首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Perennially ice-covered lakes are found in the McMurdo Dry Valleys of southern Victoria Land, Antarctica. In contrast to temperate lakes that have diurnal photic periods, antarctic (and arctic) lakes have a yearly photic period. An unusual feature of the antarctic lakes is the occurrence of O2 at supersaturated levels in certain portions of the water column. Here we report the first sediment O2 profiles obtained using a microelectrode from a perennially ice-covered antarctic lake. Sediment cores collected in January and October 1987 from Lake Hoare in Taylor Valley show oxygenation down to 15, and in some cases, 25 cm. The oxygenation of sediments several centimeters below the sediment-water interface is atypical for lake sediments and may be characteristic of perennially ice-covered lakes. There is a significant difference between the observed January and October sediment O2 profiles. Several explanations may account for the difference, including seasonality. A time-dependent model is presented which tests the feasibility of a seasonal cycle resulting from the long photoperiod and benthic primary production in sediments overlain by a highly oxygenated water column.  相似文献   

2.
Environmental isotopes (δ18O, δD and 3H) were used to understand the hydrodynamics of Lake Naini in the State of Uttar Pradesh, India. The data was correlated with the in situ physico‐chemical parameters, namely temperature, electrical conductivity and dissolved oxygen. The analysis of the data shows that Lake Naini is a warm monomictic lake [i.e. in a year, the lake is stratified during the summer months (March/April to October/November) and well mixed during the remaining months]. The presence of a centrally submerged ridge inhibits the mixing of deeper waters of the lake's two sub‐basins, and they exhibit differential behaviour. The rates of change of isotopic composition of hypolimnion and epilimnion waters of the lake indicate that the water retention time of the lake is very short, and the two have independent inflow components. A few groundwater inflow points to the lake are inferred along the existing fractures, fault planes and dykes. In addition to poor vertical mixing of the lake due to the temperature‐induced seasonal stratification, the lake also shows poor horizontal mixing at certain locations of the lake. The lake–groundwater system appears to be a flow‐through type. Also, a tritium and water‐balance model was developed to estimate the water retention time of well‐mixed and hydrologically steady state lakes. The model assumes a piston flow of groundwater contributing to the lake. The developed model was verified for (a) Finger Lakes, New York; (b) Lake Neusiedlersee, Austria; and (c) Blue Lake, Australia based on literature data. The predicted water retention times of the lakes were close to those reported or calculated from the hydrological parameters given in the references. On application of this model to Lake Naini, a water retention time of ~2 years and age of groundwater contributing to the lake ~14 years is obtained. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

3.
R. K. SAXENA 《水文研究》1996,10(10):1273-1281
Lake evaporation has been estimated for a shallow lake using a combination of water and isotope mass balance, accounting for the isotopic non-steady state of lake water. The main feature of the isotope method is that inflows need not be measured. Knowledge of their isotopic content is sufficient. Oxygen-18 content, i.e. (δ18O), of lake water, inflows and outflow was measured on a weekly basis, whereas for precipitation it was monitored daily. The discharge from the lake was also recorded daily. Lake water level, relative humidity, air, and lake water surface temperatures were recorded by a logger. The weather data were recorded on a small island in the lake. It was observed that the lake is isotopically well mixed. Furthermore, the atmospheric moisture was not always in isotopic equilibrium with the precipitation. Daily lake evaporation was estimated as an average of six to eight days depending upon the field logistics. Lake evaporation varied from 0.6 to about 5.4 mm/day during the experimental period. It was found that evaporation estimates are very sensitive to small variations in δ18O of lake evaporate. Induced changes of 10% in δ18O of lake evaporate caused errors in evaporation estimates of 9–31%, while similar induced changes in δ18O of inflows caused errors of 8–18%. Thus, an accurate experimental determination of δ18O of lake evaporate is relatively more important.  相似文献   

4.
青海湖水量平衡及水位变化预测   总被引:17,自引:5,他引:12  
曲耀光 《湖泊科学》1994,6(4):298-307
青海湖是我国最大的内陆湖泊,流域面积29661km~(2),水面高程超过3000m,受人为活动影响相对较少,基本上还处于半自然状态。水量平衡计算结果表明,有观测资料的近30年来,青海湖处于负平蘅状态,水位下降了2.96m,平均每年下降10.2cm。如果未来湖区的气候大体保持过去的情况,水位将再下降5.8m,经过57年才能平衡。如果考虑“温室效应”所引起的西北地区未来气候变化,水位亦将下降,每年平均下降10.1cm。  相似文献   

