首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Coda wave data from California microearthquakes were studied in order to delineate regional fluctuations of apparent crustal attenuation in the band 1.5 to 24 Hz. Apparent attenuation was estimated using a single back scattering model of coda waves. The coda wave data were restricted to 30 s following the origin time; this insures that crustal effects dominate the results as the backscattered shear waves thought to form the coda would not have had time to penetrate much deeper. Results indicate a strong variation in apparent crustal attenuation at high frequencies between the Franciscan and Salinian regions of central California and the Long Valley area of the Sierra Nevada. Although the codaQ measurements coincide at 1.5 Hz (Q c =100), at 24 Hz there is a factor of four difference between the measurements made in Franciscan (Q c =525) and Long Valley (Q c =2100) with the Salinian midway between (Q c =900). These are extremely large variations compared to measures of seismic velocities of comparable resolution, demonstrating the exceptional sensitivity of the high frequency codaQ measurement to regional geology. In addition, the frequency trend of the results is opposite to that seen in a compilation of codaQ measurements made worldwide by other authors which tend to converge at high and diverge at low frequencies, however, the worldwide results generally were obtained without limiting the coda lengths and probably reflect upper mantle rather than crustal properties. Our results match those expected due to scattering in random media represented by Von Karman autocorrelation functions of orders 1/2 to 1/3. The Von Karman medium of order 1/3 corresponding to the Franciscan codaQ measurement contains greater amounts of high wavenumber fluctuations. This indicates relatively large medium fluctuations with wavelengths on the order of 100 m in the highly deformed crust associated with the Franciscan, however, the influence of scattering on the codaQ measurement is currently a matter of controversy.  相似文献   

2.
The Aegean volcanic arc formed in response to northeasterly subduction of the Mediterranean sea floor beneath the Aegean Sea. The active arc lies over 250 km from the Hellenic Trench in a region which has suffered considerable extension and subsidence since the mid-Tertiary. Suites of samples from the different volcanic centres making up the arc have been studied geochemically in order to assess lateral variations and to constrain the contribution of crustal contamination and sediment subduction in their petrogenesis.Lavas from all the major volcanic centres exhibit typical calc-alkaline major-element characteristics, and show enrichment in light REE and LIL elements but low contents of HFS elements. The enrichment in light REE is greater in the eastern (Nisyros, Kos) and western (Milos, Poros, Methana, Aegina) sectors of the arc (Cen/Ybn=4) than in the central Santorini sector (Cen/Ybn=2). All lavas have significant negative Eu anomalies and many have slight negative Ce anomalies. Less coherence is observed in the abundances and ratios of the other LIL elements, compared with the REE, along the island chain.Whereas the effects of crystal fractionation are evident in the trace-element patterns of lavas from individual islands, and are particularly well marked for Santorini, it is clear that there are consistent differences in trace-element abundances and ratios in the lavas of the various islands which reflect compositional differences in the mantle source and/or in melting conditions. Lavas from the eastern and western sectors have much higher levels of Ba and Sr but relatively lower Th, K and Rb than those from Santorini. Although some geochemical features could be explained through involvement of a component of subducted sediment in the source regions of the volcanoes, other element abundances and ratios indicate that this component must be very small. Detailed consideration of the inter-island geochemical variations suggests a complex make-up of the underlying lithosphere, resulting from a long history of subduction. In the region of Santorini, where crustal stretching is greatest, the underlying asthenosphere may be involved in magma production.  相似文献   

