首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 792 毫秒
1.
P. Foukal  S. Hinata 《Solar physics》1991,132(2):307-334
Macroscopic electric fields in the solar atmosphere have received much less attention than magnetic fields, although they must play a role of comparable importance in plasma heating, and in charged particle acceleration and transport. We review various remote sensing techniques that have been developed, whose sensitivity is now 5–10 V cm –1 for measurement of the electric field component transverse to the line-of-sight. Our review of the processes most likely to produce observable fields in the solar atmosphere indicates that quasi-static, macroscopic values of E (the electric field component parallel to the magnetic vector) well above this detection threshold are predicted by the discharge model of flares, by models of return currents associated with flare particle beams, and by models of neutral sheets associated with two-ribbon flares and post-flare loops. In addition, both E and E components may be detectable in time dependent electric fields associated with MHD and plasma waves, and with plasma turbulence. The emission measures and time-scales associated with these electrified plasma volumes are as highly uncertain as our present understanding of the volumes, plasma conditions and processes involved in the liberation of flare energy. Observations of electric field vector intensities, orientations, time-behaviour and spatial distribution at the presently attained electric field sensitivity levels could provide new, direct information of great interest in the electrodynamics of solar magnetic structures.  相似文献   

2.
Measurements on the S3-3 and Viking satellites appear to show that at least a large fraction of magnetic field-aligned potential drops are made up of multiple double layers. Solitons and double layers inU-shaped potential structures give rise to spiky electric fields also perpendicular to the magnetic field in agreement with satellite measurements. The large scale potential structures associated with invertedV-events are built up of many similar short-lived structures on a small scale. Viking measurements indicate that electric fields parallel to the magnetic field are almost always directed upward.Paper dedicated to Professor Hannes Alfvén on the occasion of his 80th birthday, 30 May 1988.  相似文献   

3.
A dispersion relation for left hand circularly polarized electromagnetic wave propagation in an anisotropic magnetoplasma in the presence of a very weak parallel electrostatic field has been derived with the help of linearized Vlasov and Maxwell equations. An expression of the growth rate has been derived in presence of parallel electric field for ion-cyclotron electromagnetic wave in an anisotropic media. The modification made in the growth rate by introducing parallel electric field and temperature anisotropy has been studied for fully ionized hydrogen plasma with the help of observations made on Jovian ionosphere and magnetosphere atL = 5.6 Rj. It is concluded that the growth (damping) of ion-cyclotron electromagnetic wave is possible when the wave vector is parallel (antiparallel) to the static electric field and effect is more pronounced at higher wave number.  相似文献   

4.
The mapping of the spectra of electrostatic field below 300 km altitude is theoretically calculated for a horizontally stratified auroral ionosphere. Perpendicular electric fields of large scale size are the same for different altitudes of the ionosphere. However, electric fields of small scale size vary with altitude and decrease drastically when the scale size is smaller than a certain value which depends on altitude. These results are similar to those observed by satellites above 300 km altitude. In the case of a homogeneous anisotropic ionosphere, analytical results are obtained for the penetration of electric field into the ionosphere as a function of wavenumber. The “smoothing” of the electric field when penetrating a horizontally stratified ionosphere is demonstrated. The smallest possible scale of parallel electric field structure within the ionosphere is found. Also presented is a method of finding the smallest horizontal length with which the electric field can penetrate the ionosphere with little distortion. For an average conductivity model, this length is found to be about 1 km. Finally, the mapping of packets of electric field to the ground is constructed.  相似文献   

5.
We illustrate a method for determining self-consistently the spacial distribution of space-charge currents and electric fields close to the surface of a rotating magnetic star. The unique solution for simple geometries shows that the space-charge flow, required to maintain the surface potentials and to bring the surface electric field parallel to the magnetic field to zero, simultaneously sets E·B to zero at all heights above the surface. Thus this result questions the previous estimates of the parallel electric fields near pulsars.  相似文献   

6.
The problem of electromagnetic radiation from electric and magnetic line sources interacting with a moving magnetoplasma slab backed by a finitely conducting medium is treated. The local magnetostatic field is aligned parallel with the line source and is perpendicular to the direction of slab motion. For the configuration, theE andH modes are excited independently by a magnetic and an electric line source respectively. Expressions for the far zone radiation fields and the radiation pattern have been obtained for both the line sources. It is found that the radiation due to an electric line source is not affected by the presence of a static magnetic field and the motion of the slab medium. Numerical results for the radiation pattern referring to both the line sources have been presented for a wide range of parameters characterizing the finite magnetostatic field, the conductivity of the medium backing the plasma, the thickness of the slab and the location of the line source.  相似文献   