5.
兹格塘错是青藏高原中部一个典型的半混合型咸水湖泊。本文在~(210)Pb和~(137)Cs定年的基础上,研究了兹格塘错重力岩芯(ZGTC A-1)小于38.5μm细颗粒组分碳酸盐稳定碳同位素1950年以来的变化及其影响因素。对冬夏季湖水水化学特征的分析表明,夏季湖水溶解CO_2呈逸出状态,冬季湖水钙离子浓度是夏季湖水的10倍,据此可以得出兹格塘错碳酸盐矿物主要在夏季沉淀。通过与那曲气象站气象记录对比发现,1950年以来A-1岩芯碳酸盐碳同位素变化与年均温度有很好的相关性,表现出年均温度高时碳同位素偏重,而年均温度低时碳同位素偏轻的特征。兹格塘错1950年以来自生碳酸盐碳同位素的变化是由湖区及水体碳循环(如碳酸盐沉淀,有机质的沉淀与分解,有机碳和无机碳的转化等)的变化引起的,但各种因素的相互作用非常复杂。碳酸盐含量也与温度有关,温度越高,碳酸盐含量越高,同时降水量与碳酸盐含量也存在明显的相关关系。1950年以来有机质含量与温度呈反相关,可能与湖泊生产力的下降有关。  相似文献   

6.
Williams Lake, Minnesota is a closed‐basin lake that is a flow‐through system with respect to ground water. Ground‐water input represents half of the annual water input and most of the chemical input to the lake. Chemical budgets indicate that the lake is a sink for calcium, yet surficial sediments contain little calcium carbonate. Sediment pore‐water samplers (peepers) were used to characterize solute fluxes at the lake‐water–ground‐water interface in the littoral zone and resolve the apparent disparity between the chemical budget and sediment data. Pore‐water depth profiles of the stable isotopes δ18O and δ2H were non‐linear where ground water seeped into the lake, with a sharp transition from lake‐water values to ground‐water values in the top 10 cm of sediment. These data indicate that advective inflow to the lake is the primary mechanism for solute flux from ground water. Linear interstitial velocities determined from δ2H profiles (316 to 528 cm/yr) were consistent with velocities determined independently from water budget data and sediment porosity (366 cm/yr). Stable isotope profiles were generally linear where water flowed out of the lake into ground water. However, calcium profiles were not linear in the same area and varied in response to input of calcium carbonate from the littoral zone and subsequent dissolution. The comparison of pore‐water calcium profiles to pore‐water stable isotope profiles indicate calcium is not conservative. Based on the previous understanding that 40–50 % of the calcium in Williams Lake is retained, the pore‐water profiles indicate aquatic plants in the littoral zone are recycling the retained portion of calcium. The difference between the pore‐water depth profiles of calcium and δ18O and δ2H demonstrate the importance of using stable isotopes to evaluate flow direction and source through the lake‐water–ground‐water interface and evaluate mechanisms controlling the chemical balance of lakes. Published in 2003 by John Wiley & Sons, Ltd.  相似文献   

