 invariant points inthe partial grid have been located in P–T space. Geothermobarometricdata and consideration of the deduced mineral reactions in thepetrogenetic grid show that the spinel granulites evolved throughan anticlockwise P–T trajectory reaching peak metamorphicconditions >9 kbar and 950C, followed by near-isobaric cooling(dT/dP = 150C/kbar). This was superimposed by an event of near-isothermaldecompression (dT/dP = 15C/kbar). The studied spinel granulites,therefore, preserve relic prograde mineral associations andreaction textures despite being metamorphosed at very high temperatures,and bear evidence of polymetamorphism. KEY WORDS: spinel granulite; Eastern Ghats; India; polymetamorphism; geothermometry; geobarometry Corresponding author  相似文献   

13.
Both high- and medium-pressure granulites have been found asenclaves and boudins in tonalitic–trondhjemitic–granodioriticgneisses in the Hengshan Complex. Petrological evidence fromthese rocks indicates four distinct metamorphic assemblages.The early prograde assemblage (M1) is preserved only in thehigh-pressure granulites and represented by quartz and rutileinclusions within the cores of garnet porphyroblasts, and omphacitepseudomorphs that are indicated by clinopyroxene + sodic plagioclasesymplectic intergrowths. The peak assemblage (M2) consists ofclinopyroxene + garnet + sodic plagioclase + quartz ±hornblende in the high-pressure granulites and orthopyroxene+ clinopyroxene + garnet + plagioclase + quartz in the medium-pressuregranulites. Peak metamorphism was followed by near-isothermaldecompression (M3), which resulted in the development of orthopyroxene+ clinopyroxene + plagioclase symplectites and coronas surroundingembayed garnet grains, and decompression-cooling (M4), representedby hornblende + plagioclase symplectites on garnet. The THERMOCALCprogram yielded peak (M2) P–T conditions of 13·4–15·5kbar and 770–840°C for the high-pressure granulitesand 9–11 kbar and 820–870°C for the medium-pressuregranulites, based on the core compositions of garnet, matrixpyroxene and plagioclase. The P–T conditions of pyroxene+ plagioclase symplectite and corona (M3) were estimated at  相似文献   

14.
Integrated metamorphic and geochronological data place new constraintson the metamorphic evolution of a Neoproterozoic orogen in eastAntarctica. Granulite-facies rocks from a 150 km stretch ofthe Kemp Land coast reflect peak conditions involving T 870–990°Cat P 7·4–10 kbar, with pressure increasing westwardtowards an Archaean craton. Electron microprobe-derived (Th+ U)–Pb monazite ages from metapelitic assemblages indicatethat the major mineral textures in these rocks developed duringthe c. 940 Ma Rayner Orogeny. Complex compositional zoning inmonazite suggests high-T recrystallization over c. 25 Myr. Diversityin metapelitic reaction textures reflects silica and ferromagnesiancontent: Si-saturated Fe-rich metapelites contain garnet thatis partially pseudomorphed by biotite and sillimanite, whereasSi-saturated Mg-rich metapelites and Si-undersaturated metapeliticpods have reaction microstructures involving cordierite enclosingorthopyroxene, garnet and/or sapphirine, cordierite + sapphirinesymplectites around sillimanite and coarse-grained orthopyroxene+ corundum separated by sapphirine coronae. Interpretationsbased on PT pseudosections provide integrated bulk-rockconstraints and indicate a clockwise PTt pathcharacterized by a post-peak PT trajectory with dP/dT 15–20 bar/ °C. This moderately sloped decompressive-coolingPT path is in contrast to near-isothermal decompressionPT paths commonly cited for this region of the RaynerComplex, with implications for the post-collisional tectonicresponse of the mid- to lower crust within this orogenic belt. KEY WORDS: electron microprobe monazite dating; granulite facies; Rayner Complex; sapphirine; THERMOCALCMinerals abbreviations: q, quartz; g, garnet; sill, sillimanite; ky, kyanite; opx, orthopyroxene; cd, cordierite; ksp, alkali feldspar; pl, plagioclase; bi, biotite; sp, spinel; ilm, ilmenite; mt, magnetite; ru, rutile; sa, sapphirine; cor, corundum; osm, osumilite; liq, silicate melt; mnz, monazite  相似文献   

