首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《自然地理学》2013,34(6):492-510
Coarse woody debris (CWD) is an important component of headwater streams, however, few studies have investigated the geomorphic effects of CWD in the southern Appalachians. In the Great Smoky Mountains, debris slides supply large volumes of CWD and sediment to low-order streams. This study investigates the effect of CWD on bankfull channel dimensions and in-channel sediment storage along second-order streams. Comparisons are made between streams that have experienced recent debris slides and those that have not. CWD channel obstructions are larger but less frequent along debris-slide-affected streams. Dendrochronological evidence indicates that CWD can remain in channels for over 100 yr. Relatively short residence times of CWD along debris-slide-affected streams suggest that logs are frequently flushed through these streams. CWD causes channel widening along all study streams, but the volume of sediment stored in the channel behind CWD obstructions is up to four times greater than the volume of sediment represented by bank erosion associated with CWD. Two large log jams formed by debris slides at tributary junctions stored approximately 4000 m3 of sediment. Sediment stored by CWD was finer than mean bed particle size, and thus represents a significant sediment source when CWD obstructions are breached.  相似文献   

2.
In-stream macrophytes are typically abundant in nutrient-rich chalk streams during the spring and summer months and modify the in-stream environment by altering river flows and trapping sediments. We present results from an inter-disciplinary study of two river reaches in the River Frome catchment, Dorset (UK). The investigation focused on how Ranunculus (water crowfoot), the dominant submerged macrophyte in the study reaches, modified patterns of flow and sediment deposition. Measurements were taken on a monthly basis throughout 2003 to determine seasonal patterns in macrophyte cover, associated changes in the distributions of flow velocities and the character and amount of accumulated fine sediment within stands of Ranunculus.Maximum in-stream cover of macrophytes exceeded 70% at both sites. Flow velocities were less than 0.1 m s− 1 within the stands of Ranunculus and accelerated to 0.8 m s− 1 outside the stands. During the early stages of the growth of Ranunculus, fine sediment mostly accumulated within the upstream section of the plant but the area of fine sediment accumulation extended into the downstream trailing section of the plant later in the growing season. The fine sediment accumulations were dominated by sand (63–1000 μm) with silts and clays (0.37–63 μm) comprising < 10% by volume. The content of organic matter in the accumulated sediments varied within stands, between reaches and through the growing season with values ranging between 9 and 105 mg g− 1 dry weight. At the reach scale the two sites exhibited different growth forms of Ranunculus which created distinctive patterns of flow and fine sediment deposition.  相似文献   

3.
Paleohydrology studies at Mathews Pond and Whitehead Lake in northern Maine revealed synchronous changes in lake levels from about 12,000 14C yrs BP to the present. We analyzed gross sediment structure, organic and carbonate content, mineral grain size, and macrofossils of six cores from each of the two lakes, and obtained 72 radiocarbon dates. Interpretation of this paleo-environmental data suggests that the late-glacial and Younger Dryas climate was dry, and lake levels were low. Early Holocene lake levels were considerably higher but declined for an interval from about 8000 to 7200 14C yrs BP. Sediment of both lakes contains evidence of a dry period at ∼7400 14C yrs BP (8200 cal yr). Lake levels of both sites declined abruptly about 4800 14C yrs BP and remained low until 3000 14C yrs BP. Modern lake levels were achieved only within the past 600 years. The west-to-east, time-transgressive nature of lake-level changes from several sites across northeastern North America suggests periodic changes in atmospheric circulation patterns as a driving force behind observed moisture balance changes. Electronic supplementary material to this article is available at and accessible for authorized users.  相似文献   

