首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Ballachulish igneous complex in the Scottish Highlands, part of a widespread group of late Caledonian calcalkaline intrusions, was emplaced at a depth of 10 km into Dalradian metasediments resulting in melting of the country rocks near the intrusive contact. The greatest extent of melting occurred in the Leven schist in the 400 m wide so-called Chaotic Zone which experienced infiltration of aqueous fluids from the pluton. In contrast, adjacent to the Chaotic Zone, the feldspar-bearing Appin quartzite underwent significant melting only within a few metres of the intrusion, despite both being in contact with the same fluid source as the Leven schist and having a similar (wet) melting point. The permeability of the Appin quartzite and quartz horizons in the Leven schist to pervasive grain-edge infiltration of aqueous fluids was determined by measuring the equilibrium quartz-H2O dihedral angle for the P-T conditions of contact metamorphism. Addition of powdered samples of both rock types to the pure quartz-H2O system results in a linear decrease of the quartz-H2O dihedral angle with increasing temperature. The rate of this decrease for the Leven schist is greater than that for the Appin quartzite, and the angle decreases below 60° some 30 °C below the wet solidus (670 °C at 0.3 GPa). Charges bearing Appin quartzite had dihedral angles greater than 60° at all temperatures below the wet solidus (690 °C at 0.3 GPa). These results demonstrate that quartz-rich horizons in the Leven schist would have been permeable to infiltration of aqueous fluids close to the solidus, permitting extensive H2O-fluxed melting to occur. The Appin quartzite would have remained impermeable to grain-edge flow, consistent with the observed differences in the extent of partial melting of the two lithologies. Received: 25 November 1996 / Accepted: 29 October 1997  相似文献   

2.
Pelitic hornfelses within the inner thermal aureole of the Etive igneous complex underwent limited partial melting, generating agmatic micro‐stromatic migmatites. In this study, observed volume proportions of vein leucosomes in the migmatites are compared with modelled melt volumes in an attempt to constrain the controls on melting processes. Petrogenetic modelling in the MnNCKFMASHT system was performed on the compositions of 15 analysed Etive pelite samples using THERMOCALC. Melt modes were calculated at 2.2 kbar (the estimated pressure in the southern Etive aureole) from solidus temperatures to 800 °C for both fluid‐absent and fluid‐present conditions. Volume changes accompanying fluid‐absent melting at 2.2 kbar were also calculated. P–T pseudosections reproduce the zonal sequence of the southern Etive aureole fairly well. The modelled solidus temperatures of silica‐rich pelitic compositions are close to 680 °C at 2.2 kbar and, in the absence of free fluid, melt modes in such compositions rise to between 12 and 29% at 800 °C, half of which is typically produced over the narrow reaction interval in which orthopyroxene first appears. Silica‐poor compositions have solidus temperatures of up to ~770 °C and yield <11.4% melt at 800 °C under fluid‐absent conditions. For conditions of excess H2O, modelled melt modes increase dramatically within ~13 °C of the solidus, in some cases to >60%; by 800 °C they range from 61 to 88% and from 29 to 74% in silica‐rich and silica‐poor compositions, respectively. Calculated volume changes for fluid‐absent melting are positive for all modelled compositions and reach 4.5% in some silica‐rich compositions by 800 °C. Orthopyroxene formation is accompanied by a volume increase of up to 1.48% over a temperature increase of as little as 2.7 °C, supporting the arguments for melt‐induced ‘hydrofracturing’ as a viable melt‐escape mechanism in low‐P metamorphism. Mineral assemblages in the innermost aureole support previous conclusions that partial melting took place predominantly under fluid‐absent conditions. However, vein leucosome proportions, estimated by image analysis, do not show the expected correlation with grade, and are locally greatly in excess of melt modes predicted by fluid‐absent models, particularly close to the melt‐in isograd. Melting of interlayered psammites, addition of H2O from interlayered melt‐free rocks, and metastable persistence of muscovite are ruled out as major causes of the excess melt anomaly. The most likely cause, we believe, is that local variations existed in the amount of fluid available at the onset of melting, promoted by focussing of fluid released by dehydration in the middle and outer aureole; however, some redistribution of melt by compaction‐driven flow through the vein channel network cannot be ruled out. The formation of melt‐filled fractures in the inner Etive aureole was assisted by stresses that caused extension at high angles to the igneous contact. The fractures were probably caused either by transient pressure reduction in the diorite magma chamber associated with a second phase of intrusion, or by sub‐solidus thermal contraction in the diorite pluton during the early stages of inner‐aureole cooling.  相似文献   