7.
Samples from Kawah Ijen crater lake, spring and fumarole discharges were collected between 1990 and 1996 for chemical and isotopic analysis. An extremely low pH (<0.3) lake contains SO4–Cl waters produced during absorption of magmatic volatiles into shallow ground water. The acidic waters dissolve the rock isochemically to produce “immature” solutions. The strong D and 18O enrichment of the lake is mainly due to enhanced evaporation at elevated temperature, but involvement of a magmatic component with heavy isotopic ratios also modifies the lake D and 18O content. The large ΔSO4–S0 (23.8–26.4‰) measured in the lake suggest that dissolved SO4 forms during disproportionation of magmatic SO2 in the hydrothermal conduit at temperatures of 250280°C. The lake δ18OSO4 and δ18OH2O values may reflect equilibration during subsurface circulation of the water at temperatures near 150°C. Significant variations in the lake's bulk composition from 1990 to 1996 were not detected. However, we interpret a change in the distribution and concentration of polythionate species in 1996 as a result of increased SO2-rich gas input to the lake system.Thermal springs at Kawah Ijen consist of acidic SO4–Cl waters on the lakeshore and neutral pH HCO3–SO4–Cl–Na waters in Blawan village, 17 km from the crater. The cation contents of these discharges are diluted compared to the crater lake but still do not represent equilibrium with the rock. The SO4/Cl ratios and water and sulfur isotopic compositions support the idea that these springs are mixtures of summit acidic SO4–Cl water and ground water.The lakeshore fumarole discharges (T=170245°C) have both a magmatic and a hydrothermal component and are supersaturated with respect to elemental sulfur. The apparent equilibrium temperature of the gas is 260°C. The proportions of the oxidized, SO2-dominated magmatic vapor and of the reduced, H2S-dominated hydrothermal vapor in the fumaroles varied between 1979 and 1996. This may be the result of interaction of SO2-bearing magmatic vapors with the summit acidic hydrothermal reservoir. This idea is supported by the lower H2S/SO2 ratio deduced for the gas producing the SO4–Cl reservoir feeding the lake compared with that observed in the subaerial gas discharges. The condensing gas may have equilibrated in a liquid–vapor zone at about 350°C.Elemental sulfur occurs in the crater lake environment as banded sediments exposed on the lakeshore and as a subaqueous molten body on the crater floor. The sediments were precipitated in the past during inorganic oxidation of H2S in the lake water. This process was not continuous, but was interrupted by periods of massive silica (poorly crystallized) precipitation, similar to the present-day lake conditions. We suggest that the factor controlling the type of deposition is related to whether H2S- or silica-rich volcanic discharges enter the lake. This could depend on the efficiency with which the lake water circulates in the hydrothermal cell beneath the crater. Quenched liquid sulfur products show δ34S values similar to those found in the banded deposits, suggesting that the subaqueous molten body simply consists of melted sediments previously accumulated at the lake bottom.  相似文献   

8.
鄱阳湖水利枢纽工程对湖泊水位变化影响的模拟   总被引:14,自引:6,他引:8  
水位变化是影响湖泊水文过程和生态环境的重要因素.本研究基于环境流体动力学(EFDC)模型构建了鄱阳湖水利枢纽工程与主湖区的二维模型,模拟水利枢纽工程运行后对主湖区及湿地保护区水位变化节律的影响.模拟结果表明:水利枢纽工程对湖泊水位的影响由北向南逐渐减小,水利枢纽工程提升了大湖北部水位,使南北水位差减小,将影响鄱阳湖枯水期的流速及自净能力.吴城和南矶湿地自然保护区核心区水位变化受水利枢纽工程的影响较小,吴城自然保护区核心区在水位低于13.8 m时与大湖脱离,不再受水利枢纽工程影响,但水利枢纽工程会影响蚌湖与大湖脱离时间;南矶自然保护区位于鄱阳湖南部,水位受水利枢纽工程影响很小.水利枢纽工程条件下,湖泊水位受人工控制,枯水年和平水年湖泊水位的变化基本一致;枯水年水利枢纽工程对湖泊水位的影响大于平水年,但对湖泊南部的水位变化影响仍然较小.模型模拟结果可以揭示在目前调度方案下,水利枢纽工程对湖泊水位变化节律的影响规律,为工程建设提供一定的理论参考.  相似文献   

9.
Lacustrine groundwater discharge (LGD) and the related water residence time are crucial parameters for quantifying lake matter budgets and assessing its vulnerability to contaminant input. Our approach utilizes the stable isotopes of water (δ18O, δ2H) and the radioisotope radon (222Rn) for determining long‐term average and short‐term snapshots in LGD. We conducted isotope balances for the 0.5‐km2 Lake Ammelshainer See (Germany) based on measurements of lake isotope inventories and groundwater composition accompanied by good quality and comprehensive long‐term meteorological and isotopic data (precipitation) from nearby monitoring stations. The results from the steady‐state annual isotope balances that rely on only two sampling campaigns are consistent for both δ18O and δ2H and suggested an overall long‐term average LGD rate that was used to infer the water residence time of the lake. These findings were supported by the good agreement of the simulated LGD‐driven annual cycles of δ18O and δ2H lake inventories with the observed lake isotope inventories. However, radon mass balances revealed lower values that might be the result of seasonal LGD variability. For obtaining further insights into possible seasonal variability of groundwater–lake interaction, stable water isotope and radon mass balances could be conducted more frequently (e.g., monthly) in order to use the derived groundwater discharge rates as input for time‐variant isotope balances.  相似文献   

