首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Apoyo caldera, near Granada, Nicaragua, was formed by two phases of collapse following explosive eruptions of dacite pumice about 23,000 yr B.P. The caldera sits atop an older volcanic center consisting of lava flows, domes, and ignimbrite (ash-flow tuff). The earliest lavas erupted were compositionally homogeneous basalt flows, which were later intruded by small andesite and dacite flows along a well defined set of N—S-trending regional faults. Collapse of the roof of the magma chamber occurred along near-vertical ring faults during two widely separated eruptions. Field evidence suggests that the climactic eruption sequence opened with a powerful plinian blast, followed by eruption column collapse, which generated a complex sequence of pyroclastic surge and ignimbrite deposits and initiated caldera collapse. A period of quiescence was marked by the eruption of scoria-bearing tuff from the nearby Masaya caldera and the development of a soil horizon. Violent plinian eruptions then resumed from a vent located within the caldera. A second phase of caldera collapse followed, accompanied by the effusion of late-stage andesitic lavas, indicating the presence of an underlying zoned magma chamber. Detailed isopach and isopleth maps of the plinian deposits indicate moderate to great column heights and muzzle velocities compared to other eruptions of similar volume. Mapping of the Apoyo airfall and ignimbrite deposits gives a volume of 17.2 km3 within the 1-mm isopach. Crystal concentration studies show that the true erupted volume was 30.5 km3 (10.7 km3 Dense Rock Equivalent), approximately the volume necessary to fill the caldera. A vent area located in the northeast quadrant of the present caldera lake is deduced for all the silicic pyroclastic eruptions. This vent area is controlled by N—S-trending precaldera faults related to left-lateral motion along the adjacent volcanic segment break. Fractional crystallization of calc-alkaline basaltic magma was the primary differentiation process which led to the intermediate to silicic products erupted at Apoyo. Prior to caldera collapse, highly atypical tholeiitic magmas resembling low-K, high-Ca oceanic ridge basalts were erupted along tension faults peripheral to the magma chamber. The injection of tholeiitic magmas may have contributed to the paroxysmal caldera-forming eruptions.  相似文献   

2.
The 14.1 Ma old composite ignimbrite cooling unit P1 (45 km3) on Gran Canaria comprises a lower mixed rhyolite-trachyte tuff, a central rhyolite-basalt mixed tuff, and a slightly rhyolite-contaminated basaltic tuff at the top. The basaltic tuff is compositionally zoned with (a) an upward change in basalt composition to higher MgO content (4.3–5.2 wt.%), (b) variably admixed rhyolite or trachyte (commonly <5 wt.%), and (c) an upward increasing abundance of basaltic and plutonic lithic fragments and cognate cumulate fragments. The basaltic tuff is divided into three structural units: (I) the welded basaltic ignimbrite, which forms the thickest part (c. 95 vol.%) and is the main subject of the present paper; (II) poorly consolidated massive, bomb- and block-rich beds interpreted as phreatomagmatic pyroclastic flow deposits; and (III) various facies of reworked basaltic tuff. Tuff unit I is a basaltic ignimbrite rather than a lava flow because of the absence of top and bottom breccias, radial sheet-like distribution around the central Tejeda caldera, thickening in valleys but also covering higher ground, and local erosion of the underlying P1 ash. A gradual transition from dense rock in the interior to ash at the top of the basaltic ignimbrite reflects a decrease in welding; the shape of the welding profile is typical for emplacement temperatures well above the minimum welding temperature. A similar transition occurs at the base where the ignimbrite was emplaced on cold ground in distal sections. In proximal sections the base is dense where it was emplaced on hot felsic P1 tuff. The intensity of welding, especially at the base, and the presence of spherical particles and of mantled and composite particles formed by accretion and coalescence in a viscous state imply that the flow was a suspension of hot magma droplets. The flow most likely had to be density stratified and highly turbulent to prevent massive coalescence and collapse. Model calculations suggest eruption through low pyroclastic fountains (<1000 m high) with limited cooling during eruption and turbulent flow from an initial temperature of 1160°C. The large volume of 26 km3 of erupted basalt compared with only 16 km3 of the evolved P1 magmas, and the extremely high discharge rates inferred from model calculations are unusual for a basaltic eruption. It is suggested that the basaltic magma was erupted and emplaced in a fashion commonly only attributed to felsic magmas because it utilized the felsic P1 magma chamber and its ring-fissure conduits. Evolution of the entire P1 eruption was controlled by withdrawal dynamics involving magmas differing in viscosity by more than four orders of magnitude. The basaltic eruption phase was initially driven by buoyancy of the basaltic magma at chamber depth and continued degassing of felsic magma, but most of the large volume of basalt magma was driven out of the reservoir by subsidence of a c. 10 km diameter roof block, which followed a decrease in magma chamber pressure during low viscosity basaltic outflow.  相似文献   