3.
The mineralogy and O-isotope geochemistry of siliceous limestones from the Ritter Range pendant constrain the geometry and amount of fluid flow during contact metamorphism associated with emplacement of a pluton of the Sierra Nevada Batholith. Wollastonite (Wo) replaces calcite (Cal) + quartz (Qtz) on a layer-by-layer basis in homoclinal beds that strike NW and dip almost vertically. At the peak of metamorphism (P≈ 1500 bars, T≈ 600 °C) fluid in equilibrium with Cal, Qtz, and Wo has composition XCO2=0.28, requiring that the Wo-forming reaction was driven by infiltration of reactive H2O-rich fluid. The spatial distribution of Wo and Cal + Qtz records that peak metamorphic fluid flow was layer-parallel, upward. Bounds on the prograde time-integrated fluid flux associated with formation of Wo are set by: (1) the overlap in O-isotope composition between Wo-bearing and Wo-free rocks (>245 mol fluid/cm2 rock); (2) the amount of fluid that would drive the Wo-reaction front upward to the present level of exposure from a point at depth where Cal, Qtz, and Wo would be in equilibrium with pure CO2 (<1615 mol/cm2). Back-reaction of Wo to Cal + Qtz records an additional time-integrated retrograde fluid flux of ≈ 200–1000 mol/cm2. The direction and amount of flow inferred from mineralogical and isotopic data agree with the results of the hydrologic model for metamorphic fluid flow in the area of Hanson et al. (1993). Fingers of Wo-bearing rock that extend farthest from the fluid source along contacts between limestone and more siliceous rocks point to strong control of flow geometry at the 0.1–100 m scale exerted by premetamorphic structures. Studies that neglect structural control at this scale may fail to predict correctly fundamental aspects of contact metamorphic fluid flow. Received: 27 January 1997 / Accepted: 2 October 1997  相似文献   

4.
Summary The low-pressure emplacement of a quartz diorite body in the metapelitic rocks of the Gennargentu Igneous Complex (Sardinia, Italy) produced a contact metamorphic aureole and resulted in migmatisation of part of the aureole through partial melting. The leucosome, formed by dehydration melting involving biotite, is characterised by granophyric intergrowth and abundant magnetite crystals. A large portion of the high temperature contact aureole shows petrographic features that are intermediate between quartz diorite and migmatite s.s. (i.e. hybrid rocks). A fluid inclusion study has been performed on quartz crystals from the quartz diorite and related contact aureole rocks, i.e. migmatite sensu stricto (s.s.) and hybrid rocks. Three types of fluid inclusions have been identified: I) monophase V inclusions, II) L + V, either L-rich or V-rich aqueous saline inclusions and III) multiphase V + L + S inclusions. Microthermometric data characterised the trapped fluid as a complex aqueous system varying from H2O–NaCl–CaCl2 in the quartz diorite to H2O–NaCl–CaCl2–FeCl2 in the migmatite and hybrid rocks. Fluid salinities range from high saline fluids (50 wt% NaCl eq.) to almost pure aqueous fluid. Liquid-vapour homogenisation temperatures range from 100 to over 400 °C with an average peak around 300 °C. Temperatures of melting of daughter minerals are between 300 and 500 °C. Highly saline liquid- and vapour-rich inclusions coexist with melt inclusions and have been interpreted as brine exsolved from the crystallising magma. Fluid inclusion data indicate the formation of fluid of high iron activity during the low-pressure partial melting and a fluid mixing process in the hybrid rocks.  相似文献   

5.
The system KAlO2–MgO–SiO2–H2O–CO2 has long been used as a model for the processes of granulite-facies metamorphism and the development of orthopyroxene-bearing mineral assemblages through the breakdown of biotite-bearing assemblages. There has been considerable controversy regarding the role of carbon dioxide in metamorphism and partial melting. We performed new experiments in this system (at pressures of 342 to 1500 MPa with T between 710 and 1045 °C and X Fl H2O between 0.05 and 1.00), accurately locating most of the dehydration and melting equilibria in P-T-X Fl H2O space. The most important primary result is that the univariant reaction Phl + Qtz + Fl = En + Sa + melt must be almost coincident with the fluid-absent reaction (Phl + Qtz = En + Sa + melt) in the CO2-free subsystem. In conjunction with the results of previous measurements of CO2 solubility in silicate melts and phase equilibrium experiments, our theoretical analysis and experiments suggest that CO2 cannot act as a flux for partial melting. Crustal melting in the presence of H2O–CO2 mixed fluids will always occur at temperatures higher than with pure H2O fluid present. Magmas produced by such melting will be granitic (s.l.) in composition, with relatively high SiO2 and low MgO contents, irrespective of the H2O–CO2 ratio in any coexisting fluid phase. We find no evidence that lamprophyric magmas could be generated by partial fusion of quartz-saturated crustal rocks. The granitic melts formed will not contain appreciable dissolved CO2. The channelled passage of hot CO2-rich fluids can cause local dehydration of the rocks through which they pass. In rock-dominated (as opposed to fluid-dominated) systems, minor partial melting can also occur in veins initially filled with CO2-rich fluid, as dehydration and local disequilibrium drive the fluid towards H2O-rich compositions. However, CO2 is unlikely to be a significant agent in promoting regional granulite-grade metamorphism, melting, magma generation, metasomatism or long-range silicate mass transfer in Earth's crust. The most viable model for the development of granulite-facies rocks involves the processes of fluid-absent partial melting and withdrawal of the melt phase to higher crustal levels. Received: 28 November 1996 / Accepted: 25 June 1997  相似文献   

