首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
The height distributions, velocity distributions and flux measurements of underdense echoes determined from meteor radar observations are significantly affected by the attenuation associated with the initial radius of meteor trains. Dual-frequency radar observations of a very large set of sporadic radar meteors at 29 and 38 MHz yield estimates of the initial train radius and its dependence on height and meteoroid speed as determined by the time-delay method. We provide empirical formulae that can be used to correct meteoroid fluxes for the effect of initial train radius at other radio frequencies.  相似文献   

2.
The 33.2 MHz interferometric meteor radars located at Davis Station, Antarctica and Darwin, Australia typically detect around 15 000 specular underdense meteor echoes every day. While the angle of arrival of the scattered radio wave can be inferred using phase differences between receive antennae, the direction of individual meteors is not known beyond a plane of ambiguity perpendicular to the angle of arrival. Using the great circle mapping technique with a Jones & Jones type weighting function, 37 meteor shower systems were detected in data collected at both locations over 2006–2007, including nine undocumented showers. The orbital elements of the parent debris streams were then calculated for the 31 showers where sufficiently precise measurements were available.  相似文献   

3.
Every year the Earth crosses or passes near one of the dust trails left by Comet 55P/Tempel-Tuttle in its pass through the Solar System every 33.2 years. This produces a meteor shower Commonly called the Leonid. The 2001 Leonid meteor shower is one of the strongest in recent years. We present observations made by the 50 MHz all-sky meteor radar located at the Platteville Atmospheric Observatory in Colorado (40° N, 105° W). The spatial and temporal distributions of the meteor activity detected by the radar during the 2001 Leonid shower differs from the observed sporadic activity detected by VHF radars. Estimation of the radiant flux of the meteor shower of the shower by a well-known methodology is presented, and the intensity of the phenomena is discussed.  相似文献   

4.
Many meteoroids burn up between about 120 km and 70 km, deposit metals and dust and form ionized trails which are detected by radars. Model studies about the influence of neutral or positively charged background dust on the ambipolar diffusion indicate that significant smaller decay times should be observed for weak meteor echoes compared to strong meteor echoes which can affect the estimation of temperatures. The variation of meteor decay times in dependence on echo strength, height, and season was studied using radar observations at 69° N, 22° S, and 67° S. Significantly reduced decay times were found for weak echoes below about 88 km at low latitudes throughout the year, and at high latitudes with the exception of summer. In summer at high latitudes, decreasing decay times of weak and strong meteors are observed at altitudes below about 85 km during the appearance of noctilucent clouds. The impact of reduced decay times on the estimation of neutral temperatures from decay times is discussed.  相似文献   

5.
We present the first clear observations of meteor shower activity from meteor-head echoes detected by a high-power large-aperture radar (HPLAR). Such observations have been performed at the Jicamarca VHF radar using its interferometric capabilities allowing the discrimination of meteor shower echoes from the much more frequent sporadic meteors. Until now, HPLARs were unable to distinguish meteor shower from the much more common sporadic meteor ones. In this work we have been able to detect and characterize the η-Aquariids (ETA) as well as the Perseids (PER) showers. The shower activity is more conspicuous for the ETA than for the PER shower due to the more favorable geometry. Namely, PER meteors come from low elevation angles, experiencing more filtering due to the combined Earth-atmosphere-radar instrument. In both cases, there is an excellent agreement between the measured mean velocity of the shower echoes and their expected velocity, within a fraction of 1 km s−1. Besides the good agreement with expected visual results, HPLARs observe meteors with a variety of particles sizes and masses, not observed by any other technique. Taking into account the different viewing volumes, compare to optical observations Jicamarca observes more than 1000 times more ETA meteors. Our results indicate that Jicamarca and other HPLARs are able to detect the echoes from meteor showers, but without interferometric capabilities such populations are difficult to identify just from their velocity distributions, particularly if their velocity distributions are expected to be similar to the more dominant distributions of sporadic meteors.  相似文献   

