首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new interstellar molecular ion, H2COH+ (protonated formaldehyde), has been detected toward Sgr B2, Orion KL, W51, and possibly in NGC 7538 and DR21(OH). Six transitions were detected in Sgr B2(M). The 1(1,0)-1(0,1) transition was detected in all sources listed above. Searches were also made toward the cold, dark clouds TMC-1 and L134N, Orion (3N, 1E), and a red giant, IRC + 10216, without success. The excitation temperatures of H2COH+ are calculated to be 60-110 K, and the column densities are on the order of 10(12)-10(14) cm-2 in Sgr B2, Orion KL, and W51. The fractional abundance of H2COH+ is on the order of 10(-11) to 10-(9), and the ratio of H2COH+ to H2CO is in the range 0.001-0.5 in these objects. The values in Orion KL seem to be consistent with the "early time" values of recent model calculations by Lee, Bettens, & Herbst, but they appear to be higher than the model values in Sgr B2 and W51 even if we take the large uncertainties of column densities of H2CO into account. We suggest production routes starting from CH3OH may play an important role in the formation of H2COH+.  相似文献   

2.
The C3H radical, a linear carbon chain with a 2 pi electronic ground state, has been identified in the millimeter-wave spectra of two astronomical sources, IRC +10216 and TMC-1, and conclusively confirmed (accompanying Letter) in a laboratory glow discharge. In IRC +10216 four rotational transitions have been observed, three in the lower fine-structure ladder (2 pi 1/2) and one in the upper (2 pi 3/2), each a resolved or partially resolved lambda-doublet. In TMC-1, both lambda components of the lowest lying 3/2 --> 1/2 transition of the 2 pi 1/2 ladder have been observed, each with well-resolved hfs. In IRC +10216 the excitation of C3H is similar to that of SiCC: the rotational temperature Trot within the 2 pi 1/2 ladder is low (8.5 K), owing to rapid radiative decay, while Trot across the ladders is high (approximately 52 K) because interconnecting far-IR radiative transitions are only weakly permitted. The column density of C3H in IRC +10216 averaged over the estimated source diameter of 84" is 2.8 x 10(13) cm-2, an order of magnitude less than that of C2H and C4H. A determination of the spectroscopic constraints of C3H that permitted the entire radio spectrum of this molecule to be calculated to high accuracy has been derived from analysis of the combined astronomical and laboratory data presented in the accompanying Letter.  相似文献   

3.
We report on the detection of nine lines of the nu2 bending mode of triatomic carbon, C3, in the direction of Sagittarius B2. The R(4) and R(2) lines of C3 have been also detected in the carbon-rich star IRC +10216. The abundances of C3 in the direction of Sgr B2 and IRC +10216 are approximately 3x10-8 and approximately 10-6, respectively. In Sgr B2 we have also detected the 23-12 line of NH with an abundance of a few times 10-9. Polyatomic molecules will have a weak contribution from their pure rotational spectrum to the emission/absorption in the far-infrared. We suggest, however, that they could be, through their low-lying vibrational bending modes, the dominant carriers of emission/absorption in the spectrum of bright far-infrared sources.  相似文献   

4.
We have detected a new interstellar molecule, H2CN (methylene amidogen), in the cold, dark molecular cloud TMC-l. The column density of H2CN is estimated to be approximately 1.5 x 10(11) cm-2 by assuming an excitation temperature of 5 K. This column density corresponds to a fractional abundance relative to H2 of approximately 1.5 x 10(-11). This value is more than three orders of magnitude less than the abundance of the related molecule HCN in TMC-1. We also report a tentative detection of H2CN in Sgr B2(N). The formation mechanism of H2CN is discussed. Our detection of the H2CN molecule may suggest the existence of a new series of carbon-chain molecules, CH2CnN (n = 0, 1, 2,...).  相似文献   