6.
 Siliceous dolomites and limestones contain abundant retrograde minerals produced by hydration-carbonation reactions as the aureole cooled. Marbles that contained periclase at the peak of metamorphism bear secondary brucite, dolomite, and serpentine; forsterite-dolomite marbles have retrograde tremolite and serpentine; wollastonite limestones contain secondary calcite and quartz; and wollastonite-free limestones have retrograde tremolite. Secondary tremolite never appears in marbles where brucite has replaced periclase or in wollastonite-bearing limestones. A model for infiltration of siliceous carbonates by CO2-H2O fluid that assumes (a) vertical upwardly-directed flow, (b) fluid flux proportional to cooling rate, and (c) flow and reaction under conditions of local equilibrium between peak temperatures and ≈400 °C, reproduces the modes of altered carbonate rocks, observed reaction textures, and the incompatibility between tremolite and brucite and between tremolite and wollastonite. Except for samples from a dolomite xenolith, retrograde time-integrated flux recorded by reaction progress is on the order of 1000 mol fluid/cm2 rock. Local focusing of flow near the contact is indicated by samples from the xenolith that record values an order of magnitude greater. Formation of periclase, forsterite, and wollastonite at the peak of metamorphism also required infiltration with prograde time-integrated flux approximately 100–1000 mol/cm2. The comparatively small values of prograde and retrograde time-integrated flux are consistent with lack of stable isotope alteration of the carbonates and with the success of conductive thermal models in reproducing peak metamorphic temperatures recorded by mineral equilibria. Although isobaric univariant assemblages are ubiquitous in the carbonates, most formed during retrograde metamorphism. Isobaric univariant assemblages observed in metacarbonates from contact aureoles may not record physical conditions at the peak of metamorphism as is commonly assumed. Received: 19 September 1995 / Accepted: 14 March 1996  相似文献   

7.
The influence of water on melting of mantle peridotite   总被引:47,自引:8,他引:39  
This experimental study examines the effects of variable concentrations of dissolved H2O on the compositions of silicate melts and their coexisting mineral assemblage of olivine + orthopyroxene ± clinopyroxene ± spinel ± garnet. Experiments were performed at pressures of 1.2 to 2.0 GPa and temperatures of 1100 to 1345 °C, with up to ∼12 wt% H2O dissolved in the liquid. The effects of increasing the concentration of dissolved H2O on the major element compositions of melts in equilibrium with a spinel lherzolite mineral assemblage are to decrease the concentrations of SiO2, FeO, MgO, and CaO. The concentration of Al2O3 is unaffected. The lower SiO2 contents of the hydrous melts result from an increase in the activity coefficient for SiO2 with increasing dissolved H2O. The lower concentrations of FeO and MgO result from the lower temperatures at which H2O-bearing melts coexist with mantle minerals as compared to anhydrous melts. These compositional changes produce an elevated SiO2/(MgO + FeO) ratio in hydrous peridotite partial melts, making them relatively SiO2 rich when compared to anhydrous melts on a volatile-free basis. Hydrous peridotite melting reactions are affected primarily by the lowered mantle solidus. Temperature-induced compositional variations in coexisting pyroxenes lower the proportion of clinopyroxene entering the melt relative to orthopyroxene. Isobaric batch melting calculations indicate that fluid-undersaturated peridotite melting is characterized by significantly lower melt productivity than anhydrous peridotite melting, and that the peridotite melting process in subduction zones is strongly influenced by the composition of the H2O-rich component introduced into the mantle wedge from the subducted slab. Received: 7 April 1997 / Accepted: 9 January 1998  相似文献   