6.
At altitudes above 93 km in the atmosphere, magnetic and electric fields can affect the modes and rates of non-turbulent diffusion of ionized meteor trails. Anisotropic diffusion is expected. Most theories of anisotropic diffusion, and indeed most experimental studies, have concentrated on the effects of the magnetic field in producing this anisotropy, and different rates of expansion are expected in directions parallel to and perpendicular to the magnetic field lines. In this study, we use interferometric meteor radars to investigate the dependence of the ambipolar diffusion coefficient on viewing direction relative to the magnetic field, and show that the dependence is at best weak when daily averages are used. We then demonstrate that the reason for this effect is that the positions of maximum and minimum diffusion rates varies as a function of time of day, and that daily averaging masks the anisotropy. One possibility to account for the observations is that this strong diurnal variation is a consequence of the electric fields in the upper atmosphere, which are often tidally driven. An alternative possibility is a diurnal cycle in mean meteor entrance speeds. We lean towards the first hypothesis, but both possibilities are discussed. We demonstrate our results with data from several sites, but particularly using the Clovar radar near London, Ontario, Canada.  相似文献   

7.
We present the results of a study of meteoroid bulk densities determined from meteor head echoes observed by radar. Meteor observations were made using the Advanced Research Projects Agency Long-Range Tracking And Instrumentation Radar (ALTAIR). ALTAIR is particularly well suited to the detection of meteor head echoes, being capable of detecting upwards of 1000 meteor head echoes per hour. Data were collected for 19 beam pointings and are comprised of approximately 70 min. of VHF observations. During these observations the ALTAIR beam was directed largely at the north apex sporadic source. Densities are calculated using the classical physical theory of meteors. Meteoroid masses are determined by applying a full wave scattering theory to the observed radar cross-section. Observed meteoroids are predominantly in the 10−10 to 10−6 kg mass range. We find that the vast majority of meteoroid densities are consistent with low density, highly porous objects as would be expected from cometary sources. The median calculated bulk density was found to be 900 kg/m3. The orbital distribution of this population of meteoroids was found to be highly inclined.  相似文献   

8.
Diurnal variations of the median echo durations of sporadic meteor echoes during August and December-January periods are discussed. It is shown that differences between seasonal distributions result from the superposition of simultaneous diurnal effects controlling the electron loss processes in the ionized meteor trail.  相似文献   

9.
S. Close  P. Brown  M. Oppenheim 《Icarus》2007,186(2):547-556
High-power, large-aperture (HPLA) radars detect the plasma that forms in the vicinity of a meteoroid and moves approximately at its velocity; reflections from these plasmas are called head echoes. For over a decade, HPLA radars have been detecting head echoes with peak velocity distributions >50 km/s. These results have created some controversy within the field of meteor physics because previous data, including spacecraft impact cratering studies, optical and specular meteor data, indicate that the peak of the velocity distribution to a set limiting mass should be <20 km/s [Love, S.G., Brownlee, D.E., 1993. Science 262, 550-553]. Thus the question of whether HPLA radars are preferentially detecting high-velocity meteors arises. In this paper we attempt to address this question by examining both modeled and measured head echo data using the ALTAIR radar, collected during the Leonid 1998 and 1999 showers. These data comprise meteors originating primarily from the North Apex sporadic meteor source. First, we use our scattering theory to convert measured radar-cross-section (RCS) to electron line density and mass, as well as to convert modeled electron line density and mass to RCS. We subsequently compare the dependence between mass, velocity, mean-free-path, RCS and line density using both the measured and modeled data by performing a multiple, linear regression fit. We find a strong correlation between derived mass and velocity and show that line density is approximately proportional to mass times velocity3.1. Next, we determine the cumulative mass index using subsets of our data and use this mass index, along with the results of our regression fit, to weight the velocity distribution. Our results show that while there does indeed exist a bias in the measured head echo velocity distribution, it is smaller than those calculated using traditional specular trail data due to the different scattering mechanism, and also includes a bias against the low-mass, very high-velocity meteoroids.  相似文献   

10.
Radio science and meteor physics issues regarding meteor “head-echo” observations with high power, large aperture (HPLA) radars, include the frequency and latitude dependency of the observed meteor altitude, speed, and deceleration distributions. We address these issues via the first ever use and analysis of meteor observations from the Poker Flat AMISR (PFISR: 449.3 MHz), Sondrestrom (SRF: 1,290 MHz), and Arecibo (AO: 430 MHz) radars. The PFISR and SRF radars are located near the Arctic Circle while AO is in the tropics. The meteors observed at each radar were detected and analyzed using the same automated FFT periodic micrometeor searching algorithm. Meteor parameters (event altitude, velocity, and deceleration distributions) from all three facilities are compared revealing a clearly defined altitude “ceiling effect” in the 1,290 MHz results relative to the 430/449.3 MHz results. This effect is even more striking in that the Arecibo and PFISR distributions are similar even though the two radars are over 2,000 times different in sensitivity and at very different latitudes, thus providing the first statistical evidence that HPLA meteor radar observations are dominated by the incident wavelength, regardless of the other radar parameters. We also offer insights into the meteoroid fragmentation and “terminal” process.  相似文献   