5.
We report the astronomical identification of the cyanomethyl radical, CH2CN, the heaviest nonlinear molecular radical to be identified in interstellar clouds. The complex fine and hyperfine structures of the lowest rotational transitions at about 20.12 and 40.24 GHz are resolved in TMC-1, where the abundance appears to be about 5 x 10(-9) relative to that of H2. This is significantly greater than the observed abundance of CH3CN (methyl cyanide) in TMC-1. In Sgr B2 the hyperfine structure is blended in the higher frequency transitions at 40, 80, and 100 GHz, although the spin-rotation doubling is clearly evident. Preliminary searches in other sources indicate that the distribution of CH2CN is similar to that for such carbon chain species as HC3N or C4H.  相似文献   

6.
A survey of the 4(04)-3(03) and 1(01)-0(00) transitions of HOCO+ has been made toward several molecular clouds. The HOCO+ molecule was not observed in any sources except Sgr B2 and Sgr A. The 5(05)-4(04) and 4(14)-3(13) transitions were also detected toward Sgr B2. The results indicate that gas phase CO2 is not a major carbon reservoir in typical molecular clouds. In Sgr B2, the HOCO+ antenna temperature exhibits a peak approximately 2' north of the Sgr B2 central position (Sgr B2[M]) and the 4(04)-3(03) line emission is extended over a approximately 10' x 10' region. The column density of HOCO+ at the northern peak in Sgr B2 is approximately 3 x 10(14) cm-2, and the fractional abundance relative to H2 > or = 3 x 10(-10), which is about 2 orders of magnitude greater than recent predictions of quiescent cloud ion-molecule chemistry.  相似文献   

7.
Observations of the 1(01) --> 0(00) rotational transitions of A and E state acetaldehyde are reported. The transitions were detected, for the first time in interstellar space, in the cold dust clouds TMC-1 and L134N, and in Sgr B2. This is also the first time acetaldehyde has been found in a dust cloud and is the most complex oxygen-bearing molecule yet known in this environment. We find a column density of 6 x 10(12) cm-2 in TMC-1, comparable to many other species detected there, and an approximately equal column density in L134N. In the direction of Sgr B2, the CH3CHO profile appears to consist of broad emission features from the hot molecular cloud core, together with absorption features resulting from intervening colder material. We also report the possible detection of HC9N toward IRC +10 degrees 216 through its J = 33 --> 32 transition. Implications for cold dust cloud chemistry and excitation are discussed.  相似文献   

8.
We employ quantum chemical calculations using the CBS-RAD ('Complete Basis Set – Radicals') technique on the C2N2H potential energy surface to show that the reaction of HNC with CN is a viable and plausible route to NCCN in cold astrophysical environments. We use detailed chemical kinetic models to predict the abundance of NCCN in TMC-1 and IRC+10216. Radio-astronomical detection of NCCN is precluded by its lack of a dipole moment. We discuss other prospects for its observation in interstellar and circumstellar environments, by space-borne infrared spectroscopy, indirectly by detection of the NCCNH+ ion, or inferentially by detection of its higher-energy, polar isomer CNCN.  相似文献   

9.
Observations of nine oxygen- and sulfur-containing organic molecules have been made toward the cold dark clouds TMC-1 and L134N. We have confirmed the presence of para-ketene (H2C2O) in TMC-1, have for the first time observed ortho-ketene, and find a total ketene column density approximately 1 x 10(13) cm-2. Thioformaldehyde (H2CS) is easily detectable in both TMC-1 and L134N, with a column density about 5 times larger in the former source (approximately 3 x 10(13) cm-2). The fractional abundance of ketene is comparable to the predictions of ion-molecule chemistry, while that of thioformaldehyde in TMC-1 is one to two orders of magnitude greater than that expected from such models at steady state. Interstellar sulfur chemistry thus continues to be poorly understood. We set upper limits for the column densities of formic acid (HCOOH), vinyl alcohol (CH2CHOH), methyl formate (HCO2CH3), formamide (NH2CHO), methyl mercaptan (CH3SH), isothiocyanic acid (HNCS), and thioketene (H2C2S) in both sources.  相似文献   