10.
人类活动对青海湖水位下降的影响   总被引:17,自引:6,他引:11  
青海湖是我国最大的内陆湖泊,位于青藏高原的东北隅。近三十年来由于自然要素和人为活动的影响,湖周生态环境急剧退化,湖水位下降达3.35m,湖面收缩约300多km~2。根据调查研究以及其他方面的资料。青海湖多年平均亏水量4.36×10~8m~3,而人为活动耗水量占亏水量的8.7%。仅占湖面蒸发量的1%。所以,人为耗水与湖水位波动无明显相关,湖水位下降虽然是综合效应,但主导因素是气候变化,并导致湖周生态环境的恶化。  相似文献   

11.
Integrated dynamic water and chloride balance models with a catchment‐scale hydrological model (PRMS) are used to investigate the response of a terminal tropical lake, Lake Abiyata, to climate variability and water use practices in its catchment. The hydrological model is used to investigate the response of the catchment to different climate and land‐use change scenarios that are incorporated into the lake model. Lake depth–area–volume relationships were established from lake bathymetries. Missing data in the time series were filled using statistical regression techniques. Based on mean monthly data, the lake water balance model produced a good agreement between the simulated and observed levels of Lake Abiyata for the period 1968–83. From 1984 onwards the simulated lake level is overestimated with respect to the observed one, while the chloride concentration is largely underestimated. This discrepancy is attributed to human use of water from the influent rivers or directly from the lake. The simulated lake level and chloride concentration are in better agreement with observed values (r2 = 0·96) when human water use for irrigation and salt exploitation are included in the model. A comparison of the simulation with and without human consumption indicates that climate variability controls the interannual fluctuations and that the human water use affects the equilibrium of the system by strongly reducing the lake level. Sensitivity analysis based on a mean climatic year showed that, after prolonged mean climatic conditions, Lake Abiyata reacts more rapidly to an abrupt shift to wetter conditions than to dry conditions. This study shows the significant sensitivity of the level and salinity of the terminal Lake Abiyata to small changes in climate or land use, making it a very good ‘recorder’ of environmental changes that may occur in the catchment at different time scales. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
The numerous lakes on the Tibetan Plateau play an important role in the regional hydrological cycle and water resources, but systematic observations of the lake water balance are scarce on the Tibetan Plateau. Here, we present a detailed study on the water cycle of Cona Lake, at the headwaters of the Nujiang‐Salween River, based on 3 years (2011–2013) of observations of δ18O and δ2H, including samples from precipitation, lake water, and outlet surface water. Short‐term atmospheric water vapor was also sampled for isotope analyses. The δ2H–δ18O relationship in lake water (δ2H = 6.67δ18O ? 20.37) differed from that of local precipitation (δ2H = 8.29δ18O + 12.50), and the deuterium excess (d‐excess) in the lake water (?7.5‰) was significantly lower than in local precipitation (10.7‰), indicating an evaporative isotope enrichment in lake water. The ratio of evaporation to inflow (E /I ) of the lake water was calculated using both d‐excess and δ18O. The E /I ratios of Cona lake ranged from 0.24 to 0.27 during the 3 years. Observations of atmospheric water vapor isotopic composition (δ A ) improved the accuracy in E /I ratio estimate over a simple precipitation equilibrium model, though a correction factor method provided nearly identical estimates of E /I ratio. The work demonstrates the feasibility of d‐excess in the study of the water cycle for lakes in other regions of the world and provides recommendations on sampling strategies for accurate calculations of E /I ratio.  相似文献   