8.
Contact metamorphism caused by the Glenmore plug in Ardnamurchan, a magma conduit active for 1 month, resulted in partial melting, with melt now preserved as glass. The pristine nature of much of the aureole provides a natural laboratory in which to investigate the distribution of melt. A simple thermal model, based on the first appearance of melt on quartz–feldspar grain boundaries, the first appearance of quartz paramorphs after tridymite and a plausible magma intrusion temperature, provides a time‐scale for melting. The onset of melting on quartz–feldspar grain boundaries was initially rapid, with an almost constant further increase in melt rim thickness at an average rate of 0.5–1.0 × 10?9 cm s?1. This rate was most probably controlled by the distribution of limited amounts of H2O on the grain boundaries and in the melt rims. The melt in the inner parts of the aureole formed an interconnected grain‐boundary scale network, and there is evidence for only limited melt movement and segregation. Layer‐parallel segregations and cross‐cutting veins occur within 0.6 m of the contact, where the melt volume exceeded 40%. The coincidence of the first appearance of these signs of the segregation of melt in parts of the aureole that attained the temperature at which melting in the Qtz–Ab–Or system could occur, suggests that internally generated overpressure consequent to fluid‐absent melting was instrumental in the onset of melt movement.  相似文献   

9.
Experiments have been conducted in a peralkaline Ti-KNCMASH system representative of MARID-type bulk compositions to delimit the stability field of K-richterite in a Ti-rich hydrous mantle assemblage, to assess the compositional variation of amphibole and coexisting phases as a function of P and T, and to characterise the composition of partial melts derived from the hydrous assemblage. K-richterite is stable in experiments from 0.5 to 8.0 GPa coexisting with phlogopite, clinopyroxene and a Ti-phase (titanite, rutile or rutile + perovskite). At 8.0 GPa, garnet appears as an additional phase. The upper T stability limit of K-richterite is 1200–1250 °C at 4.0 GPa and 1300–1400 °C at 8.0 GPa. In the presence of phlogopite, K-richterite shows a systematic increase in K with increasing P to 1.03 pfu (per formula unit) at 8.0 GPa/1100 °C. In the absence of phlogopite, K-richterite attains a maximum of 1.14 K pfu at 8.0 GPa/1200 °C. Titanium in both amphibole and mica decreases continuously towards high P with a nearly constant partitioning while Ti in clinopyroxene remains more or less constant. In all experiments below 6.0 GPa ΣSi + Al in K-richterite is less than 8.0 when normalised to 23 oxygens+stoichiometric OH. Rutiles in the Ti-KNCMASH system are characterised by minor Al and Mg contents that show a systematic variation in concentration with P(T) and the coexisting assemblage. Partial melts produced in the Ti-KNCMASH system are extremely peralkaline [(K2O+Na2O)/Al2O3 = 1.7–3.7], Si-poor (40–45 wt% SiO2), and Ti-rich (5.6–9.2 wt% TiO2) and are very similar to certain Ti-rich lamproite glasses. At 4.0 GPa, the solidus is thought to coincide with the K-richterite-out reaction, the first melt is saturated in a phlogopite-rutile-lherzolite assemblage. Both phlogopite and rutile disappear ca. 150 °C above the solidus. At 8.0 GPa, the solidus must be located at T≤1400 °C. At this temperature, a melt is in equilibrium with a garnet- rutile-lherzolite assemblage. As opposed to 4.0 GPa, phlogopite does not buffer the melt composition at 8.0 GPa. The experimental results suggest that partial melting of MARID-type assemblages at pressures ≥4.0 GPa can generate Si-poor and partly ultrapotassic melts similar in composition to that of olivine lamproites. Received: 23 December 1996 / Accepted: 20 March 1997  相似文献   

10.
The H2O and CO2 content of cordierite was analysed in 34 samples from successive contact metamorphic zones of the Etive thermal aureole, Scotland, using Fourier‐transform infrared spectroscopy (FTIR). The measured volatile contents were used to calculate peak metamorphic H2O and CO2 activities. Total volatile contents are compared with recently modelled cordierite volatile saturation surfaces in order to assess the extent of fluid‐present v. fluid‐absent conditions across the thermal aureole. In the middle aureole, prior to the onset of partial melting, calculated aH2O values are high, close to unity, and measured volatile contents intersect modelled H2O–CO2 saturation curves at the temperature of interest, suggesting that fluid‐present conditions prevailed. Total volatile contents and aH2O steadily decrease beyond the onset of partial melting, consistent with the notion of aH2O being buffered to lower values as melting progresses once free hydrous fluid is exhausted. All sillimanite zone samples record total volatile contents that are significantly lower than modelled H2O–CO2 saturation surfaces, implying that fluid‐absent conditions prevailed. The lowest recorded aH2O values lie entirely within part of the section where fluid‐absent melting reactions are thought to have dominated. Samples within 30 m of the igneous contact appear to be re‐saturated, possibly via a magmatically derived fluid. In fluid‐absent parts of the aureole, cordierite H2O contents yield melt–H2O contents that are compatible with independently determined melt–H2O contents. The internally consistent cordierite volatile data and melt–H2O data support the conclusion that the independent P–T estimates applied to the Etive rocks were valid and that measured cordierite volatile contents are representative of peak metamorphic values. The Etive thermal aureole provides the most compelling evidence, suggesting that the cordierite fluid monitor can be used to accurately assess the fluid conditions during metamorphism and partial melting in a thermal aureole.  相似文献   