10.
Laboratory measurements and calculations have been performed to determine the abundance ratio of the deuterated ethynyl radical (CCD) to the normal radical (CCH) which can be achieved in dense interstellar clouds via isotopic fractionation in the C2H2+ (HD) = C2HD+ (H2) system of reactions. According to this limited treatment, the CCD/CCH abundance ratio which can be attained is in the range 0.02-0.03 for the Orion molecular cloud and 0.01-0.02 for TMC-1. These ranges of numbers are in reasonable agreement with the observed values in Orion and TMC-1. However, the analysis of the CCD/CCH abundance ratio is complicated via the presence of competing fractionation mechanisms, especially in the low-temperature source TMC-1.  相似文献   

11.
We have made an observational study of the newly identified cyanomethane radical CH2CN and the possibly related species CH3CN with the goals of (1) elucidating the possible role of reactions of the type CnHm(+) + N in astrochemistry, and (2) providing a possible test of Bates's models of dissociative electron recombination. We find a remarkably different abundance ratio CH2CN/CH3CN in TMC-1 and Sgr B2, which we deduce is a result of the large difference in temperature of these objects. Studies of CH2CN and CH3CN in other sources, including two new detections of CH2CN, support this conclusion and are consistent with a monotonic increase in the CH2CN/CH3CN ratio with decreasing temperature over the range 10-120 K. This behavior may be explained by the destruction of CH2CN by reaction with O. If this reaction does not proceed, then CH2CN and CH3CN are concluded to form via different chemical pathways. Thus, they do not provide a test of Bates's conjectures (they do not both form from CH3CNH+). CH2CN is then likely to form via C2H4(+) + N --> CH2CNH+, thus demonstrating the viability of this important reaction in astrochemistry. The T dependence of the CH2CN/CH3CN ratio would then reflect the increasing rate of the C2H4(+) + N reaction with decreasing temperature.  相似文献   

12.
We report the identification of 10 transitions that support the detection of the small cyclic molecule ethylene oxide (c-C2H4O) in Sgr B2N. Although one of these transitions is severely blended, so that an accurate intensity and line width could not be determined, and two other lines are only marginally detected, we have done Gaussian fits to the remaining seven lines and have performed a rotation diagram analysis. Our results indicate a rotation temperature T(rot) = 18 K and a molecular column density N(c-C2H4O) = 3.3 x 10(14) cm-2, corresponding to a fractional abundance relative to molecular hydrogen of order 6 x 10(-11). This is a factor of more than 200 higher than the abundance for this molecule suggested by the "new standard" chemistry model of Lee, Bettens, & Herbst. This result suggests that grain chemistry might play an effective role in the production of c-C2H4O. No transitions of this molecule were detected in either Sgr B2M or Sgr B2NW.  相似文献   

13.
The cumulene carbenes are important components of hydrocarbon chemistry in low-mass star-forming cores. Here we report the first astronomical detection of the long-chain cumulene carbene H2C6 in the interstellar cloud TMC-1, from observations of two of its rotational transitions: J(K,K') = 7(1,7) --> 6(1,6) at 18.8 GHz and 8(1,8) --> 7(1,7) at 21.5 GHz, using NASA's Deep Space Network 70 m antenna at Goldstone, California. In addition we also observed the shorter cumulene carbene H2C4 at the same position. The fractional abundance of H2C6 relative to H2 is about 4.7 x 10(-11) and that of H2C4 is about 4.1 x 10(-9). The abundance of H2C6 is in fairly good agreement with gas-phase chemical models for young molecular cloud cores, but the abundance of H2C4 is significantly larger than predicted.  相似文献   

14.
Vibrationally excited HCN has been observed for the first time in the interstellar medium. The J = 3-2 rotational transitions of the l-doubled (0,1(1d,1c), 0) bending mode of HCN have been detected toward Orion-KL and IRC +10216. In Orion, the overall column density in the (0,1,0) mode, which exclusively samples the "hot core", is 1.7 x 10(16) cm-2 and can be understood in terms of the "doughnut" model for Orion. The ground-state HCN column density implied by the excited-state observations is 2.3 x 10(18) cm-2 in the hot core, at least one order of magnitude greater than the column densities derived for HCN in its spike and plateau/doughnut components. Radiative excitation by 14 micrometers flux from IRc2 accounts for the (0,1,0) population, provided the hot core is approximately 6-7 x 10(16) cm distant from IRc2, in agreement with the "cavity" model for KL. Toward IRC +10216 we have detected J = 3-2 transitions of both (0,1(1c),(1d), 0) and (0, 2(0), 0) excited states. The spectral profiles have been modeled to yield abundances and excitation conditions throughout the expanding envelope.  相似文献   

