首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
本文对21周较大耀斑作空间分布统计分析,得到如下结果:(1)存在两个活动经度带,它们是220°—140°和340°—320°。(2)耀斑在南北半球分布是不均匀的。(3)在日面东50°—60°和日面西10°—20°的活动区中易产生耀斑,而在日面东边缘80°—90°和日面西60°—70°的活动区中不易产生耀斑。(4)用自相关方法作耀斑的空间谱分布,结果表明:(ⅰ)一个较大耀斑活动区迴转一次时产生耀斑的可能性是很大的。(ⅱ)在迴转一次之后,再产生耀斑的可能性甚微。(ⅲ)当τ=1,R(τ)较大时,表示在产生较大耀斑活动区的邻近(东)20°之内耀斑出现的可能性较大。  相似文献   

2.
本文介绍了1980年7月14日日面(B.R.2562)3B级耀斑活动区的形态、光球磁场和视向速度分布特征。 结果表明,该耀斑是由两个部分组成的;活动区速度场的测量,对于探讨耀斑模型是重要的。  相似文献   

3.
本文介绍了1980年7日14日面3B级耀斑活动区形态、光球磁场和视向速度分布特征。对速度场分析表明,在探讨耀斑机制和活动区模型时,活动区速度场的测量是重要的。  相似文献   

4.
本文采用一个表征高能耀斑强度的综合指数,分析了太阳活动21周以来(1976.7—1991.2)级别≥M1.0的X射线耀斑和能量≥10Mev的质子耀斑综合指数的时空分布,提出在研究时段内太阳上的13个高能耀斑“热点”。这些热点活动区反复回转,爆发了占总指数58.1%的高能耀斑。本文还讨论了高能耀斑热点的特征及其与大尺度磁场演化的关系。结果表明,高能耀斑热点与大尺度磁场的演化关系密切,前者受后者的调制。  相似文献   

5.
本文研究了活动区5229中的H_β耀斑和磁场的关系。所用资料为北京天文台怀柔太阳观测站1988年11月13—18日期间获得的(时值活动区5229位于E40°W40°)。按活动区磁场演化情况,考察了新浮现磁流、磁剪切和磁对消与耀斑形成的关系。 图1a-1f给出了怀柔站观测到的11个H_β耀斑及87个耀斑核在纵向磁图上的情况。磁图以等高斯线形式给出,图中虚线表示负极,实线表示正极,等高斯线由外向内分别为20,40,80,160,320,640,960,1280,1600,1920,2240,2580,2800高斯。黑色小块表示Hβ耀斑核。其中有四分之三的Hβ耀斑核离开极性反变线的距离在10弧秒之内。发生在该活动区的耀斑超过80个,而怀柔站观测的仅是很小一部分。这对于耀斑建立过程的研究是很不够的,必需补充其他天文台的资料。注意到周报上已列出该活动区的软X射线(1~8A)M1.0级以上的高能耀斑事件,将它们补充进图1,用黑色三角形表示,画其位置时考虑到耀斑、黑子及磁特征之间的关系和它们彼此之间的时间差,并按Howard和Harvey给出的较差自转公式进行了改正。10个高能耀斑事件中有6个可能与磁特征N_3,N_7和P_2的衰减(即对消,另一极性在复杂活动区中衰减不明显)有关;另外的事件可能与发生在磁特征N_2、P_2之间的磁剪切有关。  相似文献   

6.
本文分析了云台78126活动区的五天的磁场等高斯图资料后得出,倒置的磁极性排列和纵场中性线变得迂回曲折与高能质子耀斑爆发紧密相关。在耀斑爆发后,无论是磁极性排列和纵场中性线都趋于相对稳定状态。我们发现,活动区的净磁通量φ在4月28—30日期间有急剧的变化,而在这期间发生了二个重大耀斑。我们猜想,可能是磁通量的迅速变化引起的强大电动势造成了电子和质子加速的条件。分析了耀斑结点在磁图中的分布后得出;本活动区的耀斑亮点大多数离中性线区域较远,而出现在中性线附近的亮结点,可以大致分为两种情形,一种是在中性线两侧的磁场梯度很大且具有相反电流密度的区域;另一种是出现在磁场的“中性点”附近。  相似文献   

7.
本文对太阳活动第21周、22周(1976年—1992年间)97个质子活动区进行统计分析,包括活动区的面积、型别、磁结构、半影纤维等,结果表明:75%的质子耀斑产生于面积为500≤Sp≤3000单位的黑子群中;耀斑爆发前一天及后一天活动区面积有显著减少;质子活动区含δ复杂磁结构的占70%;具有半影旋涡形态的质子活动区中,约77%的耀斑发生在旋涡黑子出现以后。  相似文献   