4.
Small lakes and wetlands from high elevation within the Sierra Nevada Range (southern Spain) preserve a complete post-glacial Holocene record. Isotopic, TOC and C/N analyses, carried out on a sediment core, show various stages in the evolution of the Borreguiles de la Virgen, which today constitute a small bog at about 2,950?m above sea level. Glacial erosion generated a cirque depression, which became a small lake during the first phase of infilling (from?8,200 to 5,100?cal?yr BP), as suggested by sedimentary evidence, including an atomic C/N ratio generally below 20, low TOC values and the highest ??13C and ??15N values of the record. These results imply significant algal productivity, which is confirmed by the microscopic algal remains. Drier conditions became established progressively in this area from?5,100 to 3,700?cal?yr BP. Subsequently, the lake evolved into a bog as shown by geochemical evidence (C/N ratios above 20, high TOC content and low ??13C values). Unstable conditions prevailed from?3,600 to 700?cal?yr BP; an extremely low sedimentation rate and scarcity of data from this period do not allow us to make a coherent interpretation. Fluctuating conditions were recorded during the last?~700?cal?yr BP, with wetter conditions prevailing during the first part of the interval (with C/N rate below 20) up to 350?years ago. In general, a gradual trend toward more arid conditions occurred since?~6,900?cal?yr BP, with a further increase in aridity since?~5,100?cal?yr BP. This evidence is consistent with other contemporaneous peri-Mediterranean records.  相似文献   

5.
Holocene Lake Evolution in the Elmali Basin,Southwest Turkey   总被引:1,自引:1,他引:0  
《自然地理学》2013,34(3):234-253
The spatial coverage of paleoecological research from southwestern Turkey is expanded by reporting on a ca. 12,690 14C yr BP (14,935 cal yr BP) proxy record recovered from the Elmali basin. Four AMS radiocarbon age determinations, the litho-stratigraphic analysis of a lake bed core, and the analysis of subsurface sediment samples from 15 shallow auger holes across the basin document sedimentation patterns during the Holocene. Based on the widespread occurrence of Chara gyrogonite, and several species of ostracoda and gastropoda, the Elmali basin was dominated by lacustrine and palustrine environments but was continually influenced by alluvial fan sedimentation. Contrasting stratigraphy in the Kara Göl and Avlan Gölü sub-basins is a result of basin morphology, and possibly hydrologic control by karst features, and sub-basin isolation due to alluvial fan development. The cyclical deposition of marl/lime mud, gyttja, and peat in the Kara Göl core is indicative of periodic fluctuations in water level across a broad shallow basin, whereas the continuous clay record observed at Avlan Gölü implies deep-water sedimentation within a plugged former karst collapse feature. Calcareous clay deposited between 14,935 and 11,180 cal yr BP signals the growth and expansion of paleo Lake Elmali, which at its peak during the late Pleistocene, may have inundated over half of the of the 180 km2 Elmali basin.  相似文献   

6.
Tectonically active coastal regions of the world recently have been suggested to supply the bulk of sediment from land to the oceans. Seabed sampling on the continental shelf and in coastal embayments of the north-east Gulf of Alaska (Alsek River to Prince William Sound) was performed to examine the temporal and spatial variability of sediment accumulation in a mountainous coastal setting. Cores of varying lengths (30–300 cm) were collected at 84 stations to provide information on sedimentary processes using radiochemical (210Pb and 137Cs) techniques. Four types of 210Pb activity profiles were observed, dominantly reflecting steady-state sediment accumulation. However, nonsteady-state profiles also were measured, resulting in part from episodic deposition near glacier-fed rivers and on the Copper River Delta. Sediment accumulation rates in the eastern half of the study area are highest at midshelf depths (≈100 m) (≥10 mm yr?1) and near rivers draining the Bering Glacier (≈20 mm yr?1). On the Copper River Delta, sediment accumulation rates are highest for the delta front (> 20 mm yr?1) and decrease westward along the sediment dispersal route. Total annual sediment accumulation is 90–140×106 tons yr?1 on the shelf in the study area. Annual sediment accumulation for the total marine environment in the study area (including Icy and Yakutat Bays) exceeds 250×106 tons yr?1, potentially making this region the largest sink for sediment in North America. Spatial patterns in sediment accumulation on the shelf are similar between centennial and Holocene time-scales, reflecting the dominance of the Copper River and Bering and Malaspina glaciers as sediment sources. Temporal variability in accumulation rates between centennial and Holocene time-scales exists for portions of the study area near fiords and demonstrates the considerable changes that occur in sediment supply during glacial advances and retreats.  相似文献   