13.
A coupled physical-biochemical lake model for forecasting water quality   总被引:1,自引:0,他引:1  
A new one-dimensional numerical model that includes physical and biochemical processes has been developed. The biochemical processes, influenced by the lake dynamics, are required for forecasting water quality. The model is used to investigate the effects of different internal restoration measures, such as artificial mixing, input of oxygen and drainage of deep water.The model is applied to the Northern Basin of Lake Lugano, a Swiss-Italian border lake. The lake is highly eutrophic and chemically stratified throughout the year. The model was calibrated over one year and validated over a period of several years. The results agree well with the measured data. The coupled model reproduces the observed depth dependency of conductivity even during long simulation times. Due to the predominant mixing, decoupled physical models cannot maintain such gradients. The forecasting capabilities of the model are demonstrated for different case studies. The impact of restoration measures on water quality is rather small. Best results are achieved by reducing the external nutrient loading. Caution is recommended for internal measures as these have to be studied in greater detail.  相似文献   

14.
The study of the multiannual thermal dynamics of Lake Iseo, a deep lake in the Italian pre‐alpine area, is presented. Interflow was found to be the dominant river entrance mode, suggesting future susceptibility of the lake thermal structure to the overall effects of climate change expected in the upstream alpine watershed. A lake model employed the results of a long‐term hydrologic model to simulate the effects of a climate change scenario on the lake's thermal evolution for the period 2012–2050. The model predicts an overall average increase in the lake water temperature of 0.012 °C/year and a reinforced Schmidt thermal stability of the water column in the winter up to 800 J/m2. Both these effects may further hinder the deep circulation process, which is vital for the oxygenation of deep water. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
The cherts formed from sodium silicate precursors in East African saline, alkaline lakes have δ18O values ranging from 31.1 to 44.1. The δ18O values correlate in general with lake salinities as inferred from geologic evidence, indicating that most chert was formed from its precursor in contact with lake water trapped at the time of deposition. A few of the analyzed cherts probably formed in contact with dilute meteoric water. From the widely varying δ18O values we conclude that precursors were transformed to chert in fluids of widely varying salinity and aNa+/aH+ ratio.  相似文献   

16.
The use of stable isotopes is a practical tool in the study of the lake water budget. This is an one way to study the hydrological cycle in the large numbers of inland lakes on the Tibetan Plateau, in which the isotope record of the sediment is believed to reflect the climatic and environmental changes. The monitoring of stable isotopes of the precipitation, river and lake waters during 2004 in the inland Yamdruk‐tso basin, southern Tibetan Plateau, reveals the lake water δ18O is over 10‰ higher than the local precipitation. This high difference indicates strong isotope enrichment due to lake water evaporation. The simulation results based on the isotope technique show that the present lake water δ18O level corresponds to an average relative humidity of around 54–58% during evaporation, which is very close to the instrumental observation. The simulation results also show that the inland lakes on the Tibetan Plateau have a strong adjustability to the isotope shift of input water δ18O. On average, the isotope component in the inland lake water is to a large extent controlled by the local relative humidity, and can also be impacted by a shift of the local precipitation isotope component. This is probably responsible for the large consistence in the isotope component in the extensive inland lakes on the Tibetan Plateau. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
The Chirripó hydrological research site (CHRS) is located within the Chirripó National Park, Costa Rica (between 3100 and 3820 m asl) whereby ~100 km2 are covered by Páramo, a high-elevation tropical grassland ecosystem. A lake district with approximately 30 lakes of glacial origin is also protected in this area. The CHRS has been monitored since April 2015 with the aim of establishing the first water isotope baseline for the Central American Páramo. At a regional scale, the water isotope ratios (δ2H and δ18O) in precipitation and surface water at CHRS are useful for describing the governing moisture transport from the Caribbean Sea and Pacific Ocean and the complex rainfall producing systems across the N–S mountain range of Central America. These data are also providing unique information about the evaporation and water balance conditions of tropical glacial lakes and the formation of orographic and convective precipitation in high-elevation tropical ecosystems. Current data sets from CHRS include continuous lake water temperature and meteorological conditions (i.e., precipitation amount, air temperature and relative humidity), as well as water stable isotopes in precipitation, stream water, and lake water (daily to biweekly sampling frequency). Stream water is collected at several locations across the topographic gradient whereas lake water is sampled in the three main lake systems of CHRS. CHRS serves as a reference site for conducting pilot isotopic research in high-elevation ecosystems to advance the atmospheric, hydrogeological and ecohydrological studies in these understudied biomes. All data from April 2015 to November 2020 are publicly available.  相似文献   