3.
Mamaku Ignimbrite was deposited during the formation of Rotorua Caldera, Taupo Volcanic Zone, New Zealand, 220–230 ka. Its outflow sheet forms a fan north, northwest and southwest of Rotorua, capping the Mamaku–Kaimai Plateau. Mamaku Ignimbrite can be divided into a partly phreatomagmatic basal sequence, and a main sequence which comprises lower, middle, and upper ignimbrite. The internal stratigraphy indicates that it was emplaced progressively from a pyroclastic density current of varying energy that became less particulate away from source. Gradational contacts between lower, middle, and upper ignimbrite are consistent with it being deposited during one eruptive event from the same source. Variations in lithic clast content and coexistence of different pumice types through the ignimbrite sequence indicate that caldera collapse occurred throughout the eruption, but particularly when middle Mamaku Ignimbrite was deposited and in the final stages of deposition of upper Mamaku Ignimbrite. Maximum lithic data and the location of lithic lag breccias in upper Mamaku Ignimbrite confirm Rotorua Caldera as the source. At least 120 m of geothermally altered intra-caldera Mamaku Ignimbrite occurs inside Rotorua Caldera. Pumice clasts in the Mamaku Ignimbrite are dacite to high-silica rhyolite and can be chemically divided into three types: high–silica rhyolite (type 1), rhyolite (type 2), and dacite (type 3). All are petrogenetically related and types 1 and 2 may be derived by up to 20% crystal fractionation from the type 3 dacite. All three types probably resided in a single, gradationally zoned magma chamber. Andesitic juvenile fragments are found only in upper Mamaku Ignimbrite and inferred to represent a discrete magma that was injected into the silicic chamber and is considered to have accumulated as a sill at the base of the magma chamber. The contrast in density between the andesitic and silicic magmas did not allow eruption of the andesitic fragments during the deposition of lower and middle Mamaku Ignimbrite. The advanced stage of caldera collapse, late in the main eruptive phase, created withdrawal dynamics that allowed andesitic magma to reach the surface as fragments within upper Mamaku Ignimbrite.  相似文献   

4.
New investigations of the geology of Crater Lake National Park necessitate a reinterpretation of the eruptive history of Mount Mazama and of the formation of Crater Lake caldera. Mount Mazama consisted of a glaciated complex of overlapping shields and stratovolcanoes, each of which was probably active for a comparatively short interval. All the Mazama magmas apparently evolved within thermally and compositionally zoned crustal magma reservoirs, which reached their maximum volume and degree of differentiation in the climactic magma chamber 7000 yr B.P.The history displayed in the caldera walls begins with construction of the andesitic Phantom Cone 400,000 yr B.P. Subsequently, at least 6 major centers erupted combinations of mafic andesite, andesite, or dacite before initiation of the Wisconsin Glaciation 75,000 yr B.P. Eruption of andesitic and dacitic lavas from 5 or more discrete centers, as well as an episode of dacitic pyroclastic activity, occurred until 50,000 yr B.P.; by that time, intermediate lava had been erupted at several short-lived vents. Concurrently, and probably during much of the Pleistocene, basaltic to mafic andesitic monogenetic vents built cinder cones and erupted local lava flows low on the flanks of Mount Mazama. Basaltic magma from one of these vents, Forgotten Crater, intercepted the margin of the zoned intermediate to silicic magmatic system and caused eruption of commingled andesitic and dacitic lava along a radial trend sometime between 22,000 and 30,000 yr B.P. Dacitic deposits between 22,000 and 50,000 yr old appear to record emplacement of domes high on the south slope. A line of silicic domes that may be between 22,000 and 30,000 yr old, northeast of and radial to the caldera, and a single dome on the north wall were probably fed by the same developing magma chamber as the dacitic lavas of the Forgotten Crater complex. The dacitic Palisade flow on the northeast wall is 25,000 yr old. These relatively silicic lavas commonly contain traces of hornblende and record early stages in the development of the climatic magma chamber.Some 15,000 to 40,000 yr were apparently needed for development of the climactic magma chamber, which had begun to leak rhyodacitic magma by 7015 ± 45 yr B.P. Four rhyodacitic lava flows and associated tephras were emplaced from an arcuate array of vents north of the summit of Mount Mazama, during a period of 200 yr before the climactic eruption. The climactic eruption began 6845 ± 50 yr B.P. with voluminous airfall deposition from a high column, perhaps because ejection of 4−12 km3 of magma to form the lava flows and tephras depressurized the top of the system to the point where vesiculation at depth could sustain a Plinian column. Ejecta of this phase issued from a single vent north of the main Mazama edifice but within the area in which the caldera later formed. The Wineglass Welded Tuff of Williams (1942) is the proximal featheredge of thicker ash-flow deposits downslope to the north, northeast, and east of Mount Mazama and was deposited during the single-vent phase, after collapse of the high column, by ash flows that followed topographic depressions. Approximately 30 km3 of rhyodacitic magma were expelled before collapse of the roof of the magma chamber and inception of caldera formation ended the single-vent phase. Ash flows of the ensuing ring-vent phase erupted from multiple vents as the caldera collapsed. These ash flows surmounted virtually all topographic barriers, caused significant erosion, and produced voluminous deposits zoned from rhyodacite to mafic andesite. The entire climactic eruption and caldera formation were over before the youngest rhyodacitic lava flow had cooled completely, because all the climactic deposits are cut by fumaroles that originated within the underlying lava, and part of the flow oozed down the caldera wall.A total of 51−59 km3 of magma was ejected in the precursory and climactic eruptions, and 40−52 km3 of Mount Mazama was lost by caldera formation. The spectacular compositional zonation shown by the climactic ejecta — rhyodacite followed by subordinate andesite and mafic andesite — reflects partial emptying of a zoned system, halted when the crystal-rich magma became too viscous for explosive fragmentation. This zonation was probably brought about by convective separation of low-density, evolved magma from underlying mafic magma. Confinement of postclimactic eruptive activity to the caldera attests to continuing existence of the Mazama magmatic system.  相似文献   