11.
High pressure experimental studies of the melting of lherzolitic upper mantle in the absence of carbon and hydrogen have shown that the lherzolite solidus has a positive dP/dT and that the percentage melting increases quite rapidly above the solidus. In contrast, the presence of carbon and hydrogen in the mantle results in a region of ‘incipient’ melting at temperatures below the C,H-free solidus. In this region the presence or absence of melt and the composition of the melt are dependent on the amount and nature of volatiles, particularly the CO2, H2O, and CH4 contents of the potential C-H-O fluid. Under conditions of low (IW to IW + 1 log unit atP ∼ 20–35kb), fluids such as CH4+H2O and CH4+H2 inhibit melting, having a low solubility in silicate melts. Under these conditions, carbon and hydrogen are mobile elements in the upper mantle. At slightly higher oxygen fugacity (IW+2 log units,P∼20–35 kb) fluids in equilibrium with graphite or diamond in peridotite C-H-O are extremely water-rich. Carbon is thus not mobile in the mantle in this range and the melting and phase relations for the upper mantle lherzolite approximate closely to the peridotite-H2O system. Pargasitic amphibole is stable to solidus temperatures in fertile lherzolite compositions and causes a distinctive peridotite solidus, the ‘dehydration solidus’, with a marked change in slope (a ‘back bend’) at 29–30kb due to instability of pargasite at high pressure. Intersections of geothermal gradients with the peridotite-H2O solidi define the boundary between lithosphere (subsolidus) and asthenosphere (incipient melt region). This boundary is thus sensitive to changes in [affecting CH4:H2O:CO2 ratios] and to the amount of H2O and carbon (CO2, CH4) present. At higher conditions (IW + 3 log units), CO2-rich fluids occur at low pressures but there is a marked depression of the solidus at 20–21 kb due to intersection with the carbonation reaction, producing the low temperature solidus for dolomite amphibole lherzolite (T∼925°C, 21 to >31kb). Melting of dolomite (or magnesite) amphibole lherzolite yields primary sodic dolomitic carbonatite melt with low H2O content, in equilibrium with amphibole garnet lherzolite. The complexity of melting in peridotite-C-H-O provides possible explanations for a wide range of observations on lithosphere/asthenosphere relations, on mantle melt and fluid compositions, and on processes of mantle metasomatism and magma genesis in the upper mantle.  相似文献   

12.
An expression is derived for the calculation of time-integrated metamorphic fluid fluxes in two or more dimensions in rocks undergoing multivariant reactions under conditions of varying pressure, temperature and angle of flow. This calcuation requires knowledge of mineral assemblages, modes and compositions, which are obtained from isobaric T-X CO2 pseudosections constructed using the program THERMOCALC and compared with those observed in east central Vermont. THERMOCALC is capable of reproducing peak mineral assemblages, modes, compositions and the observed reaction sequences within the system KCaNaFMASCH for two kyanite grade pelitic carbonate rocks from a Barrovian style regional metamorphic terrain in east central Vermont, U.S.A. Calculation of fluid fluxes for decarbonation reactions under conditions of horizontal, layer-parallel flow produces time-integrated fluid flux figures of the order of 108 moles m−2. Allowance for possible cross-layer flow from adjacent dehydrating pelites reduces this figure significantly, with episodic cross-layer fluxes of the order of 105 moles m−2 being capable of driving the observed decarbonation. Chlorite bearing carbonate protoliths would have initially dehydrated with increasing temperature, a process requiring down-temperature fluid flow to produce the assemblages currently observed. Received: 28 January 1998 / Accepted: 20 September 1998  相似文献   

13.
Recognition of partial melting in metamorphic rocks is a difficult task, as leucosomes can have a variety of origins. By comparing the observed values of the solid-solid dihedral angles with the known equilibrium values, and close examination of the shapes and compositions of feldspar grains, it is possible to unequivocally identify melt textures. Textural relations in a series of meta-arkose samples from the contact aureole of the Ballachulish Igneous Complex in the Scottish Highlands demonstrate that, when former melt pockets are not highly deformed, their presence can be recognized petrographically, by detailed examination of textures on the grain scale. Identification of melt textures and their distribution in the Ballachulish aureole has led to appreciation of the fundamental role of magmatically derived H2O in producing the partial melting. It has also allowed calculation of the H2O flux involved, and recognition that fractures were the major fluid pathways during metamorphism.  相似文献   

