首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The paper continues the series of our works on recognizing the areas prone to the strongest, strong, and significant earthquakes with the use of the Formalized Clustering And Zoning (FCAZ) intellectual clustering system. We recognized the zones prone to the probable emergence of epicenters of the strongest (M ≥ 74/3) earthquakes on the Pacific Coast of Kamchatka. The FCAZ-zones are compared to the zones that were recognized in 1984 by the classical recognition method for Earthquake-Prone Areas (EPA) by transferring the criteria of high seismicity from the Andes mountain belt to the territory of Kamchatka. The FCAZ recognition was carried out with two-dimensional and three-dimensional objects of recognition.  相似文献   

2.
The fuzzy clustering and zoning method (FCAZm) of systems analysis is suggested for recognizing the areas of the probable generation of the epicenters of significant, strong, and the strongest earthquakes. FCAZm is a modified version of the previous FCAZ algorithmic system, which is advanced by the creation of the blocks of artificial intelligence that develop the system-forming algorithms. FCAZm has been applied for recognizing areas where the epicenters of the strongest (M ≥ 73/4) earthquakes within the Andes mountain belt in the South America and significant earthquakes (M ≥ 5) in the Caucasus can emerge. The reliability of the obtained results was assessed by the seismic-history type control experiments. The recognized highly seismic zones were compared with the ones previously recognized by the EPA method and by the initial version of the FCAZ system. The modified FCAZm system enabled us to pass from simple pattern recognition in the problem of recognizing the locations of the probable emergence of strong earthquakes to systems analysis. In particular, using FCAZm we managed to uniquely recognize a subsystem of highly seismically active zones from the nonempty complement using the exact boundary.  相似文献   

3.
With the use of the modified version of the original algorithmic Formalized Clustering and Zoning (FCAZ) system, the areas prone to the probable emergence of the epicenters of significant earthquakes are recognized in the joint region of the Crimea and western part of the Northern Caucasus. The selection of this region is justified by the tectonic structure and the presence of the active junction zone of the meganticlinoria. The reliability of the obtained recognition is substantiated by the comparative analysis of the actual and random FCAZ-recognition. For the first time, the problem of recognizing the locations of the probable emergence of the earthquakes' epicenters is solved for two different magnitude thresholds. This allows us to interpret the areas prone to the probable emergence of the epicenters of significant earthquakes as fuzzy sets.  相似文献   

4.
5.
Two zones of seismicity (ten events with M w = 7.0–7.7) stretching from Makran and the Eastern Himalaya to the Central and EasternTien Shan, respectively, formed over 11 years after the great Makran earthquake of 1945 (M w = 8.1). Two large earthquakes (M w = 7.7) hit theMakran area in 2013. In addition, two zones of seismicity (M ≥ 5.0) occurred 1–2 years after theMakran earthquake in September 24, 2013, stretching in the north-northeastern and north-northwestern directions. Two large Nepal earthquakes struck the southern extremity of the “eastern” zone (April 25, 2015, M w = 7.8 and May 12, 2015, M w = 7.3), and the Pamir earthquake (December 7, 2015, M w = 7.2) occurred near Sarez Lake eastw of the “western” zone. The available data indicate an increase in subhorizontal stresses in the region under study, which should accelerate the possible preparation of a series of large earthquakes, primarily in the area of the Central Tien Shan, between 70° and 79° E, where no large earthquakes (M w ≥ 7.0) have occurred since 1992.  相似文献   

6.
A 12-year period experimental data, from 1 January 1995, to 20 August 2007, have been examined for possible correlations between Seismic Electric Signals (SES) of the VAN method and source parameters of the corresponding earthquakes in Western Greece. During that period 13 earthquakes of magnitude M W ≥ 5 with epicenters in the area 19–24°E, 36–41°N and available the CMT solutions (Centroid Moment Tensor focal mechanism solutions) have been found to be preceded by a SES each time at one of the three VAN stations of IOA, PIR or PAT. The results of IOA and PIR stations are compared to those reported by Uyeda et al. 1999, for the previous period 1983–1994. The IOA station seems to be sensitive to earthquakes with thrust type mechanisms being mainly consistent to its past behavior. The PIR station, which is moved from its previous position by few kilometers, exhibits some changes. It detects now both strike slip and thrust type earthquakes and becomes sensitive to new areas indicating probably the strong dependence of the SES station detection ability upon its location.  相似文献   

