首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
The nearby Mira-like variable L2 Pup is shown to be undergoing an unprecedented dimming episode. The stability of the period rules out intrinsic changes to the star, leaving dust formation along the line of sight as the most likely explanation. Episodic dust obscuration events are fairly common in carbon stars but have not been seen in oxygen-rich stars. We also present a 10-μm spectrum, taken with the Japanese Infrared Telescope in Space satellite, showing strong silicate emission that can be fitted with a detached, thin dust shell, containing silicates and corundum.  相似文献   

4.
We present  0.9–2.5 μm  spectroscopy with   R ∼800  and  1.12–1.22 μm  spectroscopy with   R ∼5800  for the M dwarfs Gl 229A and LHS 102A, and for the L dwarf LHS 102B. We also report IZJHKL ' photometry for both components of the LHS 102 system, and L ' photometry for Gl 229A. The data are combined with previously published spectroscopy and photometry to produce flux distributions for each component of the kinematically old disc M/L dwarf binary system LHS 102 and the kinematically young disc M/T dwarf binary system Gliese 229. The data are analysed using synthetic spectra generated by the latest 'AMES-dusty' and 'AMES-cond' models by Allard & Hauschildt. Although the models are not able to reproduce the overall slope of the infrared flux distribution of the L dwarf, most likely because of the treatment of dust in the photosphere, the data for the M dwarfs and the T dwarf are well matched. We find that the Gl 229 system is metal-poor despite having kinematics of the young disc, and that the LHS 102 system has solar metallicity. The observed luminosities and derived temperatures and gravities are consistent with evolutionary model predictions if the Gl 229 system is very young  (age∼30 Myr)  with masses (A,B) of (0.38,≳0.007) M, and the LHS 102 system is older, aged  1–10 Gyr  with masses (A,B) of (0.19,0.07) M.  相似文献   

5.
The IRAS and 2MASS associations for 206 HAEBE stars are identified in this paper. From the color-color diagrams and spectral index, it is found that the IR excesses for most samples are due to thermal emission from the circumstellar material. It is also found that the IR excesses at IRAS region for few HAEBE stars and the near-IR excesses for some HAEBE stars are likely attributed to free-free emission or free-bound emission from the circumstellar ionized gas. Moreover, the evolution scenario (from embedded HAEBE stars to β Pictoris-like main-sequence stars) from Malfait et al. (1998) has been checked, our result does not support this evolution scenario.This publication makes use of data products from the Two Micron All Sky Survey (2MASS), which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center, founded by the National Aeronautics and Space Administration and the National Science Foundation of the United States.  相似文献   

6.
We have investigated the relation between the orbital period Porb and the spin period Ps of neutron stars in OB/X-ray binaries. By simulating the time-development of the mass loss rate and radius expansion of a 20A⊙ donor star, we have calculated the detailed spin evolution of the neutron star before steady wind accretion occurs (that is, when the break spin period is reached), or when the OB star begins evolving off the main sequence or has filled its Roche lobe. Our results are compatible with the observations of OB/X-ray binaries. We find that in relatively narrow systems with orbital periods less than tens of days, neutron stars with initial magnetic field B0 stronger than about 3×1012 G can reach the break spin period to allow steady wind accretion in the main sequence time, whereas neutron stars with B0 < 3×1012 G and/or in wide systems would still be in one of the pulsar, rapid rotator or propeller phases when the companion evolves off the main sequence or fills its Roche lobe. Our results may  相似文献   

7.
The results of more than 100 h of CCD photometric monitoring of 10 L dwarfs and two T dwarfs are presented. Reasonable evidence is shown for I C band variability in DENIS 0255−4700, DENIS 1705−0516 and 2M 2104−1037. Substantial brightening of the T dwarf binary ε Indi Bab was observed over the course of 3.6 h; it is unlikely that this could have been caused by surface spots. No unequivocal variability could be detected in the R C band.  相似文献   