14.
Periclase formed in siliceous dolomitic marbles during contact metamorphism in the Monzoni and Predazzo aureoles, the Dolomites, northern Italy, by infiltration of the carbonate rocks by chemically reactive, H2O-rich fluids at 500 bar and 565-710 °C. The spatial distribution of periclase and oxygen isotope compositions is consistent with reactive fluid flow that was primarily vertical and upward in both aureoles with time-integrated flux ~5,000 and ~300 mol fluid/cm2 rock in the Monzoni and Predazzo aureoles, respectively. The new results for Monzoni and Predazzo are considered along with published studies of 13 other aureoles to draw general conclusions about the direction, amount, and controls on the geometry of reactive fluid flow during contact metamorphism of siliceous carbonate rocks. Flow in 12 aureoles was primarily vertically upward with and without a horizontal component directed away from the pluton. Fluid flow in two of the other three was primarily horizontal, directed from the pluton into the aureole. The direction of flow in the remaining aureole is uncertain. Earlier suggestions that fluid flow is often horizontal, directed toward the pluton, are likely explained by an erroneous assumption that widespread coexisting mineral reactants and products represent arrested prograde decarbonation reactions. With the exception of three samples from one aureole, time-integrated fluid flux was in the range 102-104 mol/cm2. Both the amount and direction of fluid flow are consistent with hydrodynamic models of contact metamorphism. The orientation of bedding and lithologic contacts appears to be the principal control over whether fluid flow was either primarily vertical or horizontal. Other pre-metamorphic structures, including dikes, faults, fold hinges, and fracture zones, served to channel fluid flow as well.  相似文献   

15.
Summary The intrusion of the Lower Permian Los Santos-Valdelacasa granitoids in the Los Santos area caused contact metamorphism of Later Vendian-Lower Cambrian metasediments. High grade mineral assemblages are confined to a 7 km wide contact aureole. Contact metamorphism was accompanied by intense metasomatism and development of skarns, and it generated the following mineral assemblages: diopside, forsterite, phlogopite (±clintonite) and humites and spinel-bearing assemblages or diopside, grossular, vesuvianite ± wollastonite in the marbles, depending on the bulk rock composition. Cordierite, K-feldspar, andalusite and, locally, sillimanite appear in the metapelitic rocks. Mineral assemblages of marbles and hornfelses indicate pressure conditions ranging from 0.2 to 0.25 GPa and maximum temperatures between 630 and 640 °C. 13C and 18O depletions in calcite marbles are consistent with hydrothermal fluid–rock interaction during metamorphism. Calcites are depleted in both 18O (δ18O = 12.74‰) and 13C (δ13C = −5.47‰) relative to dolomite of unmetamorphosed dolostone (δ18O = 20.79‰ and δ13C = −1.52‰). The δ13C variation can be interpreted in terms of Rayleigh distillation during continuous CO2 fluid removal from the carbonates. The δ18O values reflect hydrothermal exchange with an externally derived fluid. Microthermometric analyses of fluid inclusions from vesuvianite indicate that the fluid was water dominated with minor contents of CO2 (±CH4 ± N2) suggesting a metamorphic origin. Fluorine-bearing minerals such as chondrodite, norbergite and F-rich phlogopite indicate that contact metamorphism was accompanied by fluorine metasomatism. Metasomatism was more intense in the inner-central portion of the contact aureole, where access to fluids was extensive. The irregular geometry of the contact with small aplitic intrusives between the metasediments and the Variscan granitoids probably served as pathways for fluid circulation.  相似文献   