5.
The petrology of the highly phyric two-pyroxene andesitic to dacitic pyroclastic rocks of the November 13, 1985 eruption of Nevado del Ruiz, Colombia, reveals evidence of: (1) increasingly fractionated bulk compositions with time; (2) tapping of a small magma chamber marginally zoned in regard to H2O contents (1 to 4%), temperature (960–1090°C), and amount of residual melt (35 to 65%); (3) partial melting and assimilation of degassed zones in the hotter less dense interior of the magma chamber; (4) probable heating, thermal disruption and mineralogic and compositional contamination of the magma body by basaltic magma “underplating”; and (5) crustal contamination of the magmas during ascent and within the magma chamber. Near-crater fall-back or “spill-over” emitted in the middle of the eruptive sequence produced a small pyroclastic flow that became welded in its central and basal portions because of ponding and thus heat conservation on the flat glaciated summit near the Arenas crater. The heterogeneity of Ruiz magmas may be related to the comparatively small volume (0.03 km3) of the eruption, nearly ten times less than the 0.2 km3 of the Plinian phase of Mount St. Helens, and probable steep thermal and PH2O gradients of a small source magma chamber, estimated at 300 m long and 100 m wide for an assumed ellipsoidal shape.  相似文献   

6.
Magma plumbing system of the 2000 eruption of Miyakejima Volcano, Japan   总被引:1,自引:0,他引:1  
During the 2000 eruption at Miyakejima Volcano, two magmas with different compositions erupted successively from different craters. Magma erupted as spatter from the submarine craters on 27 June is aphyric basaltic andesite (<5 vol% phenocrysts, 51.4–52.2 wt% SiO2), whereas magma issued as volcanic bombs from the summit caldera on 18 August is plagioclase-phyric basalt (20 vol% phenocrysts, 50.8–51.3 wt% SiO2). The submarine spatter contains two types of crystal-clots, A-type and A-type (andesitic type). The phenocryst assemblages (plagioclase, pyroxenes and magnetite) and compositions of clinopyroxene in these clots are nearly the same, but only A-type clots contain Ca-poor plagioclase (An < 70). We consider that the A-type clots could have crystallized from a more differentiated andesitic magma than the A-type clots, because FeO*/MgO is not strongly influenced during shallow andesitic differentiation. The summit bombs contain only B-type (basaltic type) crystal-clots of Ca-rich plagioclase, olivine and clinopyroxene. The A-type and B-type clots have often coexisted in Miyakejima lavas of the period 1469–1983, suggesting that the magma storage system consists of independent batches of andesitic and basaltic magmas. According to the temporal variations of mineral compositions in crystal-clots, the andesitic magma became less evolved, and the basaltic magma more evolved, over the past 500 years. We conclude that gradually differentiating basaltic magma has been repeatedly injected into the shallower andesitic magma over this period, causing the andesitic magma to become less evolved with time. The mineral chemistries in crystal-clots of the submarine spatter and 18 August summit bombs of the 2000 eruption fall on the evolution trends of the A-type and B-type clots respectively, suggesting that the shallow andesitic and deeper basaltic magmas existing since 1469 had successively erupted from different craters. The 2000 summit collapse occurred due to drainage of the andesitic magma from the shallower chamber; as the collapse occurred, it may have caused disruption of crustal cumulates which then contaminated the ascending, deeper basalt. Thus, porphyritic basaltic magma could erupt alone without mixing with the andesitic magma from the summit caldera. The historical magma plumbing system of Miyakejima was probably destroyed during the 2000 eruption, and a new one may now form.Editorial responsibility: S Nakada, T Druitt  相似文献   