3.
Three major rhyolite systems in the northeastern Davis and adjacent Barrilla Mountains include lava units that bracketed a large pantelleritic ignimbrite (Gomez Tuff) in rapid eruptions spanning 300,000 years. Extensive silicic lavas formed the shields of the Star Mountain Formation (37.2 Ma-K/Ar; 36.84 Ma 39Ar/40Ar), and the Adobe Canyon Formation (37.1 Ma-K/Ar; 36.51-39Ar/40Ar). The Gomez Tuff (36.6 Ma-K/Ar; 36.74-39Ar/40Ar) blanketed a large region around the 18×24 km diameter Buckhorn caldera, within which it ponded, forming sections up to 500 m thick. Gomez eruption was preceded by pantelleritic rhyolite domes (36.87, 36.91 Ma-39Ar/40Ar), some of which blocked movement of Star Mountain lava flows. Following collapse, the Buckhorn caldera was filled by trachyte lava. Adobe Canyon rhyolite lavas then covered much of the region. Star Mountain Formation (~220 km3) is composed of multiple flows ranging from quartz trachyte to mildly peralkalic rhyolite; three major types form a total of at least six major flows in the northeastern Davis Mountains. Adobe Canyon Formation (~125 km3) contains fewer flows, some up to 180 m thick, of chemically homogenous, mildly peralkalic comendite, extending up to 40 km. Gomez Tuff (~220 km3) may represent the largest known pantellerite. It is typically less than 100 m thick in extra-caldera sections, where it shows a pyroclastic base and top, although interiors are commonly rheomorphic, containing flow banding and ramp structures. Most sections contain one cooling unit; two sections contain a smaller, upper cooling unit. Chemically, the tuff is fairly homogeneous, but is more evolved than early pantelleritic domes. Overall, although Davis Mountains silicic units were generated through open system processes, the pantellerites appear to have evolved by processes dominated by extensive fractional crystallization from parental trachytes similar to that erupted in pre- and post-caldera lavas. Comparison with the Pantelleria volcano suggests that the most likely parental magma for the Buckhorn series is transitional basalt, similar to that erupted in minor, younger Basin and Range volcanism after about 24 Ma. Roughly contemporaneous mafic lavas associated with the Buckhorn caldera appear to have assimilated or mixed with crustal melts, and, generally, may not be regarded as mafic precursors of the Buckhorn silicic rocks, They thus form a false Daly Gap as opposed to the true basalt/trachyte Daly gap of Pantelleria. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. This paper constitutes part of a special issue dedicated to Bill Bonnichsen on the petrogenesis and volcanology of anorogenic rhyolites.  相似文献   

4.
High precision trace element data obtained by inductively coupled plasma mass spectrometry and Sr–Nd isotope analyses are presented for mafic volcanic rocks from Gough Island, South Atlantic. The new data reveal negative Ce anomalies, with Ce/Ce? values in Gough lavas extending down to ~ 0.92. Ce is only fractionated from other rare earth elements (REE) due to formation of Ce4+ under oxidizing conditions of near-surface environments while other REE remain trivalent. Ce anomalies in convergent margin magmas have been shown to indicate a contribution of a subducted sediment component. In contrast, Ce anomalies in intra-plate basalts have been attributed to weathering processes, but can be excluded here based on element–element systematics indicating magmatic trends rather than weathering-induced element mobility. Shallow-level contamination by local marine sediments with negative Ce anomaly inherited from seawater can be excluded because Gough lavas with increasingly negative Ce anomalies do not trend towards low Ce/Pb ratios characterizing such sediments. Rather, it is argued that the negative Ce anomalies in Gough Island lavas are consistent with variable amounts of a sediment component in the mantle plume source. Mixtures between estimates of subducting sediment columns with negative Ce anomaly and mantle capable of giving rise to Gough Island magmas without Ce anomalies reproduce the Gough compositional array with the exception of highly fluid-mobile elements. The calculated trace element composition of the deeply recycled sediment in the Gough plume source is depleted in fluid-mobile elements such as Ba and Pb relative to the composition of some present-day subducting sediments. This loss is attributed to the dehydration or flushing of sediment in the subduction factory, consistent with constraints from arc magmas.  相似文献   