8.
本文综述了超级活动区AR5395的特征,爆发太阳耀斑的概况以及地球物理效应。这个活动区在所有方面都是引人注目的。它位于高纬,面积罕见,密集,发展变化快,磁结构异常复杂,较大的几个后随极性本影被许多前导极性本影汇围成“U”字形。它通过日面期间,耀斑爆发频繁,其位置远离赤道,许多耀斑都伴随着物质抛射,共产生11个X级、48个M级X射线耀斑事件,引起了两次三级质子事件,其持续时间较  相似文献   

9.
质子活动与太阳黑子群   总被引:1,自引:1,他引:0  
本文对太阳活动第21周、22周(1976年-1992年间)97个质子活动区进行统计分析,包括活动区的面积、型别、磁结构、半影纤维等,结果表明:75%的质子耀斑产生于面积为500≤Sp≤3000单位的黑子群中;耀斑爆发前一天及后一天活动区面积有显著减少,质子活动区含δ复杂磁结构的占70%;具有半影旋涡形态的质子活动区中,约77%的耀斑发生在旋涡黑子出现以后。  相似文献   

10.
对太阳第21周最强烈活动区的分析   总被引:1,自引:1,他引:0  
太阳第21周实测到3986个活动区,以黑了面积、X射线耀斑指数、10.7cm射电爆发及发子事件等四项指数,从中综合评估出AR3804、AR4474等16个最强烈活动区。与22周比较,两周教师阴在时空分布的相对集中性特征。  相似文献   

11.
AR6659是22周以来最重要的一个活动区,它爆发了22周最强大的高能事件。本文用云南天文台的光球、色球精细结构照片和北京天文台怀柔站的磁场速度场资料,分析了该活动区磁场速度场的二维位形和大耀斑期间的演化特征。本文分析的4个大耀斑均爆发在中性线附近的N极区磁场梯度大的地方及色球速度场的红移区。偏带观测也显示耀斑物质是向红端移动的。耀斑波沿横场传播在离本黑子群几万至十几万公里的地方激起感生耀斑,在原生耀斑与感生耀斑之间往往有耀斑环相连。此外,本文还从演化特征出发分析了耀斑爆发前活动区等离子体的宏观不稳定性。  相似文献   

12.
本文详细分析了1989年7月5日有连续发射的耀斑对应的活动区磁场。得出:磁场强度和黑子面积分布都有“前导大后随小”的特征;两异极黑子挤压位置的中性线呈“V”形;产生连续发射的四个耀斑核,除一个位于宁静背景上外,其余三个均位于中性线两侧;连续发射最明显的B点耀斑核位于磁剪切和磁挤压的交点以及磁场梯度最大(0.52高斯公里~(-1))的位置上。  相似文献   

13.
通过对1972年8月太阳大活动区九个耀斑(包括它全部2级以上大耀斑)的形态和黑子精细结构形态的相关分析,导致以下结论:1.8月2日0355UT本活动区第一次大耀斑的爆发与光球黑子形态变化在时间上和空间位置上有一定的相关性。2.九个耀斑在暗条两侧的初始亮点及其主要发展形态与“O”和“B”黑子的旋涡结构有着密切的相关性。3.耀斑的亮带与色球暗条(它由平行的小纤维组成)、O黑子东面的蛇形半影长纤维、以及H_(11)=O线的走向的一致性,可以看作耀斑爆发沿着太阳表面水平磁场传播的形态表现。  相似文献   

14.
利用SDO (Solar Dynamics Observatory)/HMI (Helioseismic and Magnetic Imager)观测到的矢量磁图,研究了与活动区AR12673上爆发的一个X9.3级耀斑(2017年9月6日)的相关电流分布和演化.结果显示,在该活动区的磁中性线两边存在一对方向相反的电流密度约为0.4 A/m~2的长电流带,可称其为一对共轭电流带.这对共轭电流带在耀斑发生之前、期间以及之后一直存在;并且观测到,该耀斑的两个亮带的位置几乎刚好与两个电流带重叠,它们的形状也极其相似. 9月6日电流总强度演化曲线表明,电流强度在X9.3级强耀斑爆发期间出现快速增加的现象,这种现象持续了几个小时.这一研究结果有力支持了磁准分界面(Quasi-Separatrix Layer, QSL) 3维重联模型.  相似文献   

15.
第22周中最强烈的太阳活动区   总被引:2,自引:2,他引:0  
本文根据观测资料,选取五个指标:活动区中黑子群面积,X级X射线耀斑指数,10.7cm射电爆发峰值流量,太阳总辐射流量短期大跌落以及质子事件流量,从第22周的3966个活动区中综合评估筛选出AR5395,AR6555和AR6659等13个最强烈的活动区,供太阳物理和日地物理研究人员进一步研究。本文还简要分析了这13个活动区的时空分布的不均匀性和相对集中性等特点。  相似文献   