16.
Periclase formed in steeply dipping marbles from the Beinn an Dubhaich aureole, Scotland, and the Silver Star aureole, Montana, by the reaction dolomite = periclase + calcite + CO2. Equilibrium between rock and fluids with X CO 2 < 1 requires that reaction was infiltration-driven. Brucite pseudomorphs after periclase occur in the Beinn an Dubhaich aureole either as bed-by-bed replacement of dolomite or in a lens along the contact between dolomite and a pre-metamorphic dike. Transport theory predicts that infiltration drove both periclase reaction and 18O-depletion fronts which moved at significantly different velocities along the flow path. The distributions of brucite and 18O-depleted rocks are identical in surface exposures, thus indicating upward flow. Time-integrated flux (q) was <500 mol/cm2 and the fluid source was magmatic. Because periclase and its hydrated equivalent brucite are unaltered to dolomite by retrograde reactions, the exposure of brucite marbles accurately images the flow paths of peak metamorphic fluids. In the Silver Star aureole brucite pseudomorphs after periclase exclusively occur in tabular bodies that are beds with elevated Mg/Ca. The spatial pattern of 18O-depletion requires upward vertical fluid flow. Estimated prograde q ≈ 103–104 mol/cm2 and the fluid source was magmatic. Low Mg/Ca, 18O-depleted, brucite-free rocks pose a dilemma because the periclase reaction front should have traveled ≈18 times further through them than the isotope alteration front. The dilemma is resolved by reaction textures that indicate periclase and brucite were destroyed in low Mg/Ca rocks by infiltration-driven retrograde carbonation reactions. Values of retrograde q were ≈103–104 mol/cm2. Brucite (after periclase) was preserved only in high Mg/Ca layers where periclase developed in greater abundance. The geometry of brucite marbles at Silver Star thus reflects the location of high Mg/Ca beds rather than the geometry of fluid flow. Retrograde reactions must be considered before the mineralogical record of prograde fluid flow can correctly be interpreted. In both aureoles fluid flow, mineral reaction, and isotope depletion were structurally controlled by bedding and lithologic contacts. Received: 30 July 1996 / Accepted: 21 March 1997  相似文献   

17.
Uneconomic tungsten mineralization associated with the Mariktikan granite pluton of the Transbaikalian igneous province, eastern Siberia, is confined to a marginal part of the pluton referred to as the Andreyevsky body. This is composed of rocks similar to those of the main pluton, but is likely to be an autonomous, although kindred, body. On the basis of cross-cutting relationships between rock varieties, and their textural features, the crystallization history is subdivided into three stages of unequal duration. Melt and fluid inclusions related to each of them have been studied using microthermometric and micro-analytical procedures, including a technique for atomic emission spectroscopy of individual fluid inclusions opened by a laser microprobe. During the main crystallization stage (1045–1012 °C) more than 70% of the parental magma is believed to have crystallized (at the level studied), resulting in the formation of a crystalline framework rigid enough for the appearance of fractures within which some portion of the intercrystalline melt accumulated, giving rise to thin aplite veins. Almost complete crystallization of intercrystalline and fracture-hosted melt occurred during the late stage (1012–990 °C), whereas during the final stage only small bunches of schlieric, sometimes miarolitic pegmatite were formed from a few pockets of residual melt (990–917 °C). In spite of the low water content of the melt (about 1 wt.%), fluid separation took place from the onset of crystallization. During the main crystallization stage, the exsolved fluid divided into two immiscible phases, CO2-rich gas and salt-rich liquid (brine). However, it was homogeneous thereafter. Major ore components of the brine (Mn, Fe, W) displayed different behaviour as crystallization progressed. W concentration was below 0.1 wt.% at the main stage, attained 1 wt.% during the late stage and increased to 1.8 wt.% at the final stage. Comparison of these data with calculations carried out using estimated parameters for the parental magma enables us to infer that obtained concentration values are reasonable for the special case studied here. However, they are unlikely to be attainable if the magma is H2O enriched and lacks an anomalously high W content. In the Andreyevsky body of the Mariktikan pluton, the following features of the parental magma made possible the generation of W-rich solutions: (1) high liquidus temperature (1045 °C) and elevated Cl content (c.0.15 wt.%) that resulted in enlargement of the fluid/melt distribution coefficient (c.10), (2) low water content (c.1%) and elevated W content (c.0.001 wt.%) that provided a relatively high W/H2O ratio within the system. At the same time, because of the low water content of the magma, the total mass of W-bearing solutions has proved to be insufficient for the production of large-scale mineralization (a reduced W content of the great bulk of the exsolved brine may have had an unfavourable effect as well). Received: 2 May 1996 / Accepted: 29 January 1997  相似文献   

18.
The Caledonian Nappe Complex of Arctic Norway provides rare insights into the interaction between mafic–ultramafic magmas and the deep continental crust. The Kalak Nappe Complex contains >25,000 km3 of mafic igneous rocks, mostly layered gabbros, making up the 570–560 Ma Seiland Igneous Complex. The complex has been intruded by a series of ultramafic magmatic rocks, including the Nordre Bumandsfjord pluton. Field relationships in this pluton show that extremely fluid, dry, relatively Fe-rich (Fo81) dunite magmas intruded a pile of cumulate gabbros, with block stopping and intrusive brecciation. Diking on scales from mm to metres and extensive melting and assimilation of the gabbros attest to high temperatures, consistent with a 2-km-wide granulite-facies contact aureole. Major- and trace-element trends show that the dunites were progressively contaminated by a cpx-rich partial melt of the gabbros, producing a range of lithologies from dunite through lherzolites to wehrlite. Experimental studies of natural samples at 0.8–1 GPa define the dunite solidus at 1,650–1,700 °C. In the average peridotite, contamination has produced a crystallisation interval of ca 400 °C (1,600–1,200 °C); this would provide large amounts of heat for melting and metamorphism and would maintain the fluidity of the magmas to relatively low T, consistent with field relationships. Thermochemical and dynamic modelling demonstrates that the dunitic primary magmas may represent the last melting of a rapidly ascending diapir of previously depleted subducted oceanic lithosphere. The mafic rocks of the Seiland Complex may already have been extracted from this diapir, and the late dikes of the province may reflect melting of the asthenosphere as the diapir spread out beneath the lithosphere. Ultramafic magmas, abundant in the Archean, may still be more common than usually assumed. However, they would only penetrate to the shallow crust under unusually extensional conditions, where ascent could outpace assimilation.  相似文献   

