首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Hybrid terrains are a convenient approach for the representation of digital terrain models, integrating heterogeneous data from different sources. In this article, we present a general, efficient scheme for achieving interactive level-of-detail rendering of hybrid terrain models, without the need for a costly preprocessing or resampling of the original data. The presented method works with hybrid digital terrains combining regular grid data and local high-resolution triangulated irregular networks. Since grid and triangulated irregular network data may belong to different datasets, a straightforward combination of both geometries would lead to meshes with holes and overlapping triangles. Our method generates a single multiresolution model integrating the different parts in a coherent way, by performing an adaptive tessellation of the region between their boundaries. Hence, our solution is one of the few existing approaches for integrating different multiresolution algorithms within the same terrain model, achieving a simple interactive rendering of complex hybrid terrains.  相似文献   

2.
Multi‐resolution terrain models are an efficient approach to improve the speed of three‐dimensional (3D) visualizations, especially for terrain visualization in Geographical Information Systems (GIS). As a further development to existing algorithms and models, a new model is proposed for the construction of multi‐resolution terrain models in a 3D GIS. The new model represents multi‐resolution terrains using two major methods for terrain representation: Triangulated Irregular Network (TIN) and regular grid (Grid). In this paper, first, the concepts and formal definitions of the new model are presented. Second, the methodology for constructing multi‐resolution terrain models based on the new model is proposed. Third, the error of multi‐resolution terrain models is analysed, and a set of rules is proposed to retain the important features (e.g. boundaries of man‐made objects) within the multi‐resolution terrain models. Finally, several experiments are undertaken to test the performance of the new model. The experimental results demonstrate that the new model can be applied to construct multi‐resolution terrain models with good performance in terms of time cost and maintenance of the important features. Furthermore, a comparison with previous algorithms/models shows that the speed of rendering for 3D walking/flying through has been greatly improved by applying the new model.  相似文献   

3.
基于山地灾害动态过程仿真需要的考虑,并针对该动态过程仿真时渲染数据量过大所造成的实时性较差的问题,提出了利用改进的三角形二叉树LOD算法实现地形三维建模与可视化的方法。算法对山地地形数据进行了分层和分块的预处理,用三角形二叉树表示地形网格,并结合视点和局部地形的粗糙程度,动态的载入所需的地形块和释放无用的地形块,使得内存中的地形数据维持在一定范围内。实验结果表明;在对地形渲染不失真的前提下,本方法能够有效地提高地形绘制的效率,可应用到大规模山地地形的三维建模与可视化中去,为整个山地灾害的动态过程仿真奠定了良好的基础。  相似文献   

4.
山区地形开阔度的分布式模型   总被引:1,自引:0,他引:1  
孙娴  林振山  王式功 《中国沙漠》2008,28(2):344-348
 地形开阔度是影响山地辐射平衡及其分量的重要地形因子,是山区散射辐射、地形反射辐射等计算的重要参数。在复杂的地形条件下,地形开阔度的计算很难用数学公式描述。 利用数字高程模型(DEM),全面考虑了坡地自身遮蔽和周围地形相互遮蔽的影响,提出了山区地形开阔度的分布式模型和算法。以1 km×1 km分辨率的DEM数据作为地形的综合反映,计算了起伏地形下中国地形开阔度的空间分布。同时,利用100 m和1 km两个分辨率的DEM数据,从不同DEM分辨率和不同地貌类型两个方面探讨了地形开阔度的空间尺度效应,阐明了区域地形开阔度随地形地貌和空间分辨率的变化规律。所提供的山地开阔度的数据可作为基础地理数据供相关研究应用。  相似文献   

5.
DEM采样间隔对地形描述精度的影响研究   总被引:1,自引:0,他引:1  
数字高程模型(DEM)的精度包括采样点数据精度和地形描述精度两方面,前人对DEM精度的研究多集中在DEM采样点精度,而忽视了地形描述精度。该文提出基于窗口曲面拟合计算拟合曲面系列参数与"实际地形"曲面参数的标准差来衡量地形描述精度的方法,研究发现DEM地形描述精度随采样间隔的增大呈降低趋势;并利用坡度频率曲线和坡度累计频率曲线研究对DEM精度敏感的坡度因子与DEM采样间隔的关系,认为随DEM采样间隔增大,坡度衰减(变缓)的速率加快。  相似文献   