15.
We have conducted a spectral line survey of IRC +10216 using the Caltech Submillimeter Observatory to an average sensitivity of < or approximately 95 mK. A deconvolution algorithm has been used to derive the continuous single-sideband spectrum from 330.2 to 358.1 GHz. A total of 56 spectral lines were detected of which 54 have been identified with 8 molecules and a total of 18 isotopomers. The observed lines are used to derive column densities and relative abundances for the detected species. Within this frequency range the spectral lines detected contribute the majority of the total flux emitted by IRC +10216. We use the derived column densities and excitation temperatures to simulate the molecular line emission (assuming LTE) at frequencies up to 1000 GHz. The observed and simulated flux from line emission is compared to broadband total flux measurements and to dust emission assuming a power-law variation of the dust emissivity. We conclude that significant corrections for the line flux must be made to broadband flux measurements of IRC +10216 at wavelengths longer than approximately 750 micrometers.  相似文献   

16.
We have constructed two gas-phase models to study the chemistry of circumstellar envelope surrounding the carbon-rich variable star IRAS 15194-5115. The network used consists of 3893 reactions involving 397 gas-phase species. The derived fractional abundances for many molecules are in excellent agreement with values obtained from observations. The predicted column densities from the two models go well with the observed values of carbon star IRC + 10216. The dominant formation routes for three groups of species are discussed through the inner and outer envelopes.  相似文献   

17.
We report the detection of the acetylene derivative propynal (HC triple bond CCHO) in the cold cloud TMC-1, with an abundance that is very close to that for the related species tricarbon monoxide (C3O). Propadienone, an isomer of propynal with the formula H2C=C=C=O, was not detected and is hence less abundant than either C3O or HC2CHO.  相似文献   

18.
We have constructed models for a region of low mass star formation where stellar winds ablate material from dark dense cores and return it to a translucent intercore medium from which subsequent generations of cores condense. Depletion of gas phase species onto grains plays a major role in the chemistry. For reasonable agreement between model core chemical fractional abundances and measured TMC-1 fractional abundances to obtain, the core collapse, once started, must be relatively uninhibited by turbulence or magnetic fields and the core lifetime must fall in a limited range determined by the assumed depletion rates. In a core with the TMC-1 fractional abundances, CH, OH, C2H, H2CO, HCN, HNC, and CN are the only simple species that have been detected in TMC-1 at radio and millimeter wavelengths to have fractional abundances that are roughly constant or increasing with time; this result bears considerably on previous work concerned with searches for spectroscopic evidence for and the diagnosis of collapse during protostellar formation, but depends on the fractions of the OH and CH emissions that are associated with the core centre rather than more extended gas or a core-stellar wind boundary layer. Model results for the abundance ratios of H2O, CH4, and NH3 ices are in good agreement with those inferred for Halley's Comet.  相似文献   

19.
Observations of OCS and a search for OC3S are reported, with particular reference to cold dust clouds. OCS has been detected for the first time in dark clouds with a mean fractional abundance relative to hydrogen of approximately 3 x 10(-9); this is approximately 4 times greater than that observed for giant molecular clouds. This results is discussed in the context of molecule formation mechanisms. Observations of the J = 1 --> 0 transition of OCS indicate that this transition is amplifying the background continuum radiation in the direction of Sgr B2.  相似文献   

20.
使用中国科学院紫金山天文台青海站13.7米射电望远镜于1996年12月至1997年1月对富碳拱星IRC 10216和CIT6的CO J=1-0跃迁(115GHz)进行了观测。在观测谱线的基础上得到了IRC 10216的视向速度和膨胀速度分别为一26.1km s~(-1)和14.8km s~(-1),CIT6的视向速度和膨胀速度分别为0.6km s~(-1)和13.8kms~(-1)。并对望远镜的射束及指向精度进行了研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号