8.
9.
We discuss the effects of convective overshooting in the pre-main-sequence (PMS) evolution of intermediate-mass stars, by analysing in detail the early evolution towards the main sequence of a  2 M  stellar model. These effects can be extremely important in the end of the PMS, when the abundances in CNO elements approach the equilibrium in the centre. We provide a possible physical explanation on why a moderate amount of overshooting produces, as the star approaches the zero-age main-sequence, an extra loop in the evolutionary tracks on the Hertzsprung–Russell diagram.
An interesting feature is that there is a very well defined amount of overshooting (for a given stellar mass and chemical composition) beyond which a loop is produced. For smaller amounts of overshooting such a loop does not take place and the evolutionary tracks are similar to those found in the literature. The amount of overshooting needed to produce the loop decreases with stellar mass.
We discuss the underlining physical reasons for the behaviour predicted by the evolution models and argue that it provides a crucial observational test for convective overshooting in the core of intermediate-mass stars.  相似文献   

10.
In the first part of this work, the empirical correlation of stellar surface brightness F V with ( I c− K ) broad-band colour is investigated by using a sample of stars cooler than the Sun. A bilinear correlation is found to represent well the brightness of G, K and M giant stars. The change in slope occurs at ( I c− K )∼2.1 or at about the transition from K to M spectral types. The same relationship is also investigated for dwarf stars and found to be distinctly different from that of the giants. The dwarf star correlation differs by an average of −0.4 in ( I c− K ) or by a maximum in F V of ∼−0.1, positioning it below that of the giants, with both trends tending towards convergence for the hotter stars in our sample. The flux distribution derived from the F V −( I c− K ) relationship for the giant stars, together with that derived from an F V −( V − K ) relationship and the blackbody flux distribution, is then utilized to compute synthetic light V and colour ( V − R )c, ( V − I )c and ( V − K ) curves of cool spotted stars. We investigate the effects on the amplitudes of the curves by using these F V –colour relations and by assuming the effective gravity of the spots to be lower than the gravity of the unspotted photosphere. We find that the amplitudes produced by using the F V −( I c− K ) relationship are larger than those produced by the other two brightness correlations, meaning smaller and/or warmer spots.  相似文献   

11.
We build an accurate data base of 5200 HCN and HNC rotation–vibration energy levels, determined from existing laboratory data. 20 000 energy levels in the Harris et al. linelist are assigned approximate quantum numbers. These assignments, lab-determined energy levels and Harris et al. energy levels are incorporated in to a new energy level list. A new linelist is presented, in which frequencies are computed using the lab-determined energy levels where available, and the ab initio energy levels otherwise.
The new linelist is then used to compute new model atmospheres and synthetic spectra for the carbon star WZ Cas. This results in better fit to the spectrum of WZ Cas in which the absorption feature at 3.56 μm is reproduced to a higher degree of accuracy than has previously been possible. We improve the reproduction of HCN absorption features by reducing the abundance of Si to [Si/H]=−0.5 dex, however, the strengths of the Δ v = 2 CS band heads are overpredicted.  相似文献   

12.
13.
The purpose of this paper is to present new full evolutionary calculations for DA white dwarf stars with the major aim of providing a physically sound reference frame for exploring the pulsation properties of the resulting models in future communications. Here, white dwarf evolution is followed in a self-consistent way with the predictions of time-dependent element diffusion and nuclear burning. In addition, full account is taken of the evolutionary stages prior to white dwarf formation. In particular, we follow the evolution of a 3-M model from the zero-age main sequence (the adopted metallicity is   Z =0.02)  , all the way from the stages of hydrogen and helium burning in the core up to the thermally pulsing phase. After experiencing 11 thermal pulses, the model is forced to evolve towards its white dwarf configuration by invoking strong mass loss episodes. Further evolution is followed down to the domain of the ZZ Ceti stars on the white dwarf cooling branch.
Emphasis is placed on the evolution of the chemical abundance distribution caused by diffusion processes and the role played by hydrogen burning during the white dwarf evolution. We find that discontinuities in the abundance distribution at the start of the cooling branch are considerably smoothed out by diffusion processes by the time the ZZ Ceti domain is reached. Nuclear burning during the white dwarf stage does not represent a major source of energy, as expected for a progenitor star of initially high metallicity. We also find that thermal diffusion lessens even further the importance of nuclear burning.
Furthermore, the implications of our evolutionary models for the main quantities relevant for adiabatic pulsation analysis are discussed. Interestingly, the shape of the Ledoux term is markedly smoother compared with previous detailed studies of white dwarfs. This is translated into a different behaviour of the Brunt–Väisälä frequency.  相似文献   