6.
Polygonal vector data are important for representing countries, lakes, residential settlements, and other polygonal features. The proper representation of polygonal vector data is the basis of efficient rendering and picking and quick access and display of the analysis results based on polygons (e.g., 3D overlaying and surface area measurement in mountainous areas) in a virtual globe. However, polygonal vector data are displayed using texture-based or boundary-based approaches in most existing virtual globes. The texture-based approach cannot easily support interactive operations (e.g., picking) and spatial analysis (e.g., adjacency analysis and spatial measurement). The boundary-based approach treats the holes as independent features; however, it is difficult to recognize which boundaries constitute a polygon. Further research is needed on how to better organize the polygons to support efficient rendering, picking, and analysis in a virtual globe. In this article, we propose two methods to drape interior filled 2D polygons onto a multi-resolution 3D terrain. Both proposed methods combine polygon clipping and polygon triangulation. The difference between the two methods is in the way holes are eliminated. Method 1 recursively subdivides a terrain triangle until the child-triangles contain no holes; every resulting clipped polygon, which is then triangulated, contains no holes. Method 2 directly clips a polygon against a terrain triangle and creates bridge edges to transform the resulting polygons with holes to degenerate polygons that are further triangulated. The experimental results demonstrate that both proposed methods can efficiently process polygons with holes resulting in appropriate numbers of triangles. The processed interior-filled polygons remain close to the terrain surface in a virtual globe. Both proposed methods support real-time rendering of polygonal vector data in a virtual globe.  相似文献   

7.
This paper presents a formal framework for the representation of three-dimensional geospatial data and the definition of common geographic information system (GIS) spatial operations. We use the compact stack-based representation of terrains (SBRT) in order to model geological volumetric data, both at the surface and subsurface levels, thus preventing the large storage requirements of regular voxel models. The main contribution of this paper is fitting the SBRT into the geo-atom theory in a seamless way, providing it with a sound formal geographic foundation. In addition we have defined a set of common spatial operations on this representation using the tools provided by map algebra. More complex geoprocessing operations or geophysical simulations using the SBRT as representation can be implemented as a composition of these fundamental operations. Finally a data model and an implementation extending the coverage concept provided by the Geography Markup Language standard are suggested. Geoscientists and GIS professionals can take advantage of this model to exchange and reuse geoinformation within a well-specified framework.  相似文献   

8.
大规模地形实时绘制算法   总被引:8,自引:3,他引:5  
该文提出一种适合大规模地形实时绘制的简单高效的LOD简化算法。该算法使用一种紧凑有效的规则网格表示方法,优化网格节点的数目,减少可视化过程中的计算量,降低额外内存开销。探讨该算法相关的数据组织、视域裁剪、LOD层次选择、裂缝消除、三角形化等关键问题。实验结果表明,该算法实现简单,内存开销较少,CPU耗费小,对图形卡要求低,能够在普通机器上实现大规模地形的实时漫游。  相似文献   

9.
该文对基于局部误差、曲率和法向量的5个地形简化指标进行分析评价,用离散的高斯合成曲面来模拟真实DEM,以解析得到的高斯曲率作为地形简化指标“真值”,通过对各个指标“保特征性”可信度的分析,获得对这5个指标的整体评价:1)基于法向量的地形简化指标更能反映地形特征;2)各指标的“保特征性”随简化比的减小呈线性上升;3)各指标的优劣排序对地表形状和分辨率不敏感;4)各指标“保特征性”可信度在同一分辨率下较为稳定。并用实例验证结论的正确性。  相似文献   

10.
11.
一种快速地形纹理生成和虚拟漫游方法   总被引:3,自引:1,他引:2  
复杂场景的大范围、高分辨率纹理的快速漫游是虚拟现实、GIS、仿真等领域的关键技术与难点。DEM是对地形地貌的数字描述和模拟,利用DEM数据生成可视化地形,可以更好的描述特定区域的地形特征,通过对特定区域中模型的纹理生成和映射,配合光照、大气等区域内自然场景的建模技术,可生成较为逼真的真实场景。基于OpenGL编程进行DEM地形可视化是实现地形实时漫游的方法之一,利用层次细节模型降低场景复杂度以提高漫游帧速率是该类系统中的常用方法,由于场景复杂度问题,不同的系统在具体算法实现中采用的方法也不尽相同。本文以一个虚拟校园为例,针对DEM数据转换和LOD模型面临的问题,给出了特定场景的LOD模型数据处理思想和纹理快速纹理生成、匹配、映射算法。同时给出虚拟实时漫游中第一人称漫游和飞行漫游的一般方法,讨论了在Windows环境下使用OpenGL进行虚拟漫游的基本步骤。提出了一种新的根据场景特点快速生成和映射纹理途径。结果表明,该方法在保证真实感条件情况下达到了满意的实时漫游效果。  相似文献   