7.
This study attempts to quantify the amount of fine-grained (ca. < 150 μm) sediment stored on the floodplains and on the channel bed of the non-tidal sections of the main channels in the catchment of the River Ouse (3315 km2) and of one of its tributaries, the River Waarfe (818 km2), in Yorkshire, UK. Caesium-137 analyses of floodplain sediment cores were used to quantify the amount of Iloodplain deposition as a result of overbank flooding during the last ca. 40 years. A combination of bulk and sectioned cores were collected along transects perpendicular to the channel at 26 sites throughout the study basins. In general, rates of overbank sedimentation decrease with distance from the channel. The average values for individual transects range between 0.010 and 0.554 g cm−2 year−1. Floodplain storage along the main channels of the Ouse and Wharfe basins accounts for 60645 and 10325 t year−1, respectively, and represents a net loss from the system. The amount of fine-grained sediment stored on the channel bed was estimated by a survey undertaken in August 1996, during which the fine material deposited on the bed was resuspended and its mass estimated at 16 locations. The average values for the individual locations range between 0.017 and 0.924 g cm−2 and tend to increase downstream. The total channel bed storage at the time of sampling in 1996 was estimated to be 16076 and 1866 t for the Ouse and Wharfe basins, respectively. It is assumed that channel bed storage is seasonal and that no net loss to the system occurs at the annual timescale. Floodplain storage for the Ouse and Wharfe basins represents 39 and 49%, and channel bed storage equals 10 and 9%, respectively, of the annual suspended sediment load (1995–1996) delivered to the channel system. These results have important implications for the routing of fine-grained sediment and sediment-associated contaminants in drainage basins, and for the interpretation of downstream sediment yields in terms of upstream sediment mobilisation.  相似文献   

8.
Easily discernible sediment varves (annual laminations) may be formed in temperate zone lakes, and reflect seasonal changes in the composition of the accumulating material derived from the lake and its catchment (minerogenic and organic material). The appearance of varves may also be influenced by chemical processes. We assessed the role of iron (Fe) and sulfur (S) in the appearance of varves in sediments from Lake Nylandssjön in northern Sweden. We surveyed Fe in the lake water and established whether there is internal transport of Fe within the sediment. We used a unique collection of seven stored freeze cores of varved sediment from the lake, collected from 1979 to 2004. This suite of cores made it possible to follow long-term changes in Fe and S in the sediment caused by processes that occur in the lake bottom when the sediment is ageing. We compared Fe and S concentrations using X-ray fluorescence spectroscopy (XRF) in specific years in the different cores. No diagenetic front was found in the sediment and the data do not suggest that there is substantial vertical transport of Fe and S in the sediment. We also modeled Fe and S based on thermodynamic, limnological, and sediment data from the lake. The model was limited to the five components H+, e?, Fe3+, SO4 2?, H2CO3 and included the formation of solid phases such as Fe(OH)3 (amorphous), FeOOH (aged, microcrystalline), FeS and FeCO3. Modeling showed that there are pe (redox) ranges within which either FeS or Fe(OH)3/FeOOH is the only solid phase present and there are pe ranges within which the two solid phases co-exist, which supports the hypothesis that blackish and grey-brownish layers that occur in the varves were formed at the time of deposition. This creates new possibilities for deciphering high-temporal-resolution environmental information from varves.  相似文献   

9.
Fossil Trichoptera (caddisfly) remains have been identified and quantitatively recorded in the late-glacial and early-Holocene sediments from Kråkenes Lake, western Norway. The sediment sequence was deposited between 12,300 and 8850 14C BP, covering the Allerød, Younger Dryas, and early-Holocene periods. The first Trichoptera were recorded at 12,000 14C BP, and during the Allerod a diverse assemblage of Limnephilidae taxa developed in the lake. By about 11,400 14C BP the relatively thermophilous Polycentropus flavomaculatus and Limnephilus rhombicus were present, suggesting that the summer water temperature was at least 17 °C. This temperature fell by 5-8 °C at the start of the Younger Dryas, and the thermophilous taxa were replaced within 20-40 14C yrs by Apatania spp., including the arctic-alpine A. zonella, suggesting a maximum summer water temperature of 10-12 °C. The Trichoptera assemblage was impoverished in numbers and in diversity over the next 200 yrs as the severe conditions of the Younger Dryas developed. As soon as temperatures rose and glacial meltwater and silt input ended about 700 14C yrs later, the resident Apatania assemblage expanded immediately, within 10 yrs. About 130 yrs later, thermophilous taxa replaced Apatania, and a much more diverse assemblage than in the Allerod occupied the varied habitats made available by the development of the Holocene lake ecosystem. The 130 yr delay may have been caused by a gradual temperature increase crossing a critical threshold, or by the time taken for thermophilous taxa to migrate from their Younger Dryas refugia.  相似文献   