7.
In this study, pre-seismic and post-seismic total electron content (TEC) anomalies of 63 Mw?≥?5.0 earthquakes in Turkey (36°–42°N, 26°–45°E) were statistically investigated. The largest earthquake that occurred in Turkey during 2003–2016 is the Mw 7.1 Van earthquake on October 23, 2011. The TEC data of epicenters is obtained from CODE-GIM using a simple 4-point bivariate interpolation. The anomalies of TEC variations were determined by using a quartile-based running median process. In order to validate GIM results, we used the GPS-TEC data of available four IGS stations within the size of the Van earthquake preparation area. The anomalies that are detected by GIM and GPS-TEC show a similar pattern. Accordingly, the results obtained with CODE-GIM are reliable. The statistical results show that there are not prominent earthquake precursors for Mw?≤?6.0 earthquakes in Turkey.  相似文献   

8.
An attempt has been made to examine an empirical relationship between moment magnitude (M W) and local magnitude (M L) for the earthquakes in the northeast Indian region. Some 364 earthquakes that were recorded during 1950–2009 are used in this study. Focal mechanism solutions of these earthquakes include 189 Harvard-CMT solutions (M W?≥?4.0) for the period 1976–2009, 61 published solutions and 114 solutions obtained for the local earthquakes (2.0?≤?M L?≤?5.0) recorded by a 27-station permanent broadband network during 2001–2009 in the region. The M WM L relationships in seven selected zones of the region are determined by linear regression analysis. A significant variation in the M WM L relationship and its zone specific dependence are reported here. It is found that M W is equivalent to M L with an average uncertainty of about 0.13 magnitude units. A single relationship is, however, not adequate to scale the entire northeast Indian region because of heterogeneous geologic and geotectonic environments where earthquakes occur due to collisions, subduction and complex intra-plate tectonics.  相似文献   

9.
The locations of possible earthquake occurrence (magnitudes M ≥ 6) have been determined for mountainous Crimea and the adjacent sea shelf, including the continental slope zone. The earthquake-generating structures were assumed to be intersections of morphostructural lineaments as found by morphostructural zoning. The measurement of geological and geophysical characteristics was followed by applying a decision rule that was derived previously using the CORA-3 pattern recognition algorithm in order to find possible locations of M ≥ 6 earthquakes in the Caucasus. The results corroborate the high seismic potential for the Yalta area where two events with magnitudes of 6.0 and 6.8 occurred in 1927, as well as indicating the possibility of M ≥ 6 earthquakes in other areas in mountainous Crimea and in the adjacent Black Sea area where no such events have yet been recorded.  相似文献   

10.
Between 2013 June and 2015 January, 35 earthquakes with local magnitude M L ranging from 1.1 to 4.2 occurred in Nógrád county, Hungary. This earthquake sequence represents above average seismic activity in the region and is the first one that was recorded by a significant number of three-component digital seismographs in the county. Using a Bayesian multiple-event location algorithm, we have estimated the hypocenters of 30 earthquakes with M L ≥1.5. The events occurred in two small regions of a few squared kilometers: one to the east of Érsekvadkert and the other at Iliny. The uncertainty of the epicenters is about 1.5–1.7 km in the E-W direction and 1.8–2.1 km in the N-S direction at the 95 % confidence level. The estimated event depths are confined to the upper 3 km of the crust. We have successfully estimated the full moment tensors of 4 M w ≥3.6 earthquakes using a probabilistic waveform inversion procedure. The non-double-couple components of the retrieved moment tensor solutions are statistically insignificant. The negligible amount of the isotropic component implies the tectonic nature of the investigated events. All of the analyzed earthquakes have strike-slip mechanism with either right-lateral slip on an approximately N-S striking or left-lateral movement on a roughly E-W striking nodal plane. The orientations of the obtained focal mechanisms are in good agreement with the main stress pattern published for the epicentral region. Both the P and T principal axes are horizontal, and the P axis is oriented along a NE-SW direction.  相似文献   