7.
A core drilled within the northern part of the city of Napoli has offered the unique opportunity to observe in one single sequence the superposition of the four pyroclastic flow units emplaced during the Campanian Ignimbrite (CI) eruption. Such a stratigraphic succession has never been encountered before in natural or in man made exposures. Therefore the CI sequence was reconstructed only on the basis of stratigraphic correlations and compositional data (in literature). The occurrence of four superposed CI flows, together with all the data available (in literature) allowed us to better constrain the chemical stratigraphy of the deposit and the compositional structure of the CI magma chamber. The CI magma chamber includes two cogenetic magma layers, separated by a compositional gap. The upper magma layer was contaminated by interaction with radiogenic fluids. The two magma layers were extruded either individually or simultaneously during the course of the eruption. In the latter case they produced a hybrid magma. But no evidence of input of new geochemically and isotopically distinct magma batches just prior or during the eruption has been found. Comparison with the exposed CI deposits has permitted reconstruction of variable eruption phases and related magma withdrawal and caldera collapse episodes. The eruption was likely to have began with phreatomagmatic explosions followed by the formation of a sustained plinian eruption column fed by the simultaneous extraction from both magma layers. Towards the end of this phase the upward migration of the fragmentation surface and the decrease in magma eruption rate and/or activation of fractures formed an unstable pulsating column that was fed only by the most-evolved magma layer. This plinian phase was followed by the collapse of the eruption column and the beginning of caldera formation. At this stage expanded pyroclastic flows fed by the upper magma layer in the chamber generated. During the following major caldera collapse episode, the maximum mass discharge rate was reached and both magma layers were tapped, generating expanded pyroclastic flows. Towards the end of the eruption, only the deeper and less differentiated magma layer was tapped producing more concentrated pyroclastic flows that traveled short distances.  相似文献   

8.
The Christmas Mountains caldera complex developed approximately 42 Ma ago over an elliptical (8×5 km) laccolithic dome that formed during emplacement of the caldera magma body. Rocks of the caldera complex consist of tuffs, lavas, and volcaniclastic deposits, divided into five sequences. Three of the sequences contain major ash-flow tuffs whose eruption led to collapse of four calderas, all 1–1.5 km in diameter, over the dome. The oldest caldera-related rocks are sparsely porphyritic, rhyolitic, air-fall and ash-flow tuffs that record formation and collapse of a Plinian-type eruption column. Eruption of these tuffs induced collapse of a wedge along the western margin of the dome. A second, more abundantly porphyritic tuff led to collapse of a second caldera that partly overlapped the first. The last major eruptions were abundantly porphyritic, peralkaline quartz-trachyte ash-flow tuffs that ponded within two calderas over the crest of the dome. The tuffs are interbedded with coarse breccias that resulted from failure of the caldera walls. The Christmas Mountains caldera complex and two similar structures in Trans-Pecos Texas constitute a newly recognized caldera type, here termed a laccocaldera. They differ from more conventional calderas by having developed over thin laccolithic magma chambers rather than more deep-seated bodies, by their extreme precaldera doming and by their small size. However, they are similar to other calderas in having initial Plinian-type air-fall eruption followed by column collapse and ash-flow generation, multiple cycles of eruption, contemporaneous eruption and collapse, apparent pistonlike subsidence of the calderas, and compositional zoning within the magma chamber. Laccocalderas could occur else-where, particularly in alkalic magma belts in areas of undeformed sedimentary rocks.  相似文献   

9.
The Pagosa Peak Dacite is an unusual pyroclastic deposit that immediately predated eruption of the enormous Fish Canyon Tuff (5000 km3) from the La Garita caldera at 28 Ma. The Pagosa Peak Dacite is thick (to 1 km), voluminous (>200 km3), and has a high aspect ratio (1:50) similar to those of silicic lava flows. It contains a high proportion (40–60%) of juvenile clasts (to 3–4 m) emplaced as viscous magma that was less vesiculated than typical pumice. Accidental lithic fragments are absent above the basal 5–10% of the unit. Thick densely welded proximal deposits flowed rheomorphically due to gravitational spreading, despite the very high viscosity of the crystal-rich magma, resulting in a macroscopic appearance similar to flow-layered silicic lava. Although it is a separate depositional unit, the Pagosa Peak Dacite is indistinguishable from the overlying Fish Canyon Tuff in bulk-rock chemistry, phenocryst compositions, and 40Ar/39Ar age.The unusual characteristics of this deposit are interpreted as consequences of eruption by low-column pyroclastic fountaining and lateral transport as dense, poorly inflated pyroclastic flows. The inferred eruptive style may be in part related to synchronous disruption of the southern margin of the Fish Canyon magma chamber by block faulting. The Pagosa Peak eruptive sources are apparently buried in the southern La Garita caldera, where northerly extensions of observed syneruptive faults served as fissure vents. Cumulative vent cross-sections were large, leading to relatively low emission velocities for a given discharge rate. Many successive pyroclastic flows accumulated sufficiently rapidly to weld densely as a cooling unit up to 1000 m thick and to retain heat adequately to permit rheomorphic flow. Explosive potential of the magma may have been reduced by degassing during ascent through fissure conduits, leading to fracture-dominated magma fragmentation at low vesicularity. Subsequent collapse of the 75×35 km2 La Garita caldera and eruption of the Fish Canyon Tuff were probably triggered by destabilization of the chamber roof as magma was withdrawn during the Pagosa Peak eruption.  相似文献   