10.
An 8 m core from the central plain of the Petit Lac d'Annecy, France, two floodplain cores, river bedload sediments and several hundred soil samples from the catchment have been studied using magnetic techniques. The soils, mainly developed on limestones and local glacial tills, show widespread magnetic enhancement with higher ferrimagnetic concentrations and contents of SP grains than found in the lake sediments. Some soils show significant concentrations of canted antiferromagnetic minerals (mainly haematite). Using magnetic quotient parameters the surface soils are classified into four mineralogical types. The lake and floodplain sediment properties over the past 6000 yrs can largely be explained by the erosion and deposition of these sources, with a smaller superimposed biogenic (magnetosomes) signal. Derived sediment-source linkages allow the construction of several hypotheses about geomorphological changes in the catchment system: (i) the long-term erosion of high altitude unweathered substrates has gradually increased towards the present day; (ii) the erosion of high altitude soils has increased within the last 1000 yrs, possibly during the period of the 'Little Ice Age'; (iii) shifts towards an increased erosion of surface lowland soil occurred ~2000 and 1000 yrs ago and may be linked to an accelerated accretion of floodplain overbank deposits; (iv) there has been a significant storage of surface soil within floodplains, which leads to an underestimation of the importance of soil erosion in the lake sediment records; (v) the sediment transported by high magnitude, low frequency flood events has shifted in source from high altitude soils before ~1000 cal. yr BP to lowland and mid-altitude free draining soils after ~1000 cal. yr BP.  相似文献   

11.
A 341 cm long sediment sequence was recovered from the unofficially named Raffles Sø on Raffles Ø, outer Scoresby Sund region, East Greenland. The sediment sequence consists in the upper part (0–230 cm) of a stratified gyttja enriched in organic carbon and biogenic silica whereas the lower core part (235–341 cm) is composed of terrigenous, consolidated glacio-limnic sediments. 14C-AMS measurements indicate that the sediment sequence represents the entire Holocene lake history from 10,030 calibrated radiocarbon years.The geochemical parameters (opal, total organic carbon (TOC), total nitrogen (TN)) and the total diatom concentration show similar developments during the Holocene, and reflect changes in biological production and nutrient input into the lake. These records clearly reveal a broad Holocene TOC-opal-maximum interval between 5200 and 1800 cal. yrs BP.The diatom flora consisted of 66 taxa representing 20 genera but only seven taxa were abundant and, sometimes, these were monospecifically dominant during the Holocene. In the sediment core from Raffles Sø four successive stratigraphical zones can be distinguished. Accumulation of diatom valves began at 9900 cal. yrs BP with a Stephanodiscus minutulus (Kütz.) Cleve and Möller dominated assemblage (stratigraphic zone 1) followed by a diatom flora dominated by Cyclotella pseudostelligera Hustedt and, less frequently, by Diatoma tenuis Agardh (9400 until 5900 cal. yrs BP, zone 2). Cyclotella sp. A, a taxon which belongs to the Cyclotella rossii-comensis-tripartita-complex, was the dominant floral element between 5200 and 1800 cal. yrs BP (zone 3). From 1800 cal. yrs BP, the periphytic taxa Fragilaria capucina var. gracilis (Østr.) Hustedt and F. capucina var. rumpens (Kütz.) Lange-Bertalot attained highest relative abundances, also almost monospecifically (zone 4).The distribution and composition of the diatom assemblages in the sediment record from Raffles Sø probably reflect past variations in the extent of the lake-ice cover during the growing season. More or less ice-free conditions during summer may have prevailed during the early Holocene until ca. 1800 cal. yrs BP, which allowed growth of planktonic diatoms (Cyclotella taxa) in the pelagic lake region. From 1800 cal. yrs BP, colder conditions lead to a perennial lake-ice cover with a small ice-free moat in summer which favored the growth of periphytic, littoral species (Fragilaria capucina varieties).  相似文献   