15.
Experiments in the quartz-saturated part of the system KFMASHunder fO2 conditions of the haematite–magnetite bufferand using bulk compositions with XMg of 0·81, 0·72,0·53 define the stability limits of several mineral assemblageswithin the PT field 9–12 kbar, 850–1100°C.The stability limits of the mineral assemblages orthopyroxene+ spinel + cordierite ± sapphirine, orthopyroxene + garnet+ sapphirine, sapphirine + cordierite + orthopyroxene and garnet+ orthopyroxene + spinel have been delineated on the basis ofPT and T–X pseudosections. Sapphirine did not appearin the bulk composition of XMg = 0·53. A partial petrogeneticgrid applicable to high Mg–Al granulites metamorphosedat high fO2, developed in our earlier work, was extended tohigher pressures. The experimental results were successfullyapplied to several high-grade terranes to estimate PTconditions and retrograde PT trajectories. KEY WORDS: KFMASH equilibria; experimental petrogenetic grid at high fO2  相似文献   

16.
Layers of Ca-rich garnet–clinopyroxene rocks enclosedin a serpentinite body at Hujialin, in the Su–Lu terraneof eastern China, preserve igneous textures, relict spinel ingarnet, and exsolution lamellae of Ca-rich garnet, ilmenite/magnetite,Fe-rich spinel, and also amphibole in clinopyroxene. In termsof their major and trace element compositions, the studied samplesform a trend from arc cumulates towards Fe–Ti gabbros.Reconstructed augite compositions plot on the trend for clinopyroxenein arc cumulates. These data suggest that the rocks crystallizedfrom mantle-derived magmas differentiated to various extentsbeneath an arc. The Ca-rich garnet + diopside assemblage isinferred to have formed by compressing Ca-rich augite, whereasthe relatively Mg-rich cores of garnet porphyroblasts may haveformed at the expense of spinel. The protolith cumulates weresubducted from near the crust–mantle boundary (c. 1 GPa)deep into the upper mantle (4·8 ± 0·6 GPaand 750 ± 50°C). Negatively sloped P–T pathsfor the garnet–clinopyroxene rocks and the corollary ofcorner flow induced subduction of mantle wedge peridotite arenot supported by the available data. Cooling with, or without,decompression of the cumulates after the igneous stage probablyoccurred prior to deep subduction. KEY WORDS: arc cumulates; Ca-rich garnet; garnet–clinopyroxene rocks; Su–Lu terrane; UHP metamorphism  相似文献   

17.
High-pressure metamorphism in the Pohorje Mountains of Slovenia (Austroalpine unit, Eastern Alps) affected N-MORB type metabasic and metapelitic lithologies. Thermodynamic calculations and equilibrium phase diagrams of kyanite–phengite-bearing eclogites reveal PT conditions of >2.1 GPa at T<750°C, but within the stability field of quartz. Metapelitic eclogite country rocks contain the assemblage garnet + phengite + kyanite + quartz, for which calculated peak pressure conditions are in good agreement with results obtained from eclogite samples. The eclogites contain a single population of spherical zircon with a low Th/U ratio. Combined constraints on the age of metamorphism come from U/Pb zircon as well as garnet–whole rock and mineral–mineral Sm-Nd analyses from eclogites. A coherent cluster of single zircon analyses yields a 206Pb/238U age of 90.7±1.0 Ma that is in good agreement with results from Sm-Nd garnet–whole rock regression of 90.7±3.9 and 90.1±2.0 Ma (εNd: +8) for two eclogite samples. The agreement between U-Pb and Sm-Nd age data strongly suggests an age of approximately 90 Ma for the pressure peak of the eclogites in the Pohorje Mountains. The presence of garnet, omphacite and quartz inclusions in unfractured zircon indicates high-pressure rather than ultrahigh pressure conditions. The analysed metapelite sample yields a Sm-Nd garnet–whole rock scatterchron age of 97±15 Ma. These data probably support a single P-T loop for mafic and pelitic lithologies of the Pohorje area and a late Cretaceous high-pressure event that affected the entire easternmost Austroalpine basement including the Koralpe and Saualpe eclogite type locality in the course of the complex collision of the Apulian microplate and Europe.  相似文献   