12.
起伏地形下黄河流域太阳直接辐射分布式模拟   总被引:11,自引:0,他引:11  
基于数字高程模型(DEM)数据和气象站观测资料建立了起伏地形下太阳直接辐射分布式计算模型,模型充分考虑了地形因子(坡向、坡度、地形相互遮蔽)对起伏地形下太阳直接辐射空间分布的影响;以1km×1km分辨率的DEM数据作为地形的综合反映,计算了起伏地形下黄河流域1km×1km分辨率太阳直接辐射的空间分布;深入分析了起伏地形下太阳直接辐射受地理、地形因子影响的变化规律。结果表明:受地形起伏和坡向、坡度等局地地形因子的影响,山区年太阳直接辐射量的空间差异比较明显,向阳山坡(偏南坡)的年直接辐射量明显高于背阴山坡(偏北坡)  相似文献   

13.
DEM 点位地形信息量化模型研究   总被引:2,自引:0,他引:2  
董有福  汤国安 《地理研究》2012,31(10):1825-1836
针对DEM 点位, 首先应用微分几何法对其所负载的语法信息量进行测度, 其次根据地形特征点类型及地形结构特征确定其语义信息量, 然后基于信息学理论构建了DEM 点位地形信息综合量化模型。在此基础上, 以黄土丘陵沟壑区作为实验样区, 对DEM 点位地形信息量提取方法及其在地形简化中的初步实例应用进行了探讨和验证。实验结果显示, 所提出的DEM 点位地形信息量化方案可行;基于DEM 地形信息量指数的多尺度DEM 构建方案, 具有机理明确、易于实现的特点, 并通过优先保留地形骨架特征点, 可以有效减少地形失真, 从而满足不同层次的多尺度数字地形建模和表达要求。对DEM 点位地形信息进行有效量化, 为认识DEM 地形信息特征提供了一个新的切入点, 同时为多尺度数字地形建模提供理论依据与方法支持。  相似文献   

14.
Book reviews     
A digital elevation model (DEM), which is used to represent a terrain surface, is normally constructed by applying an interpolation method on given sample elevation points. Interpolation methods can be classified into two classes: linear methods, which have a low time cost and are suitable for terrains where there is little change in elevation, and nonlinear methods, which normally consume comparatively more time and are more suitable for terrains where there are frequent changes in elevation. A hybrid interpolation method, which involves both a linear method and a nonlinear method of interpolation, is proposed in this paper. The proposed method aims to integrate the advantages of both linear and nonlinear interpolation methods for the refinement of regular grid DEM. Here, the bilinear is identified as the linear method, and the bi‐cubic is taken to be the nonlinear interpolation method. The hybrid method is an integration of a linear model and nonlinear interpolation model with a parameter that defines the weights for each of the models. The parameter is dependent on the complexity of the terrain, for which a DEM is to be interpolated. The experimental results in this study demonstrate that the hybrid method is effective for interpolating DEMs for various types of terrain.  相似文献   

15.
山区短波反射辐射的计算模式   总被引:2,自引:0,他引:2  
本文提出计算山区测点可接受到的来自周围山地的短波反射辐射日平均通量密度的通用计算机模式,并以大别山南段赵公岭山区为例进行了试验,结果表明,该式通用性强、精度较高。  相似文献   

16.
Slope is one of the crucial terrain variables in spatial analysis and land use planning,especially in the Loess Plateau area of China which is suffering from serious soil erosion. DEM based slope extracting method has been widely accepted and applied in practice. However slope accuracy derived from this method usually does not match with its popularity. A quantitative simulation to slope data uncertainty is important not only theoretically but also necessarily to applications. This paper focuses on how resolution and terrain complexity impact on the accuracy of mean slope extracted from DEMs of different resolutions in the Loess Plateau of China. Six typical geomorphologic areas are selected as test areas, representing different terrain types from smooth to rough. Their DEMs are produced from digitizing contours of 1:10,000 scale topographic maps. Field survey results show that 5 m should be the most suitable grid size for representing slope in the Loess Plateau area. Comparative and math-simulation methodology was employed for data processing and analysis. A linear correlativity between mean slope and DEM resolution was found at all test areas,but their regression coefficients related closely with the terrain complexity of the test areas. If taking stream channel density to represent terrain complexity, mean slope error could be regressed against DEM resolution (X) and stream channel density (S) at 8 resolution levels and expressed as (0.0015S2+0.031S-0.0325)X-0.0045S2-0.155S+0.1625, with a R2 value of over 0.98. Practical tests also show an effective result of this model in applications. The new development methodology applied in this study should be helpful to similar researches in spatial data uncertainty investigation.  相似文献   