12.
210Pb and 137Cs dating methods in lakes: A retrospective study   总被引:1,自引:0,他引:1  
210Pb has been used for more than two decades to provide the geochronology of annually deposited sediments and to construct pollution histories. Evidence from some lakes suggests that this radionuclide may be adequately mobile to compromise dating reliability. This study provides one test of that possibility by comparing recent measurements of 210Pb and trace metals to ones carried out more than 20 yrs in the past. 137Cs dating is used to confirm sediment accumulation rates in the recent cores. In the three Connecticut, USA, lakes studied, sediment accumulation rates changed abruptly to higher values between 40-50 yrs ago (increasing by factors of 2.2, 2.9, and 3.0). In all three lakes, rates calculated from 210Pb distributions both above and below this horizon agreed, within measurement uncertainty, in recent and older cores. Furthermore, when the older data were corrected for 20 yrs of burial, the changes in slope in 210Pb distributions occurred at the same depth in each pair of cores. The depth of sharp peaks in concentrations of trace metals also matched. In general, this evidence supports the idea that sediments in these lakes have simply been buried, without significant diagenetic remobilization of 210Pb and trace metals . Nevertheless, some important differences were also observed. For two of the three lakes, there was a significant difference in average sediment accumulation rate during the past 33 yrs as calculated from 137Cs and 210Pb in the recent cores. Most potential causes for this difference can be ruled out, and it appears that one of the two nuclides is remobilized compared to the other. There were also significant differences in the total inventories of both 210Pb and trace metals (both up to 2 ×) between recent and older cores in some cases. This may be due to dissimilar sediment focusing, since it is not known for certain whether the new cores were collected at exactly the same sites as in the past.  相似文献   

13.
The Kangerlussuaq area of southwest Greenland is a lake-rich landscape that covers a climate gradient: a more maritime, cooler and wetter coastal zone contrasts with a dry, continental interior. Radiocarbon-dated sediment sequences (covering ~11,200?C8,300?cal?year) from paired lakes at the coast and the head of the fjord were analysed for lithostratigraphic variables (organic-matter content, bulk density, Ti, Ca). Minerogenic and carbon accumulation rates from the four lakes were compared to determine catchment and lake response to Holocene climatic variability. Catchment erosion at the coast was dominated by cryonival processes, with considerable sediment production due to the limited vegetation cover and exposed rock faces. Input of minerogenic sediment at one site (AT4) was high (>1?gDW?cm?2?year?1) during the period 5,800?C4,000?cal?year BP, perhaps reflecting intensification of cryogenic processes on northeast-facing slopes and rapid delivery to the lake. This period of erosional activity was not observed at the nearby, higher elevation site (AT1) due to the lower catchment relief; instead, there was an abrupt decline in carbon and minerogenic accumulation rates at ~5,800?cal?year BP. Sediment accumulation rates at the inland sites were much lower (<0.005?gDW?cm?2?year?1) reflecting greater catchment stability (more extensive vegetation cover), lower relief and substantially lower precipitation, but synchronous increases in mineral accumulation rates from ~1,200 to 1,000?cal?year BP may reflect wind erosion associated with regional cooling and local aridity. Carbon-accumulation-rate profiles were similar at the two inland sites, with higher-than-average accumulation (~6?C8?g?C?m?2?year?1) during the early Holocene and a subsequent decline after ~6,000?cal?year BP. At the inland lakes, both mineral and carbon accumulation rates exhibited a stronger link to climate, driven by trends in effective precipitation and regional aeolian activity. Catchment differences (relief, altitude) lead to more individualistic records in both erosion history and lake productivity at the coast.  相似文献   