10.
Unusual monotonous intermediate ignimbrites consist of phenocryst-rich dacite that occurs as very large volume (>1000 km3) deposits that lack systematic compositional zonation, comagmatic rhyolite precursors, and underlying plinian beds. They are distinct from countless, usually smaller volume, zoned rhyolite–dacite–andesite deposits that are conventionally believed to have erupted from magma chambers in which thermal and compositional gradients were established because of sidewall crystallization and associated convective fractionation. Despite their great volume, or because of it, monotonous intermediates have received little attention. Documentation of the stratigraphy, composition, and geologic setting of the Lund Tuff – one of four monotonous intermediate tuffs in the middle-Tertiary Great Basin ignimbrite province – provides insight into its unusual origin and, by implication, the origin of other similar monotonous intermediates.The Lund Tuff is a single cooling unit with normal magnetic polarity whose volume likely exceeded 3000 km3. It was emplaced 29.02±0.04 Ma in and around the coeval White Rock caldera which has an unextended north–south diameter of about 50 km. The tuff is monotonous in that its phenocryst assemblage is virtually uniform throughout the deposit: plagioclase>quartz≈hornblende>biotite>Fe–Ti oxides≈sanidine>titanite, zircon, and apatite. However, ratios of phenocrysts vary by as much as an order of magnitude in a manner consistent with progressive crystallization in the pre-eruption chamber. A significant range in whole-rock chemical composition (e.g., 63–71 wt% SiO2) is poorly correlated with phenocryst abundance.These compositional attributes cannot have been caused wholly by winnowing of glass from phenocrysts during eruption, as has been suggested for the monotonous intermediate Fish Canyon Tuff. Pumice fragments are also crystal-rich, and chemically and mineralogically indistinguishable from bulk tuff. We postulate that convective mixing in a sill-like magma chamber precluded development of a zoned chamber with a rhyolitic top or of a zoned pyroclastic deposit. Chemical variations in the Lund Tuff are consistent with equilibrium crystallization of a parental dacitic magma followed by eruptive mixing of compositionally diverse crystals and high-silica rhyolite vitroclasts during evacuation and emplacement. This model contrasts with the more systematic withdrawal from a bottle-shaped chamber in which sidewall crystallization creates a marked vertical compositional gradient and a substantial volume of capping-evolved rhyolite magma. Eruption at exceptionally high discharge rates precluded development of an underlying plinian deposit.The generation of the monotonous intermediate Lund magma and others like it in the middle Tertiary of the western USA reflects an unusually high flux of mantle-derived mafic magma into unusually thick and warm crust above a subducting slab of oceanic lithosphere.  相似文献   

11.
The small- to moderate-volume, Quaternary, Siwi pyroclastic sequence was erupted during formation of a 4 km-wide caldera on the eastern margin of Tanna, an island arc volcano in southern Vanuatu. This high-potassium, andesitic eruption followed a period of effusive basaltic andesite volcanism and represents the most felsic magma erupted from the volcano. The sequence is up to 13 m thick and can be traced in near-continuous outcrop over 11 km. Facies grade laterally from lithic-rich, partly welded spatter agglomerate along the caldera rim to two medial, pumiceous, non-welded ignimbrites that are separated by a layer of lithic-rich, spatter agglomerate. Juvenile clasts comprise a wide range of densities and grain sizes. They vary between black, incipiently vesicular, highly elongate spatter clasts that have breadcrusted pumiceous rinds and reach several metres across to silky, grey pumice lapilli. The pumice lapilli range from highly vesicular clasts with tube or coalesced spherical vesicles to denser finely vesicular clasts that include lithic fragments.Textural and lithofacies characteristics of the Siwi pyroclastic sequence suggest that the first phase of the eruption produced a base surge deposit and spatter-poor pumiceous ignimbrite. A voluminous eruption of spatter and lithic pyroclasts coincided with a relatively deep withdrawal of magma presumably driven by a catastrophic collapse of the magma chamber roof. During this phase, spatter clasts rapidly accumulated in the proximal zone largely as fallout, creating a variably welded and lithic-rich agglomerate. This phase was followed by the eruption of moderately to highly vesiculated magma that generated the most widespread, upper pumiceous ignimbrite. The combination of spatter and pumice in pyroclastic deposits from a single eruption appears to be related to highly explosive, magmatic eruptions involving low-viscosity magmas. The combination also indicates the coexistence of a spatter fountain and explosive eruption plume for much of the eruption.Editorial responsibility: R. Cioni  相似文献   