17.
Hybrid digital terrain models combine terrain data with different topologies and resolutions. Cartographic digital terrain models are typically composed of regular grid data that can be locally refined by adding a Triangulated Irregular Network (TIN) that represents morphologically complex terrain parts. Direct rendering of both datasets to visualize the digital terrain model generates discontinuities, as the meshes are disconnected. The utilization of complete/partial precomputed tessellation solutions solves the problem of quality, but limits the applicability of the representation to models with a fixed relative position between datasets. In this paper, we present a new scheme for hybrid terrain representation that permits the dynamic generation of the adaptive tessellation required to join the grid and TIN models. Our proposal permits the dynamic modification of the relative position between datasets. This increases the representation capabilities for those applications where this property is interesting as, for example, urban and landscape planning applications. The algorithm we propose is based on the identification of convex areas on the TIN and the efficient generation of triangles to join the models based on this convex structure. As a result, high quality models without discontinuities are obtained, increasing the flexibility of previous solutions based on fixed precomputations.  相似文献   

18.
一个计算山地地形参数的计算机模式   总被引:24,自引:0,他引:24  
本文提出了一个虚拟次网格二维差分格式,依此建立了一个计算山地小地形参数(即局地平均坡向、坡度和地形遮蔽角)的通用计算机模式。模式的输入参数为研究地区的拔海高度网格化后的资料、空间格距和网格点数;模式的输出结果为每个格点上的坡向、坡度及沿任一方位上的地形遮蔽角以及一些地形统计值。由此,可较准确、客观地制作出研究山区的坡向、坡度图和地形遮蔽图。经实测验证,模式的计算值与实测值比较吻合。  相似文献   

19.
This article presents an object-based conceptual framework and numerical algorithms for representing and analyzing coastal morphological and volumetric changes based on repeat airborne light detection and ranging (LiDAR) surveys. This method identifies and delineates individual zones of erosion and deposition as discrete objects. The explicit object representation of erosion and deposition zones is consistent with the perception and cognition of human analysts and geomorphologists. The extracted objects provide ontological and epistemological foundation to localize, represent, and interpret erosion and deposition patches for better coastal resource management and erosion control. The discrete objects are much better information carriers than the grid cells in the field-based representation of source data. A set of spatial and volumetric attributes are derived to characterize and quantify location, area, shape, orientation, depth, volume, and other properties of erosion and deposition objects. Compared with the conventional cell-by-cell differencing approaches, our object-based method gives a concise and high-level representation of information and knowledge about coastal morphological dynamics. The derived attributes enable the discrimination of true morphological changes from artifacts caused by data noise and processing errors. Furthermore, the concise object representation of erosion and deposition zones facilitates overlay analysis in conjunction with other GIS data layers for understanding the causes and impacts of morphological and volumetric changes. We have implemented a software tool for our object-based morphological analysis, which will be freely available for the public. An example is used to demonstrate the utility and effectiveness of this new method.  相似文献   

20.
Slope is one of the crucial terrain variables in spatial analysis and land use planning, especially in the Loess Plateau area of China which is suffering from serious soil erosion. DEM based slope extracting method has been widely accepted and applied in practice. However slope accuracy derived from this method usually does not match with its popularity. A quantitative simulation to slope data uncertainty is important not only theoretically but also necessarily to applications. This paper focuses on how resolution and terrain complexity impact on the accuracy of mean slope extracted from DEMs of different resolutions in the Loess Plateau of China. Six typical geomorphologic areas are selected as test areas, representing different terrain types from smooth to rough. Their DEMs are produced from digitizing contours of 1:10,000 scale topographic maps. Field survey results show that 5 m should be the most suitable grid size for representing slope in the Loess Plateau area. Comparative and math-simulation methodology was employed for data processing and analysis. A linear correlativity between mean slope and DEM resolution was found at all test areas, but their regression coefficients related closely with the terrain complexity of the test areas. If taking stream channel density to represent terrain complexity, mean slope error could be regressed against DEM resolution (X) and stream channel density (S) at 8 resolution levels and expressed as(0.0015S2 0.031S-0.0325)X-0.0045S2-0.155S 0.1625, with a R2 value of over 0.98. Practical tests also show an effective result of this model in applications. The new development methodology applied in this study should be helpful to similar researches in spatial data uncertainty investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号