16.
通过对活动区NOAA6891中三个X线耀斑前后的向量磁场分析,研究耀斑发生条件与耀斑发生前后横向磁场和磁剪切变化的关系。我们发现与Hagyard的耀斑发生条件不同的是,强的横向磁场和磁剪切不是活动区中耀斑发生的充要条件。我们的结果表明,活动区NOAA6891 1991年30日的耀斑发生在横向磁场和磁剪切剧烈下降后。尽管10月27日的耀斑发生后横向磁场和磁剪切变化很大,但由于有新磁流浮现,造成磁中性  相似文献   

17.
磁准分界面(Quasi-Separatrix Layer,简称QSL)是3维磁结构中磁力线连接性发生显著改变的区域,观测表明它多数时候和耀斑带所在的位置符合得较好.有关这一结构和3维磁重联及耀斑关系的研究在近年来受到越来越多的关注.从QSL的理论出发,研究了2011年12月26日在活动区AR11384发生的一个C5.7级典型双带耀斑(事件1)和2015年6月22日发生在活动区AR12371处的一个M6.5级耀斑(事件2).结合SDO/AIA(Solar Dynamics Observatory/Atmospheric Imaging Assembly)观测到的多波段数据和SDO/HMI(Helioseismic and Magnetic Imager)观测到的矢量磁场数据,首先分别利用势场和非线性无力场对日冕的3维磁场结构进行了外推,并计算了活动区磁自由能的演化;然后基于势场和非线性无力场的外推结果计算了不同高度处磁压缩因子(magnetic squashing factor)Q的对数分布,并研究了不同高度磁准分界面与相应高度处观测到的耀斑带的演化关系.最后分析了2个耀斑事件的多波段演化特征,并计算得到事件2中磁力线的平均滑动速度在304?A波段和335?A波段分别为4.6 km·s~(-1)和6.3 km·s~(-1).研究发现:计算得到的磁准分界面在色球和日冕中的位置和相应高度观测到的耀斑带的位置符合得较好,而且各层次的磁准分界面与相应层次的耀斑亮带在时间上也有近乎一致的演化行为,这突显出了磁准分界面理论在3维磁重联和耀斑研究中的作用,并证实事件2耀斑能量的释放可能是通过发生在QSL处的磁重联进行的,同时说明,研究QSL对于理解2维磁重联和3维磁重联本质联系是至关重要的.  相似文献   

18.
通过对活动区NOAA 6891中三个X级耀斑前后的向量磁场分析 ,研究耀斑发生条件与耀斑发生前后横向磁场和磁剪切变化的关系。我们发现与Hagyard的耀斑发生条件不同的是 ,强的横向磁场和磁剪切不是活动区中耀斑发生的充要条件。我们的结果表明 ,活动区NOAA 6891 1 991年 30日的耀斑发生在横向磁场和磁剪切剧烈下降后。尽管 1 0月 2 7日的耀斑发生后横向磁场和磁剪切变化很大 ,但由于有新磁流浮现 ,造成磁中性线的改变 ,使得横向磁场和磁剪切变化与耀斑发生的联系变得比较复杂。  相似文献   

19.
对十个活动区出现的卫星黑子进行分析,据它们不同的形态,发展状况及在耀斑活动中的作用大致分成三种类型。结果表明,高能耀斑与卫星黑子有密切关系。随着卫星黑子的出现,发展在活动区中可经常产生耀斑。如果卫星黑子是静止的,通常没有耀斑爆发。  相似文献   

20.
1、太阳活动的节律:太阳活动遵循着一定的节律,表现为一个大周期里包含着间距不等的三个小周期,大周期平均长度为73±2.9(天),小周期的分别为平均为15、22、36、(天),综合指数平均峰(谷)值分别为3.2、(2.2)、2.8、(1.8)、3.1、(1.2)。表现出“强—弱—强—弱—强—弱弱”的节律,调制着耀斑的爆发。 2、大耀斑期的节律:大耀斑(≥X_(0.1)/2F级的耀斑和质子)的时间分布是不均匀的。1988年1月至1989年1月期间的大耀斑分别集中在9个时段,分布也显示出明显的节律周期。即两个相近的耀斑期后有一个较长的间歇期。两个耀斑期和两个间歇期组成一个耀斑节律周期,平均为93±7.8(天)。节律期内的耀斑期和间歇期平均长为:12天(耀斑期)—19天(间歇期)—14天(耀斑期)—48天(间歇期)。显示“强—弱—强—弱弱”的节律。 3、大耀斑的Carrington经度分布:大耀斑节律周期由活动区在日面上分布不均匀引起的。1988年的大耀斑96%分布在90°—160°和250°—10°两个经度带上。它们和上述节律周期共同调制着大耀斑的爆发。 4、对未来一年大耀斑期的预测:(1)1989年3月7日—20日;(2)1989年4月14日—26日;(3)1989年6月9日—23日;(4)1989年9月13日—26日;(5)1989年10月18日—28日;(6)1990年1月15日—26日;(7)1990年3月14日—24日;(  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号