12.
Caldera morphology on the six historically active shield volcanoes that comprise Isabela and Fernandina islands, the two westernmost islands in the Galapagos archipelago, is linked to the dynamics of magma supply to, and withdrawal from, the magma chamber beneath each volcano. Caldera size (e.g., volumes 2–9 times that of the caldera of Kilauea, Hawai'i), the absence of well-developed rift zones and the inability to sustain prolonged low-volumetric-flow-rate flank eruptions suggest that magma storage occurs predominantly within centrally located chambers (at the expense of storage within the flanks). The calderas play an important role in the formation of distinctive arcuate fissures in the central part of the volcano: repeated inward collapse of the caldera walls along with floor subsidence provide mechanisms for sustaining radially oriented least-compressive stresses that favor the formation of arcuate fissures within 1–2 km outboard of the caldera rim. Variations in caldera shape, depth-to-diameter ratio, intra-caldera bench location and the extent of talus slope development provide insight into the most recent events of caldera modification, which may be modulated by the episodic supply of magma to each volcano. A lack of correlation between the volume of the single historical collapse event and its associated volume of erupted lava precludes a model of caldera formation linked directly to magma withdrawal. Rather, caldera collapse is probably the result of accumulated loss from the central storage system without sufficient recharge and (as has been suggested for Kilauea) may be aided by the downward drag of dense cumulates and intrusives.  相似文献   

13.
The caldera-forming eruption of Volcán Ceboruco, Mexico   总被引:1,自引:1,他引:0  
3 of magma erupted, ∼95% of which was deposited as fall layers. During most of the deposition of P1, eruptive intensity (mass flux) was almost constant at 4–8×107 kg s−1, producing a Plinian column 25–30 km in height. Size grading at the top of P1 indicates, however, that mass flux waned dramatically, and possibly that there was a brief pause in the eruption. During the post-P1 phase of the eruption, a much smaller volume of magma erupted, although mass flux varied by more than an order of magnitude. We suggest that caldera collapse began at the end of the P1 phase of the eruption, because along with the large differences in mass flux behavior between P1 and post-P1 layers, there were also dramatic changes in lithic content (P1 contains ∼8% lithics; post-P1 layers contain 30–60%) and magma composition (P1 is 98% rhyodacite; post-P1 layers are 60–90% rhyodacite). However, the total volume of magma erupted during the Jala pumice event is close to that estimated for the caldera. These observations appear to conflict with models which envision that, after an eruption is initiated by overpressure in the magma chamber, caldera collapse begins when the reservoir becomes underpressurized as a result of the removal of magma. The conflict arises because firstly, the P1 layer makes up too large a proportion (∼75%) of the total volume erupted to correspond to an overpressurized phase, and secondly, the caldera volume exceeds the post-P1 volume of magma by at least a factor of three. The mismatches between model and observations could be reconciled if collapse began near the beginning of the eruption, but no record of such early collapse is evident in the tephra sequence. The apparent inability to place the Jala pumice eruptive sequence into existing models of caldera collapse, which were constructed to explain the formation of calderas much greater in volume than that at Ceboruco, may indicate that differences in caldera mechanics exist that depend on size or that a more general model for caldera formation is needed. Received: 18 November 1998 / Accepted: 23 October 1999  相似文献   

14.
The Onano explosive eruption of the Latera Volcanic Complex (Vulsini Volcanoes, Quaternary potassic Roman Comagmatic Region, Italy) provides an interesting example of multiple changes of eruptive style that were concomitant with a late phase of collapse of the polygenetic Latera Caldera. This paper reports a reconstruction of the event based on field analysis, laboratory studies of grain size and density of juvenile clasts, and re-interpretation of available subsurface geology data. The Onano eruption took place in a structurally weak area, corresponding to a carbonate substrate high bordered by the pre-existing Latera caldera and Bolsena volcano-tectonic depression, which controlled the ascent and eruption of a shoshonitic-phonotephritic magma through intersecting rim fault systems. Temporal changes of magma vesiculation, fragmentation and discharge rate, and consequent eruptive dynamics, were strongly controlled by pressure evolution in the magma chamber and changing vent geometry. Initially, pumice-rich pyroclastic flows were emplaced, followed by spatter- and lithic-rich flows and fallout from energetic fire-fountaining. The decline of magma pressure due to the partial evacuation of the magma chamber induced trapdoor collapse of the chamber roof, which involved part of the pre-existing caldera and external volcano slopes and eventually led to the present-day caldera. The widening of the vent system and the emplacement of the main pyroclastic flow and associated co-ignimbrite lag breccia marked the eruption climax. A sudden drop of the confining pressure, which is attributed to a pseudo-rigid behaviour of the magma chamber wall rocks during a phase of rapid magma drainage, led to extensive magma vesiculation and fragmentation. The disruption of the magma chamber roof and waning magma pressure in the late eruption stage favoured the explosive interaction of residual magma with groundwater from the confined carbonate aquifer. Pulsating hydrostatic and magma pressures produced alternating hydromagmatic pyroclastic surges, strombolian fallout and spatter flows.  相似文献   