18.
In situ LA‐ICP‐MS monazite geochronology from a garnet‐bearing diatexite within the Moine Supergroup (Glenfinnan Group) NW Scotland records three temporally distinct metamorphic events within a single garnet porphyroblast. The initial growth of garnet occurred in the interval c. 825–780 Ma, as recorded by monazite inclusions located in the garnet core. Modelled P–T conditions based on the preserved garnet core composition indicate an initially comparatively high geothermal gradient regime and peak conditions of 650 °C and 7 kbar. Monazite within a compositionally distinct second shell of garnet has an age of 724 ± 6 Ma. This is indistinguishable from a SIMS age of 725 ± 4 Ma obtained from metamorphic zircon in the sample, which is interpreted to record the timing of migmatization. This second stage of garnet growth occurred on a P–T path from 6 kbar and 650 °C rising to 9 kbar and 700 °C, with the peak conditions associated with partial melting. A third garnet zone which forms the rim contains monazite with an age of 464 ± 3 Ma. Monazite in the surrounding matrix has an age of 462 ± 2 Ma. This corresponds well with a U–Pb SIMS zircon age of 463 ± 4 Ma obtained from a deformed pegmatite that was emplaced during widespread folding and reworking of the migmatite fabric. The P–T conditions associated with the final phase of garnet growth were 7 kbar and 650 °C. The monazite ages coupled with the phase relations modelled from this multistage garnet indicate that it records two Neoproterozoic tectonothermal events as well as the widespread Ordovician Grampian event associated with Caledonian orogenesis. Thus, this single garnet records much of the Neoproterozoic to Ordovician thermal history in NW Scotland, and highlights the long history of porphyroblast growth that can be revealed by in situ isotopic dating and associated P–T modelling. This approach has the potential to reveal much of the thermal architecture of Neoproterozoic events within the Moine Supergroup, despite intense Caledonian reworking, if suitable textural and mineralogical relationships can be indentified elsewhere.  相似文献   

19.
Biotite + plagioclase + quartz (BPQ) is a common assemblagein gneisses, metasediments and metamorphosed granitic to granodioriticintrusions. Melting experiments on an assemblage consistingof 24 vol. % quartz, 25 vol. % biotite (XMg = 0·38–0·40),42 vol. % plagioclase (An26–29), 9 vol. % alkali feldsparand minor apatite, titanite and epidote were conducted at 10,15 and 20 kbar between 800 and 900°C under fluid-absentconditions and with small amounts (2 and 4 wt %) of water addedto the system. At 10 kbar when 4 wt % of water was added tothe system the biotite melting reaction occurred below 800°Cand produced garnet + amphibole + melt. At 15 kbar the meltingreaction produced garnet + amphibole + melt with 2 wt % addedwater. At 20 kbar the amphibole occurred only at high temperature(900°C) and with 4 wt % added water. In this last case themelting reaction produced amphibole + clinopyroxene ±garnet + melt. Under fluid-absent conditions the melting reactionproduced garnet + plagioclase II + melt and left behind a plagioclaseI ± quartz residuum, with an increase in the modal amountof garnet with increasing pressure. The results show that itis not possible to generate hornblende in such compositionswithout the addition of at least 2–4 wt % H2O. This reflectsthe fact that conditions of low aH2O may prevent hornblendefrom being produced with peraluminous granitic liquids fromthe melting of biotite gneiss. Thus growth of hornblende inanatectic BPQ gneisses is an indication of addition of externalH2O-rich fluids during the partial melting event. KEY WORDS: biotite; dehydration; gneisses; hornblende; melt  相似文献   

20.
SAJEEV  K.; OSANAI  Y. 《Journal of Petrology》2004,45(9):1821-1844
Mg- and Al-rich granulites of the central Highland Complex,Sri Lanka preserve a range of reaction textures indicative ofa multistage PT history following an ultrahigh-temperaturemetamorphic peak. The granulites contain a near-peak assemblageof sapphirine–garnet–orthopyroxene–sillimanite–quartz–K-feldspar,which was later overprinted by intergrowth, symplectite andcorona textures involving orthopyroxene, sapphirine, cordieriteand spinel. Biotite-rims, kornerupine and orthopyroxene-rimson biotite are considered to be late assemblages. Thermobarometriccalculations yield an estimated PT of at least 1100°Cand 12 kbar for the near-peak metamorphism. Isopleths of Al2O3in orthopyroxene are consistent with a peak temperature above1150°C. The PT path consists of four segments. Initialisobaric cooling after peak metamorphism (Segment A), whichproduced the garnet–sapphirine–quartz assemblage,was followed by near-isothermal decompression at ultrahigh temperature(Segment B), which produced the multiphase symplectites. Furtherisobaric cooling (Segment C) resulted in the formation of biotiteand kornerupine, and late isothermal decompression (SegmentD) formed orthopyroxene rims on biotite. This evolution canbe correlated with similar PT paths elsewhere, but thereare not yet sufficient geochronological and structural dataavailable from the Highland Complex to allow the tectonic implicationsto be fully assessed. KEY WORDS: central Highland Complex; granulites; multistage evolution; Sri Lanka; UHT metamorphism  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号