7.
In this paper we investigate the combined influence of both cosmological and electromagnetic particle creation mechanisms upon massive particles with spin 1/2 on the basis of general covariant Dirac theory.Curved space-time, a radiation-dominated Friedmann universe, is treated as an unquantized gravitational field and the low-frequency part of the 2.7 K background radiation is approximated by homogeneous, constant, and parallel external electric and magnetic fields. We calculate the number density of spin 1/2 particles with massm which are created under the influence of both these external fields.We find that the electric field and the magnetic field both amplify the genuine, purely gravitational particle production. This influence of the magnetic field, which is in contrast to its reducing effect as far as the creation of spin-zero particles is concerned, can clearly be traced back to its coupling to the spin of the particles.Under certain conditions the electromagnetic fields in the early universe can influence the particle creation process even more than the gravitational field.  相似文献   

8.
Reliable measurements of the solar magnetic field are restricted to the level of the photosphere. For about half a century attempts have been made to calculate the field in the layers above the photosphere, i.e. in the chromosphere and in the corona, from the measured photospheric field. The procedure is known as magnetic field extrapolation. In the superphotospheric parts of active regions the magnetic field is approximately force-free, i.e. electric currents are aligned with the magnetic field. The practical application to solar active regions has been largely confined to constant-α or linear force-free fields, with a spatially constant ratio, α, between the electric current and the magnetic field. We review results obtained from extrapolations with constant-α force-free fields, in particular on magnetic topologies favourable for flares and on magnetic and current helicities. Presently, different methods are being developed to calculate non-constant-α or nonlinear force-free fields from photospheric vector magnetograms. We also briefly discuss these methods and present a comparison of a linear and a nonlinear force-free magnetic field extrapolation applied to the same photospheric boundary data. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
E R Priest  T G Forbes 《Solar physics》1989,119(1):211-214
The concepts of magnetic reconnection that have been developed in two dimensions need to be generalised to three-dimensional configurations. Reconnection may be defined to occur when there is an electric field (E) parallel to field lines (known as potential singular lines) which are potential reconnection locations and near which the field has an X-type topology in a plane normal to that field line. In general there is a continuum of neighbouring potential singular lines, and which one supports reconnection depends on the imposed flow or electric field. For steady reconnection the nearby flow and electric field are severely constrained in the ideal region by the condition that E = 0 there. Potential singular lines may occur in twisted prominence fields or in the complex magnetic configuration above sources of mixed polarity of an active region or a supergranulation cell. When reconnection occurs there is dynamic MHD behaviour with current concentration and strong plasma jetting along the singular line and the singular surfaces which map onto them.  相似文献   

10.
The observations of electron inverted ‘V’ structures by the MGS and MEX spacecraft, their resemblance to similar events in the auroral regions of the Earth, and the discovery of strong localized magnetic field sources of the crustal origin on Mars, raised hypotheses on the existence of Martian aurora produced by electron acceleration in parallel electric fields. Following the theory of this type of structures on Earth we perform a scaling analysis to the Martian conditions. Similar to the Earth, upward field-aligned currents necessary for the generation of parallel potential drops and peaked electron distributions can arise, for example, on the boundary between ‘closed’ and ‘open’ crustal field lines due to shears of the flow velocity of the magnetosheath or magnetospheric plasmas. A steady-state configuration assumes a closure of these currents in the Martian ionosphere. Due to much smaller magnetic fields as compared to the Earth case, the ionospheric Pedersen conductivity is much higher on Mars and auroral field tubes with parallel potential drops and relatively small cross scales to be adjusted to the scales of the localized crustal patches may appear only if the magnetosphere and ionosphere are decoupled by a zone with a strong E. Another scenario suggests a periodic short-circuit of the magnetospheric electric fields by a coupling with the conducting ionosphere.  相似文献   