14.
The daily water balance for the drainage basin of Koryto Glacier, Kamchatka Peninsula, Russia, was calculated during the period from August to September 2000. The result shows that 14×106 m3 of meltwater and 2×106 m3 of rainwater entered the basin, while 26×106 m3 of water drained from the basin through proglacial streams. Thus, about ?9×106 m3 of water storage reduction occurred in the basin. Vertical displacements of the glacier surface showed that the volume change due to contraction of subglacial cavities was nearly 20% of the total storage change. The remaining fraction of water storage during the period is thought to be stored in englacial and supraglacial locations. The estimate of water balance components in the early ablation season in 2000 indicates that meltwater was already stored within the glacier before the spring, even during the previous year, and that the stored water drained through the ablation season.  相似文献   

15.
The climatic variation of the Pleistocene acted on karst terrains to change the conditions of cave development. These changes were the result of three major effects: Ice Contact Effects, Ice Proximity Effects and Global Effects.

Ice Contact Effects involve ice directly, producing glacial quarrying, sediment redistribution, water budget alteration, isostatic rebound, temperature controlled weathering, geochemistry changes, and hydraulic conditions.

Ice Proximity Effects work at a distance from glacial ice, and include periglacial conditions, aggradation by outwash, loess deposition and disruption of master streams.

Global Effects work over all planet areas and involve custatic sea level change and variation in precipitation.  相似文献   

16.
Predicting fine sediment dynamics along a pool-riffle mountain channel   总被引:1,自引:0,他引:1  
Fine sediment dynamics in mountain rivers are of concern because of implications for aquatic habitat, channel stability, and downstream sediment yields. Many mountain river systems have episodic fine sediment transport because of infrequent, point-source sediment inputs from landslides; basin instability triggered by land uses such as logging; or infrequent mobilization of the coarse surface layer in channels. Dam removal, which is now more likely along mountain rivers, may also provide a substantial fine sediment input to downstream channel reaches.Fine sediment storage in the interstices of spawning gravels and within pools along mountain rivers is of particular interest because of impacts to aquatic organisms. In this study we focus on sediment dynamics within pools of the North Fork Poudre River in Colorado as an example of the processes controlling fine sediment deposition, storage, and transport within laterally constricted pools. The 1996 release of 7000 m3 of silt-to gravel-sized sediment from a reservoir on the North Fork provided an opportunity to develop a field data set of fine sediment dynamics and to test the predictions of three different one- or two-dimensional sediment transport and hydraulic models against the field observations.The models were calibrated against quantitative measurements of pool scour and fill. One-dimensional HEC-6 results indicate that robust simulations yield the greatest agreement between predicted and measured pool bed elevation change. Model calibration on two pools and validation on one pool indicate that at least 58% of observed bed changes after the sediment release were predicted by HEC-6. Modeling accuracy using quasi-two-dimensional GSTARS 2.0 was considerably more variable, and no pool-wide trends were obtained. The two-dimensional model RMA2 substantially improved the representation of eddy pool hydraulics within a compound pool of the North Fork. Results from the hydraulic modeling, coupled with bed load and total load computations, delineate areas of scour and deposition which are consistent with observations in the field.A conceptual model of sediment delivery and storage for laterally confined pools suggests that persistent deposition of fine sediment within eddies distal from the sediment source may result from sediment releases. The original loss of channel capacity facilitated additional deposition within eddies as sediment within upstream proximal pools became mobilized. At high discharges, the development of a strong shear zone prevents degradation of sediment deposits within the eddy. Central portions of these proximal pools may clear according to existing models, whereas deposition within recirculating zones may be long-term. Water managers could use these models to estimate minimum pool volume for overwinter habitat and residence time of pool sediment.  相似文献   