11.
The presence of a phenomenological relationship between high velocity regions in the Benioff zone and sources of relatively strong earthquakes (M ≥ 6) was established for the first time from the comparison of such earthquakes with the velocity structure of central Kamchatka in the early 1970s. It was found that, in the region with P wave velocities of 8.1–8.5 km/s, the number of M ≥ 6 earthquakes over 1926–1965 was 2.5 times greater than their number in the region with velocities of 7.5–8.0 km/s. Later (in 1979), within the southern Kurile area, Sakhalin seismologists established that regions with V P = 7.3–7.7 km/s are associated with source zones of M = 7.0–7.6 earthquakes and regions with V P = 8.1–8.4 km/s are associated with M = 7.9–8.4 earthquakes. In light of these facts, we compared the positions of M = 7.0–7.4 earthquake sources in the Benioff zone of southern Kamchatka over the period 1907–1993 with the distribution of regions of high P velocities (8.0–8.5 to 8.5–9.0 km/s) derived from the interpretation of arrival time residuals at the Shipunskii station from numerous weak earthquakes in this zone (more than 2200 events of M = 2.3–4.9) over the period 1983–1995. This comparison is possible only in the case of long-term stability of the velocity field within the Benioff zone. This stability is confirmed by the relationship between velocity parameters and tectonics in the southern part of the Kurile arc, where island blocks are confined to high velocity regions in the Benioff zone and the straits between islands are confined to low velocity regions. The sources of southern Kamchatka earthquakes with M = 7.0–7.4, which are not the strongest events, are located predominantly within high velocity regions and at their boundaries with low velocity regions; i.e., the tendency previously established for the strongest earthquakes of the southern Kuriles and central Kamchatka is confirmed. However, to demonstrate more definitely their association with regions of high P wave velocities, a larger statistics of such earthquakes is required. On the basis of a direct correlation between P wave velocities and densities, the distributions of density, bulk modulus K, and shear modulus μ in the upper mantle of the Benioff zone of southern Kamchatka are obtained for the first time. Estimated densities vary from 3.6–3.9 g/cm3 in regions of high V P values to 3.0–3.2 g/cm3 for regions of low V P values. The bulk modulus K in the same velocity regions varies from (1.4–1.8) × 1012 to (0.8–1.1) × 1012 dyn/cm2, respectively, and the shear modulus μ varies from (0.8–1.0) × 1012 to (0.5–0.7) × 1012 dyn/cm2, respectively. Examination of the spatial correlation of the source areas of southern Kamchatka M = 7.0–7.4 earthquakes with the distribution of elastic moduli in the Benioff zone failed to reveal any relationship between their magnitudes and the moduli because of the insufficient statistics of the earthquakes used.  相似文献   

12.
The depth changes in the b-value and density of the number of earthquakes in different magnitude bins (M ≥ 1.8, M ≥ 3.0, M ≥ 3.5) are analyzed using highly accurate seismological observations carried out in 1955–1991 at the Garm prognostic area in Tadjikistan. It is found that the observed b-values are controlled by the variations in the proportion between weak and strong earthquakes. Two horizons with different patterns of the b-value are identified in the Earth’s crust above and below a depth of 15–16 km. The b-value in the upper and lower horizons is close to 0.8 and 1.2, respectively. The lower horizon is marked by almost complete absence of relatively strong earthquakes with M ≥ 3.0. The observed changes in the b-value with increasing depth could probably be due to the increase in the strength of crustal material caused by the growth in temperature and confining pressure in the depth interval from 0 to 15 km. The transitional interval between the upper and lower crustal horizons (~13–18 km), which is characterized by a sharp drop in seismic activity, can probably be associated with the zone of the phase transition of crustal material from an elastic brittle state to a plastic state, as suggested by some authors. Typically, the top of this zone hosts the hypocenters of the strongest earthquakes in a given territory. The correlation is established between the crustal areas with low b-values and the locations of the strongest earthquakes in the region. It is suggested that the three-dimensional mapping of the b-value can be helpful for estimating the location, depth, and maximal magnitude of the probable strong earthquakes in seismically active regions and can be used to assess seismic risks.  相似文献   

13.
The paper presents results of analysis of spatiotemporal variations in the rigidity of seismically active rock masses obtained from California Integrated Seismic Network data on first arrivals of P waves from local background (M < 5.0) earthquakes. The main goal was to determine sizes of zones of an anomalous response to the nucleation of strong earthquakes and to reveal specific features of dynamic manifestations of anomalies in crustal fault zones. As a result, conclusions are drawn on the nature of the variations, their implications for the development of strong earthquake sources, and their suitability for earthquake prediction.  相似文献   

14.
2013年4月22日在赤峰—开原断裂中段发生了内蒙古通辽5.3级地震,对我国华北和东北地区的地震形势产生双重影响。基于K值、G-R关系、能量释放比例RE和M-T等指标判定通辽5.3级地震为主震-余震型。根据1900年以来东北地区中强地震时空演化规律分析认为,大兴安岭和松辽盆地5级以上地震具有基于时间相依的空间对跳现象,通辽5.3地震是继2008年6月10日阿荣旗与鄂伦春交界5.2级地震之后,对跳发生于松辽盆地东南边缘的一次中强地震;对比东北地区以往震例分析认为,通辽5.3级地震既具有符合历史统计规律的普遍性,又具有不同于历史统计规律的特殊性。根据2011年3月11日日本东海岸9.0级强震前后东北地区中等以上地震的时空演化特征分析认为,海拉尔盆地及大兴安岭过渡带、环渤海地区至开鲁盆地的"菱形"区域是日本9.0级地震之后我国东部地区响应最为强烈的地区。由于同时受到日本9.0级地震和鄂霍次克海8.2级深震前所未有的双重影响,2013年东北地区的松辽盆地史无前例的发生了8次5级以上中强地震,未来东北地区很可能将重启新的地震活动格局。  相似文献   