14.
Our knowledge of the presence and the strength of magnetic fields in intermediate‐mass pre‐main‐sequence stars remains very poor. We present new magnetic field measurements in six Herbig Ae/Be stars observed with HARPS in spectropolarimetric mode. We downloaded from the European Southern Observatory (ESO) archive the publically available HARPS spectra for six Herbig Ae/Be stars. Wavelength shifts between right‐ and left‐hand side circularly polarised spectra were interpreted in terms of a longitudinal magnetic field 〈Bz〉, using the moment technique introduced by Mathys. The application of the moment technique to the HARPS spectra allowed us in addition to study the presence of the crossover effect and quadratic magnetic fields. Our search for longitudinal magnetic fields resulted in first detections of weak magnetic fields in the Herbig Ae/Be stars HD 58647 and HD 98922. Further, we confirm the previous tentative detection of a weak magnetic field in HD 104237 by Donati et al. and confirm the previous detection of a magnetic field in the Herbig Ae star HD 190073. Surprisingly, the measured longitudinal magnetic field of HD 190073, 〈Bz〉 = 91 ± 18 G at a significance level of 5σ is not in agreement with the measurement results of Alecian et al. (2013), 〈Bz〉 = –10 ± 20 G, who applied the LSD method to exactly the same data. No crossover effect was detected for any star in the sample. Only for HD 98922 the crossover effect was found tobe close to 3σ with a measured value of –4228 ± 1443 km s–1 G. A quadratic magnetic field of the order of 10 kG was detected in HD 98922, and of ∼3.5 kG in HD 104237. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
We present infrared spectroscopy of the Be/X-ray binary HDE 245770/A0535+26 obtained over the period 1992–1995. The spectra show significant variability, reflecting changes in the circumstellar environment during this time. A reduction in the flux observed in the Paschen series lines between 1993 December and 1994 September correlates with a similar reduction in both the strength of Hα and the optical continuum emission, which can be attributed to a reduction in the emission measure of the disc. A turnover between optically thin and thick emission is seen for both Paschen and Brackett series lines, and allows an estimate of the disc density as ∼1012 cm−3. Echelle spectroscopy reveals strong similarities between the He I 1.008, 2.058 μm, Hα and Paschen series line profiles, suggesting their formation in a similar (and asymmetric) region of the disc. In contrast, the line profile of He I 6678 Å indicates that it is formed at smaller radii than the other transitions.  相似文献   

16.
17.
18.
19.
We have carried out a systematic search for the molecular ion CO+ in a sample of eight protoplanetary and planetary nebulae in order to determine the origin of the unexpectedly strong HCO+ emission previously detected in these sources. An understanding of the HCO+ chemistry may provide direct clues for the physical and chemical evolution of planetary nebulae. We find that the integrated intensity of the CO+ line may be correlated with that of HCO+, suggesting that the reaction of CO+ with molecular hydrogen may be an important formation route for HCO+ in these planetary nebulae.  相似文献   

20.
High-resolution optical spectra of the R Coronae Borealis (RCB) star V854 Centauri in the early stages of a decline show, in addition to the features reported for other RCBs in decline, narrow absorption lines from the C2 Phillips system. The low rotational temperature, T rot=1150 K, of the C2 ground electronic state suggests the cold gas is associated with the developing shroud of carbon dust. These absorption lines were not seen at a fainter magnitude on the rise from minimum light, nor at maximum light. This is the first detection of cold gas around an RCB star.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号