17.
Fire can alter sediment sources and transport rates in river basins, changing landforms and aquatic habitats and degrading downstream water quality. Variability in the response between environments, between fires, and with time since fire makes predicting the catchment-scale effect of individual fires difficult. This study applies the fallout radionuclides 137Cs and 210Pbxs to trace the sources and transport of fine sediment through a river network following a wildfire of moderate to extreme severity in the 629-km2 eucalypt-forested Nattai River water-supply catchment near Sydney, Australia. The tracer analysis showed that post-fire erosion caused a switch in fine (< 10 µm) sediment sources from 80% subsoil derived from gully and river bank erosion to 86% topsoil derived from hillslope surface erosion. The fine sediment phosphorus content increased 4–10 fold over pre-fire levels. Annual post-fire sediment yields estimated from suspended solids rating curves were 109–250 times higher than they would have been without fire. A large additional amount of sediment remained stored within the river network for at least four years, particularly in lower-gradient reaches. Analysis of a sediment core showed that surface erosion following a previous fire had supplied at least 29% of total catchment sediment yield over the past 36 years. It is concluded that wildfire can alter catchment sediment budgets in two ways. Firstly, a spatially-diffuse pulse of elevated erosion is associated with moderate or intense rainfall events in post-fire years. Secondly, pulses of elevated catchment sediment yield are driven by the timing and river sediment transport capacity of runoff events. Severe post-fire erosion and high interannual hydrologic variability can result in large sediment stores persisting within the river network for many years. Fallout radionuclide tracers are shown to be useful in quantifying fine sediment sources and transport dynamics following wildfire, and the contribution of wildfire to catchment sediment yield.  相似文献   

18.
210Pb geochronologies should be validated with independent tracers such as 137Cs. In the cases with constant 210Pb activity in the topmost sediments, the presence of a distinct 137Cs peak within the 210Pb plateau has been used as a definitive demonstration of acceleration (increase in the sedimentation rate in recent years) versus fast mixing. Nevertheless, some limitations can be identified in the use of semiquantitative arguments, and a global understanding of the whole 137Cs activity profile is then required. Particularly, the incomplete mixing within the top sediment zone (described through the Incomplete Mixing Zone model) can explain quantitatively and simultaneously the 137Cs peak and the flattening in the 210Pb activity profile. This is demonstrated using selected examples from literature data. Thus, measured constant 210Pb activities in the top 6 cm of a sediment core from Lake Zürich. Nevertheless, they found 7Be only in the uppermost layer, the distinct 137Cs maximum at 6 cm depth, and undisturbed varves. The fast mixing seemed then opposed to common sense. The constant rate of supply model shows acceleration and it adequately matches the position of the 1963 137Cs peak. Nevertheless it fails to explain the whole 137Cs profile when handling time series of 137Cs atmospheric deposition. Finally, it is shown how the incomplete mixing of the activity (through the pore water) over a certain mass depth at the top sediment, with a finite value of the mixing coefficient, can quantitatively explain the whole activity versus mass depth profiles of 137Cs and 210Pb, and the presence of 7Be only in the uppermost sediment layer. A further validation of these ideas is presented from other literature data.  相似文献   

19.
In this paper, I develop global karst chemical denudation models using chemical equilibrium equations. Theoretical karst chemical denudation rates are calculated as soil carbon dioxide concentration varies from 10?3.5 atm to 10?1.0 atm, temperature varies from 0°C to 30°C, and annual runoff varies from 500 mm to 3,000 mm. Both open and closed karst solution systems are examined. The Drake (1980) and the Brook‐Folkoff‐Box (1983) soil pCO2 equations are used to develop chemical denudation models for different carbonate rocks (limestone and dolomite), climate (tropical, temperate, and arctic/alpine terrains), and karst solution type (open and closed systems). The major conclusion is that the karst solution type, least known in the past karst studies, is an important factor in controlling chemical denudation rates.  相似文献   

20.
《自然地理学》2013,34(5):343-365
Soils buried by alluvial fan deposits in southwest Nebraska record several intervals of increased sediment yield from small watersheds during the Holocene. These intervals, which began at ca. 9000, 5800, 4000, 3000, and 1000 14C yrs. B.P., were probably caused by some sort of change in regional climatic conditions. Existing evidence of Holocene climate change suggests that increased sediment yields were caused by periodic shifts toward drier climatic conditions, except for the intervals that began at 5800 and 4000 14C yrs. B.P. The cause of increased sediment yields at those times is unclear, although an increased frequency of large intense storms may have been a contributing factor. The record of soil burial exhibits considerable spatial variability both within individual fans and between fans. This is partly due to practical limitations on the number of buried soils that could be sampled on each fan. But it is also due to the inherent spatial variability of depositional processes and to differences in the geomorphic development of the four fans. Thus, researchers who use data from fans to reconstruct sediment-yield histories need to investigate several sites on several fans in order to obtain as complete a record as possible of changing sediment yields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号