15.
In this paper, we calculated the seismic pattern of instrumental recorded small and moderate earthquakes near the epicenter of the 1303 Hongtong M=8 earthquake, Shanxi Province. According to the spatial distribution of small and moderate earthquakes, 6 seismic dense zones are delineated. Temporal distribution of M L≥2 earthquakes since 1970 in each seismic dense zone has been analyzed. Based on temporal distribution characteristics and historical earthquake activity, three types of seismicities are proposed. The relationship between seismic types and crustal medium is analyzed. The mechanism of three types is discussed. Finity of strong earthquake recurrence is proposed. Seismic hazard in mid-long term and diversity of earthquake disaster in Shanxi seismic belt are discussed.  相似文献   

16.
IntroductionEarthquakelocationisoneoftheoldestinverseproblemsinseismology.Preciseearthquakelocationisthebasisoftheseismicresearch.Theprecisionoftheearthquakelocationdependsonmanyfactors,suchasthequalityofthestationnetwork,theprecisionoftheseismicwavearrivaltimemeasured,andtheknowledgeaboutthecrustalvelocitystructureandsoon.AccordingtotheresearchmadebyZhao(1983),thehorizontallocationerroroftheeanhquakelocatedbythetraditionalabsolutemethodinthecentralareaofNorthChinaisabouttZkin,intheedgeregio…  相似文献   

17.
18.
Results are reported from the ongoing 2007–2008 work using the method of long-term earthquake prediction for the Kuril-Kamchatka arc based on the patterns of seismic gaps and the seismic cycle. This method was successful in predicting the M S = 8.2 Simushir I. (Middle Kuril Is.) earthquake occurring in the Simushir I. area on November 15, 2006. An M S = 8.1 earthquake occurred in the same area on January 13, 2007. We consider the evolution of the seismic process and determine the common rupture region of the two earthquakes. The sequence of M ≥ 6.0 aftershocks and forecasts for these are given. We provide a long-term forecast for the earthquake-generating zone of the Kuril-Kamchatka arc for the next five years, April 2008 to March 2013. Explanations are given for the method of calculation and prediction. The probable locations of future M ≥ 7.7 earthquakes are specified. For all segments of the earthquake-generating zone we predict the expected phases of the seismic cycle, the rate of low-magnitude seismicity (A10), the magnitudes of moderate-sized earthquakes to be expected, with probabilities of 0.8, 0.5, and 0.15, their maximum possible magnitudes, and the probabilities of occurrence of great (M ≥ 7.7) earthquakes. The results of these forecasts are used to enhance seismic safety.  相似文献   

19.
2019年甘肃张掖5.0级、夏河5.7级地震前中国大陆均有明显的“地磁低点位移”现象出现,2次地震震中均位于低点位移线出现明显转折的区域。通过对2次低点位移异常日中国大陆地磁台站低点时间进行梯度法分析,研究了2次中强地震震中位置与低点时间高梯度带分布间的关系。研究结果表明:①在2次低点位移异常日都同步出现了地磁垂直分量低点时间高梯度带分布;②2次中强地震震中位置均位于低点位移线出现明显转折处和低点时间高梯度带1.0 h/(°)等值线附近;③利用低点时间梯度法对低点位移异常进行分析有利于改进原有异常识别方法,较少虚报率。  相似文献   

20.
Maximum earthquake size varies considerably amongst the subduction zones. This has been interpreted as a variation in the seismic coupling, which is presumably related to the mechanical conditions of the fault zone. The rupture process of a great earthquake indicates the distribution of strong (asperities) and weak regions of the fault. The rupture process of three great earthquakes (1963 Kurile Islands, MW = 8.5; 1965 Rat Islands, MW = 8.7; 1964 Alaska, MW = 9.2) are studied by using WWSSN stations in the core shadow zone. Diffraction around the core attenuates the P-wave amplitudes such that on-scale long-period P-waves are recorded. There are striking differences between the seismograms of the great earthquakes; the Alaskan earthquake has the largest amplitude and a very long-period nature, while the Kurile Islands earthquake appears to be a sequence of magnitude 7.5 events.The source time functions are deconvolved from the observed records. The Kurile Islands rupture process is characterized by the breaking of asperities with a length scale of 40–60 km, and for the Alaskan earthquake the dominant length scale in the epicentral region is 140–200 km. The variation of length scale and MW suggests that larger asperities cause larger earthquakes. The source time function of the 1979 Colombia earthquake (MW = 8.3) is also deconvolved. This earthquake is characterized by a single asperity of length scale 100–120 km, which is consistent with the above pattern, as the Colombia subduction zone was previously ruptured by a great (MW = 8.8) earthquake in 1906.The main result is that maximum earthquake size is related to the asperity distribution on the fault. The subduction zones with the largest earthquakes have very large asperities (e.g. the Alaskan earthquake), while the zones with the smaller great earthquakes (e.g. Kurile Islands) have smaller scattered asperities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号