11.
The macroscopic electric fields in the magnetosphere originate from internal as well as external sources. The fields are intimately coupled with the dynamics of magnetospheric plasma convection. They also depend on the complicated electrical properties of the hot, collisionless plasma. Macroscopic electric fields are responsible for some important kinds of energization of charged particles that take place in the magnetosphere and affect not only particles of auroral energy but also, by multistep processes, trapped high-energy particles.A particularly interesting feature of magnetospheric electric fields is the fact that they can have substantial components along the geomagnetic field. Several physical mechanisms have been identified by which such electric fields can be supported even when collisions between particles are negligible. Comments are made on the magnetic-mirror effect, anomalous resistivity, collisionless thermoelectric effect and electric double layers, emphasizing key features and differences and their significance in the light of recent observational data.Paper dedicated to Professor Hannes Alfvén on the occasion of his 70th birthday, 30 May, 1978.Reprinted, with due permission fromRev. Geophys. Space Phys. 15, (1977), 457  相似文献   

12.
By using the method of 2-dimensional, 3-component full particle simulation, collisionless magnetic reconnection in the presence of various initial guide fields and the Harris current sheet with 1-dimensional initial state are studied. The results show that strong guide fields with Bz0 > 0.5B0 can evidently alter not only the trajectory of the particles, but also the structure of the electric and velocity fields in the vicinity of the reconnection region, thereby affecting the rate of reconnection and the acceleration of electrons. The generalized Ohm's law is employed to interpret the structural characteristics of the electric fields with various guide fields. Also, via the tracing of the electron beam near he diffusion region, it is revealed that in the 2-D model, for both strong and weak guide fields, the induced electric field perpendicular to the simulation plane at the center of the diffusion region plays the major role in the acceleration of electrons. The contribution of the planar electric field outside the diffusion region is very small.  相似文献   

13.
Fine structure of solar magnetic fields   总被引:2,自引:0,他引:2  
The deduction of magnetic fields from chromospheric structure is extended to active regions and transverse fields. Fields independently predicted by these rules from a high resolution H filtergram are compared with a high resolution magnetogram. The H method has the advantage over conventional magnetograms that it shows transverse fields and relates the fields to the real Sun. It has the disadvantage that higher spatial resolution is required and that it is difficult and time consuming in very complicated regions.The response of the chromosphere to magnetic fields is most consistent. Vertical field is invariably marked by bright plage, with brightness roughly proportional to the field strength (except for sunspots). All dark fibrils mark transverse fields and are parallel to field lines. All polarity changes are marked by dark fibrils, which may be transverse fibrils perpendicular to the field boundary, or filaments (prominences) which connect more distant points, and in which the field lines run nearly parallel to the boundary. The asymmetry between preceding and following polarity found by Veeder and Zirin (1970) does not exist; it was due to the low resolution of the Mount Wilson magnetograms.The complexity of active region field structure depends on the history of the region; all flux erupts in simple bipolar form, and lines of force remain connected to sibling spots until reconnection takes place. Thus the complex structure only occurs after eruption of several dipoles which reconnect. The phenomenon of inverted polarity turns out to be due to the emergence of satellite bipolar fields, where the p spot merges with the rest of the p field and the f spot appears as an included f field. Flares usually occur when the field lines from f spot reconnect from its sibling to the main spot.  相似文献   

14.
We present calculated Stark-polarized line profiles for a number of H i lines observed in the visible and infrared emission spectrum of solar prominences and other limb activity. For use in measurements of possible electric fields in these structures, we also calculate curves giving the difference in line width between the 1/2 (I ± Q) profiles as a function of electric-field intensity. Our calculations take into account magnetic fields in these structures, and incorporate typical observed values of Doppler broadening. These calculations explicitly consider the H i fine structure neglected in previous work, and thus are more accurate in the range of low to intermediate electric-field intensity likely to be encountered in solar plasmas (E < 103 V cm–1). Our results enable us to compare behavior when E and B are parallel, or perpendicular. We draw particular attention to the high electric-field sensitivity of the transitions between high levels such as 12–8 and 15–9 in H i, observed in prominences at wavelengths around 11. Their sensitivity is roughly an order of magnitude larger than that of the high Paschen-series lines used in solar plasma electric field studies so far.  相似文献   

15.
For application to studies of the high latitude ionosphere, we have calculated ion velocity distributions for a weekly-ionized plasma subjected to crossed electric and magnetic fields. An exact solution to Boltzmann's equation has been obtained by replacing the Boltzmann collision integral with a simple relaxation model. At altitudes above about 150 km, where the ion collision frequency is much less than the ion cyclotron frequency, the ion distribution takes the shape of a torus in velocity space for electric fields greater than 40 mV m?1. This shape persists for 1–2 hr after application of the electric field. At altitudes where the ion collision and cyclotron frequencies are approximately equal (about 120 km), the ion velocity distribution is shaped like a bean for large electric field strengths. This bean-shaped distribution persists throughout the lifetime of ionospheric electric fileds. These highly non-Maxwellian ion velocity distributions may have an appreciable affect on the interpretation of ion temperature measurements.  相似文献   