18.
近40a西藏羊卓雍错湖泊面积变化遥感分析   总被引:11,自引:8,他引:3  
羊卓雍错(以下简称羊湖)作为西藏高原三大圣湖之一和藏南重要的高原特色风景旅游景区,其具体面积众说纷纭.本文利用遥感和地理信息空间分析方法对1972-2010年羊湖面积变化进行了系统研究,并结合流域气象站资料对其原因进行初步分析.结果表明,1972-2010年湖泊平均面积为643.98 km2.1972-2010年羊湖面积呈波动式减少趋势,其中,1970s平均面积为658.78 km2,之后至1999年面积显著减少;1980s面积为636.55 km2;1990s为635.06 km2;1999-2004年面积有所增加;2004-2010年持续缩小,减幅为8.59 km2/a.湖泊空间变化特点是除了空母错和珍错两个小湖面积变化较小之外,羊湖整体面积呈现萎缩态势,其中东部嘎马林曲入口附近退缩程度最大,达1.62 km.流域气象站资料分析表明,湖泊面积和降水的变化波动存在显著耦合关系,降水变化是羊湖面积变化的主要原因;其次,流域蒸发量的明显增加,特别是2004年来连续较高的蒸发量是导致近期面积显著减少的重要原因,气温的升高进一步加剧了这一过程.羊湖的面积变化基本反映了西藏高原南部半干早季风气候区以降水补给为主的高原内陆湖泊对气候变化的响应.  相似文献   

19.
The D/H and 18O/16O ratios of water in the active crater lake situated on the Kusatsu-Shirane volcano, Japan are about 20 and 6‰, respectively, higher than local meteoric water. The ratios show seasonal variations superimposed on a gradual change over nine years. The isotopic ratios started to increase in early 1990 and decrease in the spring of 1995. The seasonal variation which is high in winter and low in summer correlates with the temperature difference between lake water and ambient air. The large temperature difference in winter enhances the evaporation of lake water and produces the enriched isotopic ratios relative to the ratios in summer. The accumulation of snow and the decrease in the flux of meteoric water into the lake strengthens the winter-time isotopic enrichment. The enriched isotopic ratios of the lake water over a long time result from the addition of an end member with heavy isotopic ratios contained in a thermal fluid supplied to the lake. Considering the water balance in the lake, the isotopic ratios of the thermal fluid were found to be close to the lake water itself, suggesting the circulation of the lake water seeping through lake floor. Based on the correlation between Clconcentration and the isotopic ratios, the contribution by the heavy end member was estimated to be 25–36% relative to the enrichment by evaporation. The heavy end member could be a liquid phase evolved from a parental fluid, which is a mixture of local meteoric water and a magmatic fluid as found in high-temperature volcanic gases.  相似文献   

20.
This study focuses on the assessment of relationships between flow and macrozoobenthos structure that was performed in a reconnected oxbow lake located in the S?upia River floodplain (northern Poland). The lake was created during river straightening at the beginning of 20th century by cutting off the right‐bank meander. The oxbow restoration was performed to enhance the ecological viability of this water body and restore riverine wetland. In July 2000 the oxbow was connected with the river channel through PVC pipes which enabled free water movement. Macrozoobenthos sampling, as well as chemical analyses of water and hydrological measurements, took place both before and after the oxbow reconnection. Before the oxbow reconnection, the dominant species was Asellus aquaticus, whereas after the reconnection the structure of benthic species changed significantly. During the first year it was replaced by bivalves and Chironomidae larvae and then A. aquaticus. After the reconnection, macrozoobenthos mean density was 5‐fold higher and the mean wet biomass was 77‐fold higher than before the reconnection. The number of taxa increased from 4 before the oxbow reconnection to 17 during the first year after the performed works and 20 in the next year. We stated that the revitalization process of the reconnected oxbow lake has long‐term consequences for the benthic communities. The most significant feature of the oxbow reconnection is the qualitative and quantitative recolonization by riverine macrozoobenthos species. The performed restoration significantly improved ecological status of the oxbow lake by the increase in biodiversity and water quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号