11.
We present observations and preliminary results from a meteor experiment carried out with the 224 MHz EISCAT VHF radar in Tromsø, Norway, which was run for 6 h on November 26, 2003. The data set contains echoes with peculiar pulsations in received power in the frequency range 20–200 Hz, limited by instrumental parameters. The process causing the echo power pulsations has not yet been identified. Plasma effects are the most likely cause, a possible mechanism is for instance asymmetrical dust grains in rotation causing a modulation of the ionization rate.  相似文献   

12.
Meteoroids that orbit the Sun encounter the Earth with speeds between 11 and 74 km/sec. However, the distribution of the velocities of meteoroids between these limits is not well known. The uncertainty is caused by the difficulty in measuring the true flux of meteors at the extrema of the velocity distribution. Whilst the most comprehensive measurements of meteor flux are those obtained using radio techniques, meteors with speeds > 50 km/sec occur at heights where the effects of initial radius of the trail and diffusion significantly reduce the radio reflection from the trails; on the other hand the high dependence of the collisional ionization probability on velocity (to the power 3.5) significantly inhibits the detection of meteors with speeds < 20 km/sec. Recent developments in meteor radar systems are now making it possible to measure the velocity of meteors at the extrema of the distribution. For meteoroids ablating at heights between 100 and 120 km the speed of entry can be measured at 2 and 6 MHz using a radar with a 1 km diameter array located near Adelaide; these observations will commence early in 1995. In the meantime a 54 MHz MST radar is being operated at a pulse repetition frequency of 1024 Hz to search for the presence of interstellar (speed > 74 km/sec) meteors. Both these radars exploit the phase information available prior to the closest-approach (to) point.  相似文献   

13.
The presence of a diurnal variation in meteor activity is well established. The sporadic meteor count rates are higher on the local dawn side and lower on the local dusk side. This phenomenon is caused by the Earth’s orbital motion and rotation. Meteor radar measurements have been compared from Esrange, Kiruna, Sweden, at 68° N, from Juliusruh, Germany, at 55° N, and from Ascension Island, at 8° S, to investigate how the diurnal variation depends on season at different latitudes. Data have been used from vernal and autumnal equinoxes and summer and winter solstices to locate the largest seasonal differences.  相似文献   

14.
Recently, meteor head echo detections from high powered large aperture radars (HPLA) have brought new measurements to bear on the study of sporadic interplanetary meteors. These same observations have demonstrated an ability to observe smaller meteoroids without some of the geometrical restrictions of specular radar techniques. Yet incorporating data from various radar reflection types and from different radars into a single consistent model has proven challenging. We believe this arises due to poorly understood radio scattering characteristics of the meteor plasma, especially in light of recent work showing that plasma turbulence and instability greatly influences meteor trail properties at every stage of evolution. In order to overcome some of the unknown relationships between meteoroid characteristics (such as mass and velocity) and the resulting head echo radar cross-sections (RCS), we present our results on meteor plasma simulations of head echo plasmas using particle in cell (PIC) ions, which show that electric fields strongly influence early stage meteor plasma evolution, by accelerating ions away from the meteoroid body at speeds as large as several kilometers per second. We also present the results of finite difference time domain electromagnetic simulations (FDTD), which can calculate the radar cross-section of the simulated meteor plasma electron distributions. These simulations have shown that the radar cross-section depends in a complex manner on a number of parameters. In this paper we demonstrate that for a given head echo plasma the RCS as a function of radar frequency peaks at sqrt (2*peak plasma frequency) and then decays linearly on a dB scale with increasing radar frequency. We also demonstrate that for a fixed radar frequency, the RCS increases linearly on a dB scale with increasing head echo plasma frequency. These simulations and resulting characterization of the head echo radar cross-section will both help relate HPLA radar observations to meteoroid properties and aid in determining a particular radar facility’s ability to observe various meteoroid populations.  相似文献   