19.
Melts in the mantle modeled in the system CaO-MgO-SiO2-CO2 at 2.7 GPa   总被引:1,自引:1,他引:0  
The effect of CO2 on mantle peridotites is modeled by experimental data for the system CaO-MgO-SiO2-CO2 at 2.7 GPa. The experiments provide isotherms for the vapor-saturated liquidus surface, bracket piercing points for field boundaries on the surface, and define the positions and compositions of isobaric invariant liquids on the boundaries (eutectics and peritectics). CO2-saturated carbonatitic liquids (>80% carbonate) exist through approximately 200 °C above the solidus, with a transition to silicate liquids (>80% silicate) within ∼75 °C across a plateau on the liquidus. Carbonate-rich magmas cannot cross the silicate-carbonate liquidus field boundary, so the carbonate liquidus field is therefore a forbidden volume for liquid magmas. This confirms the fact that rounded, pure carbonates in mantle xenoliths cannot represent original liquids. A P-T diagram is constructed for the carbonation and melting reactions for mineral assemblages corresponding to lherzolite, harzburgite, websterite and wehrlite, with carbonate, CO2 vapor (V), or both. The changing compositions of liquids in solidus reactions on the P-T diagram are illustrated by the changing compositions of eutectic and peritectic liquids on the liquidus surface. At an invariant point Q (∼2.8 GPa/1230 °C), all peridotite assemblages coexist with a calcite-dolomite solid solution (75 ± 5% CaCO3) and a dolomitic carbonatite melt [57% CaCO3 (CC), 33% MgCO3 (MC), 10% CaMgSi2O6 (Di)], with 63% CC in the carbonate component. At higher pressures, dolomite-lherzolite, dolomite-harzburgite-V, and dolomite-websterite-V melt to yield similar liquids. Magnesian calcite-wehrlite is the only peridotite melting to carbonatitic liquids (more calcic) at pressures below Q (∼70 km). Dolomitic carbonatite magma rising through mantle to the near-isobaric solidus ledge near Q will begin to crystallize, releasing CO2 (enhancing crack propagation), and metasomatizing lherzolite toward wehrlite. Received: 20 March 1998 / Accepted: 7 July 1999  相似文献   

20.
 The melting reaction: albite(solid)+ H2O(fluid) =albite-H2O(melt) has been determined in the presence of H2O–NaCl fluids at 5 and 9.2 kbar, and results compared with those obtained in presence of H2O–CO2 fluids. To a good approximation, albite melts congruently at 9 kbar, indicating that the melting temperature at constant pressure is principally determined by water activity. At 5 kbar, the temperature (T)- mole fraction (X (H2O) ) melting relations in the two systems are almost coincident. By contrast, H2O–NaCl mixing at 9 kbar is quite non-ideal; albite melts ∼70 °C higher in H2O–NaCl brines than in H2O–CO2 fluids for X (H2O) =0.8 and ∼100 °C higher for X (H2O) =0.5. The melting temperature of albite in H2O–NaCl fluids of X (H2O)=0.8 is ∼100 °C higher than in pure water. The PT curves for albite melting at constant H2O–NaCl show a temperature minimum at about 5 kbar. Water activities in H2O–NaCl fluids calculated from these results, from new experimental data on the dehydration of brucite in presence of H2O–NaCl fluid at 9 kbar, and from previously published experimental data, indicate a large decrease with increasing fluid pressure at pressures up to 10 kbar. Aqueous brines with dissolved chloride salt contents comparable to those of real crustal fluids provide a mechanism for reducing water activities, buffering and limiting crustal melting, and generating anhydrous mineral assemblages during deep crustal metamorphism in the granulite facies and in subduction-related metamorphism. Low water activity in high pressure-temperature metamorphic mineral assemblages is not necessarily a criterion of fluid absence or melting, but may be due to the presence of low a (H2O) brines. Received: 17 March 1995/Accepted: 9 April 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号