15.
The 161 ka explosive eruption of the Kos Plateau Tuff (KPT) ejected a minimum of 60 km3 of rhyolitic magma, a minor amount of andesitic magma and incorporated more than 3 km3 of vent- and conduit-derived lithic debris. The source formed a caldera south of Kos, in the Aegean Sea, Greece. Textural and lithofacies characteristics of the KPT units are used to infer eruption dynamics and magma chamber processes, including the timing for the onset of catastrophic caldera collapse.The KPT consists of six units: (A) phreatoplinian fallout at the base; (B, C) stratified pyroclastic-density-current deposits; (D, E) volumetrically dominant, massive, non-welded ignimbrites; and (F) stratified pyroclastic-density-current deposits and ash fallout at the top. The ignimbrite units show increases in mass, grain size, abundance of vent- and conduit-derived lithic clasts, and runout of the pyroclastic density currents from source. Ignimbrite formation also corresponds to a change from phreatomagmatic to dry explosive activity. Textural and lithofacies characteristics of the KPT imply that the mass flux (i.e. eruption intensity) increased to the climax when major caldera collapse was initiated and the most voluminous, widespread, lithic-rich and coarsest ignimbrite was produced, followed by a waning period. During the eruption climax, deep basement lithic clasts were ejected, along with andesitic pumice and variably melted and vesiculated co-magmatic granitoid clasts from the magma chamber. Stratigraphic variations in pumice vesicularity and crystal content, provide evidence for variations in the distribution of crystal components and a subsidiary andesitic magma within the KPT magma chamber. The eruption climax culminated in tapping more coarsely crystal-rich magma. Increases in mass flux during the waxing phase is consistent with theoretical models for moderate-volume explosive eruptions that lead to caldera collapse.  相似文献   

16.
We have evaluated published gravity-height ((g/(h) data on Campi Flegrei, Kilauea, Askja and Krafla, in order to discriminate between subsurface processes during caldera subsidence. With respect to end member gravity-height correlations, such as the free air gradient (FAG) and the Bouguer corrected free air (BCFAG), (g/(h gradients must be interpreted in terms of subsurface mass redistribution, density changes or some combination of these. (g/(h gradients during subsidence plot (1) along or below the BCFAG, (2) between the BCFAG and the FAG or (3) along or above the FAG. We have evaluated each of these three regions in terms of subsurface processes during volcano subsidence. We have interpreted (g/(h gradients as possible indicators of precursors of volcanic activity and propose that gravity-height surveys may help to detect precursors of caldera collapse caused by magma drainage. In this context, the 1875 eruption of Askja in Iceland has been re-interpreted in terms of the beginning of the eruptive episode being induced by roof collapse of an evacuating magma chamber. Based on other examples of recent volcanic roof collapses, we evaluate the contribution of gravity-height surveys in assessing volcanic risks during caldera subsidence. Caldera-forming eruptions are environmentally and economically the most devastating volcanic events. Inflation is usually considered to be an important precursor to activity. Here, we show that deflation may be associated with the trigger mechanism for caldera-forming explosive eruptions.  相似文献   

17.
Batur is an active stratovolcano on the island of Bali, Indonesia, with a large, well-formed caldera whose formation is correlated with the eruption about 23,700 years ago of a thick ignimbrite sheet. Our study of the volcanic stratigraphy and geochemistry of Batur shows the formation of the caldera was signalled by a change in the composition of the erupting material from basaltic and andesitic to dacitic. The dacitic rocks are glassy, possess equilibrium phenocryst assemblages, and display compositional characteristics consistent with an origin by crystal-liquid fractionation from more mafic parent magmas in a shallow chamber, possibly at 1.5 km depth and 1000–1070°C.However, although separated by a gap of 6 wt.% SiO2, the dacitic rocks are clearly related in their minor- and trace-element geochemistry to those basalts and basaltic andesites erupted after the caldera was formed rather than to the andesites erupted immediately before the dacites first appeared. We infer from this and published experimental modelling of the possible crystallization behaviour of basaltic magma chambers that a magmatic cycle involving caldera formation began independently of the previous activity of Batur by formation of a new, closed-system magma chamber beneath the volcano. Fractional crystallization, possibly at the walls of the chamber, led to the early production of derivative siliceous magmas and, consequently, to caldera formation, while most of the magma retained its original composition. The postcaldera Batur basalts represent the largely undifferentiated core liquids of this chamber.This model contrasts with the traditional evolutionary model for stratovolcano calderas but may be applicable to the origins of calderas similar to that of Batur, particularly those in volcanic island arcs.  相似文献   