15.
Particles of mass less than about 1 gm are a minor fraction of the total matter impinging on the Earth averaged over millennia time scales. However, these particles dominate during a single particular year and produce the most obvious evidence of incoming extra-terrestrial matter in the form of ablation trails in the atmosphere which are visible at night as meteors.Observations of meteors give astronomical information on the composition, structure, and cometary associations of the particles. The composition is deduced from optical spectra of meteors, whilst telescopic studies of the trails during formation give information on the physical structure of the particles. Any cometary associations are deduced from measurement of meteor orbits determined photographically, using television, or by radar.Meteors occur in the atmosphere at heights from about 70 to 120 km. Optical observations are restricted to night-time and usually under conditions of low moonlight. A typical television based detector can record +8M meteors with a sporadic rate of 15–20 per hour and velocities accurate to about 3%. The luminosity of the trail is strongly dependent on the velocity of the meteoroid (to about the third power).Radar observations of meteors are unrestricted by weather or time of day, and can readily detect meteors at least two orders of magnitude smaller in mass than those detectable optically. Again the observations are heavily biased toward the higher velocities as the electron line density varies approximately asV 3.5. However, the higher the velocity of the meteoroid the greater the height of the meteor trail, and the reduced probability of radar detection due to rapid diffusion of the trail. Thus radar observations tend to select meteors in the intermediate velocity range 30–40 km s–1.  相似文献   

16.
A comparison covering more than three decades is made between the seasonal variation of radar meteor influx and seasonal variations in the occurrence probabilities of ionosonde sporadic-E parametersƒ0Es and ƒbEs for different diurnal intervals at two Southern Hemisphere stations. The analyses show that for medium intensity 3Em type sporadic-E no clear correlation with major Southern Hemisphere meteor shower activity exists. This finding which does not support some earlier shorter period surveys suggests the need for further work into the aeronomy of Es source ions.  相似文献   

17.
Meteor radar observations of ionized trails in the Earth’s atmosphere provide observations that do not depend on weather conditions and time of day and provide good statistics for analysis. Further development in the new quasitomographic analysis of the goniometric data of the Kazan meteoric radar has revealed a number of very weak meteoric streams with rates of more than 5–6 meteors per day. In addition to the known large meteor showers, we have found up to as many as 1000 small showers per month that we have named microshowers. We shall operationally define a microshower as the minimal meteoric stream which can be detected with the Kazan meteoric radar while quasitomographic procedures of processing interferometer data are used.  相似文献   

18.
Forward-scatter radio meteor observations have been made at Japan since 1996 using inexpensive and low-end equipment. The activity of some major meteor showers and the seasonal variability of sporadic meteors in 2006 are presented.  相似文献   

19.
High-resolution lunar radar map at 70-cm wavelength   总被引:4,自引:0,他引:4  
New radar observations of the Moon in 1981–1984 were made using the 430 MHz (70 cm wavelength) radar at the Arecibo observatory, Puerto Rico. The new observations have produced a high resolution lunar radar map with radar cell-sizes near 2–5 km. This new resolution is a three-fold improvement over the previous mapping done in the late 1960's. Since the Arecibo radar antenna beam is only ten arc-minutes (about one-third of the width of the lunar disk), this new map is a mosaic of some eighteen observations. A radarmetric control between the various pieces of the mosaic was obtained via a beam-swing, limb-to-limb calibration.When the limb-to-limb calibration was combined with the mosaic, there were significant radar scattering differences across the maria. Eastern Mare Tranquillitatis and western Oceanus Procellarum have weaker echoes than other maria, while the central portion of Mare Serenitatis and northern Mare Imbrium have stronger echoes. There is a radar scattering difference across the southern terra as areas nearer Mare Orientale have stronger echoes than areas further from Mare Orientale.  相似文献   

20.
We present a low cost meteor observation system based on the radio forward scattering and interferometry technique at Kochi University of Technology (KUT). The system can be a suitable model for low budget educational institutes that target practical learning of astronomical objects and upper atmospheric characteristics. The system methodology for the automatic counting of meteor echoes, filtering noise and detecting meteor echo directions is described. Detection of the meteor echo directions, which is the basic element for determining the meteor trajectories and the orbital parameters of parent comets, is based on a software system developed for analysis of phase differences detected by interferometry. Randomly selected observation samples measured by the radio interferometer are compared to simultaneous optical observations by video cameras to verify the system accuracy. Preliminary error analysis revealed that the system accuracy is directly related to the duration of observed meteor echoes. Eighty percent of meteor echo samples with durations longer than 3 s showed agreement in azimuth and elevation angles measurements to within a 10° error range, while meteor echo samples with shorter durations showed lower agreement levels probably due to the low system sampling resolution of 0.1 s. The reasonable agreement level of meteor echoes with duration longer than 3 s demonstrated the applicability of the system methodology. Accurate observation of shorter duration meteor echoes could possibly be achieved by improving the system resolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号