16.
For both even and odd-numbered solar cycles, right-hand heliform filaments predominate at middle and high latitudes in the northern hemisphere while left-handed ones predominate in the south. This recent discovery has prompted a re-examination of past measurements of magnetic fields in prominences. This re-examination indicates that Rust (1967), in his interpretation of solar cycle 20 measurements in terms of the Kippenhahn-Schlüter model, and Leroy, Bommier, and Sahal-Bréchot (1984), in their interpretation of solar cycle 21 measurements in terms of the Kuperus-Raadu model were both misled by the global pattern of helicity. While the original magnetic field measurements are consistent with the new results about heliform magnetic fields in filaments, neither of the well-known classes of two-dimensional models can produce both the proper axial field direction and the observed pattern of helicity. A global, subsurface velocity pattern that would twist the fields before emergence as filaments seems to be required. In this paper a twisted-flux-rope model consistent with the new understanding of filament fields is presented. The model is based on a constant- solution of the magnetostatic equations, where electric current densityj(r) = B(r). The model filament has dimensions in general agreement with observations. It is shown to be stable if the length is less than 140 000 km to 1,400 000 km, depending on the value of. The model also provides a new explanation of eruptive prominences and for the origin of the entrained material.  相似文献   

17.
A finite amplitude linearly polarized electromagnetic wave propagating in a relativistic plasma, is found to generate the longitudinal d.c. as well as the oscillating electric field at the second harmonic. In a plasma consisting of only electrons and positrons, these fields cannot be generated.The evolution of the electromagnetic waves is governed by the non-linear Schrödinger equation which shows that the electromagnetic solitons are always possible in ultra-relativistic plasmas (electron-ion or electron-positron) but in a plasma with relativistic electrons and nonrelativistic ions, these solitons exist only if 1(KT e/meC2)<(2m i/15me);m e andm i being the electron and ion mass andT e the electron temperature. Both the d.c. electric field and the solitons provide a nonlinear mechanism for anomalous acceleration of the particles. This model has direct relevance to some plasma processes occurring in pulsars.  相似文献   

18.
An Abelian Higgs model of sunspot generalized in a Chern-Simons-like fashion is discussed. It is shown, in particular, that both themagnetic andelectric fields are present inside the sunspot, and that the latterrotates. One demonstrates that the total angular momentum of a static, cylindrically symmetric sunspot is proportional top 2, wherep — an integer — stands for the number of magnetic fluxquanta carried by the spot. Finally, the behaviour of the Higgs field amplitude, magnetic and electric field strengths are illustrated for the spots carrying one to five flux quanta, all having the penumbra-to-umbra radius ratio of the value .  相似文献   

19.
Cylindrically symmetric inhomogeneous cosmological model for perfect fluid distribution with electromagnetic field is obtained. The source of the magnetic field is due to an electric current produced along the z-axis. F 12 is the non-vanishing component of electromagnetic field tensor. To get the deterministic solution, it has been assumed that the expansion θ in the model is proportional to the shear σ. Physical and geometric aspects of the models are also discussed in presence and absence of magnetic field.   相似文献   

20.
We model solar coronal mass ejections (CMEs) as expanding force-free magnetic structures and find the self-similar dynamics of configurations with spatially constant ??, where J=?? B, in spherical and cylindrical geometries, expanding spheromaks and Lundquist fields, respectively. The field structures remain force-free, under the conventional non-relativistic assumption that the dynamical effects of the inductive electric fields can be neglected. While keeping the internal magnetic field structure of the stationary solutions, expansion leads to complicated internal velocities and rotation, caused by inductive electric fields. The structure depends only on overall radius R(t) and rate of expansion $\dot{R}(t)$ measured at a given moment, and thus is applicable to arbitrary expansion laws. In case of cylindrical Lundquist fields, magnetic flux conservation requires that both axial and radial expansion proceed with equal rates. In accordance with observations, the model predicts that the maximum magnetic field is reached before the spacecraft reaches the geometric center of a CME.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号