18.
 A radar and gravity survey of the ice-filled caldera at Volcán Sollipulli, Chile, indicates that the intra-caldera ice has a thickness of up to 650 m in its central part and that the caldera harbours a minimum of 6 km3 of ice. Reconnaissance geological observations show that the volcano has erupted compositions ranging from olivine basalt to dacite and have identified five distinct volcanic units in the caldera walls. Pre- or syn-caldera collapse deposits (the Sharkfin pyroclastic unit) comprise a sequence which evolved from subglacial to subaerial facies. Post-caldera collapse products, which crop out along 17 of the 20 km length of the caldera wall, were erupted almost exclusively along the caldera margins in the presence of a large body of intra-caldera ice. The Alpehué crater, formed by an explosive eruption between 2960 and 2780 a. BP, in the southwest part of the caldera is shown to post date formation of the caldera. Sollipulli lacks voluminous silicic pyroclastic rocks associated with caldera formation and the collapse structure does not appear to be a consequence of a large-magnitude explosive eruption. Instead, lateral magma movement at depth resulting in emptying of the magma chamber may have generated the caldera. The radar and gravity data show that the central part of the caldera floor is flat but, within a few hundred metres of the caldera walls, the floor has a stepped topography with relatively low-density rock bodies beneath the ice in this region. This, coupled with the fact that most of the post-caldera eruptions have taken place along the caldera walls, implies that the caldera has been substantially modified by subglacial marginal eruptions. Sollipulli caldera has evolved from a collapse to a constructional feature with intra-caldera ice playing a major role. The post-caldera eruptions have resulted in an increase in height of the walls and concomitant deepening of the caldera with time. Received: 12 June 1995 / Accepted: 7 December 1995  相似文献   

19.
Merapi Volcano (Central Java, Indonesia) has been frequently active during Middle to Late Holocene time producing basalts and basaltic andesites of medium-K composition in earlier stages of activity and high-K magmas from 1900 14C yr BP to the present. Radiocarbon dating of pyroclastic deposits indicates an almost continuous activity with periods of high eruption rates alternating with shorter time spans of distinctly reduced eruptive frequency since the first appearance of high-K volcanic rocks. Geochemical data of 28 well-dated, prehistoric pyroclastic flows of the Merapi high-K series indicate systematic cyclic variations. These medium-term compositional variations result from a complex interplay of several magmatic processes, which ultimately control the periodicity and frequency of eruptions at Merapi. Low eruption rates and the absence of new influxes of primitive magma from depth allow the generation of basaltic andesite magma (56–57 wt% SiO2) in a small-volume magma reservoir through fractional crystallisation from parental mafic magma (52–53 wt% SiO2) in periods of low eruptive frequency. Magmas of intermediate composition erupted during these stages provide evidence for periodic withdrawal of magma from a steadily fractionating magma chamber. Subsequent periods are characterised by high eruption rates that coincide with shifts of whole-rock compositions from basaltic andesite to basalt. This compositional variation is interpreted to originate from influxes of primitive magma into a continuously active magma chamber, triggering the eruption of evolved magma after periods of low eruptive frequency. Batches of primitive magma eventually mix with residual magma in the magmatic reservoir to decrease whole-rock SiO2 contents. Supply of primitive magma at Merapi appears to be sufficiently frequent that andesites or more differentiated rock types were not generated during the past 2000 years of activity. Cyclic variations also occurred during the recent eruptive period since AD 1883. The most recent eruptive episode of Merapi is characterised by essentially uniform magma compositions that may imply the existence of a continuously active magma reservoir, maintained in a quasi-steady state by magma recharge. The whole-rock compositions at the upper limit of the total SiO2 range of the Merapi suite could also indicate the beginning of another period of high eruption rates and shifts towards more mafic compositions.  相似文献   

20.
The 79 AD eruption of Vesuvius included 8 eruption units (EU1–8) and several complex transitions in eruptive style. This study focuses on two important transitions: (1) the abrupt change from white to gray pumice during the Plinian phase of the eruption (EU2 to EU3) and (2) the shift from sustained Plinian activity to the onset of caldera collapse (EU3 to EU4). Quantification of the textural features within individual pumice clasts reveals important changes in both the vesicles and groundmass crystals across each transition boundary. Clasts from the white Plinian fall deposit (EU2) present a simple story of decompression-driven crystallization followed by continuous bubble nucleation, growth and coalescence in the eruptive conduit. In contrast, pumices from the overlying gray Plinian fall deposit (EU3) are heterogeneous and show a wide range in both bubble and crystal textures. Extensive bubble growth, coalescence, and the onset of bubble collapse in pumices at the base of EU3 suggest that the early EU3 magma experienced protracted vesiculation that began during eruption of the EU2 phase and was modified by the physical effects of syn-eruptive mingling-mixing. Pumice clasts from higher in EU3 show higher bubble and crystal number densities and less evidence of bubble collapse, textural features that are interpreted to reflect more thorough mixing of two magmas by this stage of the eruption, with consequent increases in both vesiculation and crystallization. Pumice clasts from a short-lived, high column at the onset of caldera collapse (EU4) continue the trend of increasing crystallization (enhanced by mixing) but, unexpectedly, the melt in these clasts is more vesicular than in EU3 and, in the extreme, can be classified as reticulite. We suggest that the high melt vesicularity of EU4 reflects strong decompression following the partial collapse of the magma chamber.Editorial responsibility: D.B. Dingwell  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号