5.
The Hasan Dagi volcano is one of the two large Plio-Quaternary volcanoes in Cappadocia (Central Anatolia, Turkey). Three stages of edifice construction have been identified for this volcano: Paleovolcano, Mesovolcano and Neovolcano. Most samples from Hasan Dagi volcano are calc-alkaline and define an almost complete trend from basaltic andesite to rhyolite. However, the more recent (Neovolcano) mafic samples are alkaline basalts. The mineralogical and geochemical characteristics of the oldest lavas (Keçikalesi (13 Ma) and Paleo-Hasan Dagi (7 Ma)) are significantly different from those of the younger lavas (Meso- and Neo-Hasan Dagi (<1 Ma)). Calcic plagioclase and pigeonite are typically observed in these older lavas. The Paleovolcano basalts are depleted in alkalis and display a tholeiitic tendency whereas the differentiated lavas are depleted in Na2O but enriched in K2O compared to younger lavas. There is an evolution through time towards higher TiO2, Fe2O3*, MgO, Na2O and K2O and lower Al2O3 and SiO2 which is reflected in the basalt compositions. All the basalts display multi-element patterns typical of continental margin magmas with a significant enrichment in LILE (K, Rb, Ba and Th) and LREE and strong (Paleovolcano) to moderate (Meso- and Neovolcano) negative Nb, Zr and Ti anomalies. However, the younger basalts are the most enriched in incompatible elements, in agreement with their alkaline affinities and do not systematically display negative HFSE anomalies. REE data suggest an hydrous amphibole-bearing crystallization history for both Meso- and Neovolcano lavas. The distinction between the older and younger lavas is also apparent in trace element ratios such as Nb/Y, Ti/Y and Th/Y. These ratios indicate the role of a subducted component±crustal contamination in the genesis of the Hasan Dagi lavas, particularly for the oldest lavas (Keçikalesi and Paleo-Hasan Dagi). The decreasing influence of this component through time, over the last 6–7 m.y., has been accompanied by an increasing contribution of melt-enriched lithosphere. Although the range of variation of Sr, Nd and Pb isotopic ratios is small (0.70457–0.70515; 0.51262–0.51273; 18.80–18.94; 15.64–15.69; 38.87–39.10), it also reflects the evolution of the magma sources through time. Indeed, the youngest (Neovolcano) and most primitive basalts display significantly lower 87Sr/86Sr than the Paleo- and Mesovolcano basalts, whereas the Mesovolcano basalts display more radiogenic Pb than Paleovolcano samples. Magma mixing processes between initially heterogeneous and/or variably contaminated magmas may account for the genesis of the less differentiated and intermediate lavas (48–57% SiO2). Meso- and Neovolcano differentiated lavas (60–68% SiO2) are either derived from the analyzed basalts or from more primitive and more depleted magmas by fractional crystallization±some crustal contamination (AFC). Furthermore, the highly differentiated samples (72–75% SiO2) are not strongly contaminated. The strong calc-alkaline character of Hasan Dagi lavas, in the absence of contemporaneous subduction, must reflect the heritage of the early subduction of the Afro–Arabian plate under the Eurasian plate. The evolution towards alkaline compositions through time is clearly related to the development of extensional tectonics in Central Anatolia in the Late Miocene.  相似文献   

6.
New K-Ar dating and major- and trace-element analyses from the U ak-Selendi-Emet (USE) area constrain the timing of changes in the nature of volcanism in the Miocene in western Turkey. The data reveal a change from dominantly calc-alkaline and silicic in the Early Miocene to largely alkaline and more mafic volcanism in the Middle Miocene. This probably reflects a decreasing amount of crustal contamination with time, a result of extensional tectonics. High levels of various incompatible elements (including K) in the more mafic members, suggest an enriched subcontinental lithospheric source region for the Middle Miocene USE lavas. Highly variable Nb/Y, Ti/Y and Th/Nb ratios suggest a lithospheric mantle heterogeneously enriched by two processes: (1) enrichment by subduction-related processes producing high Th/Nb but low Nb/Y and Ti/Y; and (2) enrichment by small degree melts of depleted upper mantle producing low Th/Nb but high Nb/Y and Ti/Y. Both of these enrichment processes have variably contributed to Middle Miocene K-rich lavas in the USE area. The mechanism which initiated the melting of the enriched lithosphere is considered to be extension which produced decompression melting. Comparisons with the nearby Kula lavas reveals that by the Pliocene to Quaternary, volcanism, although still enriched in incompatible elements, had become sodic. It seems likely that continued extension up to this time thinned the lithosphere to such an extent that asthenospheric melts were produced which ascended and mixed with previously enriched lithosphere.  相似文献   

7.
This study investigated the crustal attenuation structures of Sg and Lg waves of the northeastern Tibetan Plateau. We collected ML amplitude data recorded at 168 permanent stations between 1985 and 2016 and 11 temporary broadband stations between 2014 and 2016. Detailed Q0 variation maps of Sg and Lg waves were obtained by applying ML amplitude tomography. The average Q0 values of the Sg and Lg wave were 440 and 220, respectively. Relatively high attenuation anomalies of both waves appeared in the central and eastern regions of the Bayan Har Block and the east edge of the Qiangtang Block, which may be related to partial melting, high geotemperature, and strong tectonic processes. High attenuation anomalies were also found in the Qilian Orogenic Belt and Hetao Graben, which may be related to their active tectonic behavior and densely distributed faults. The relatively low attenuation anomalies of both waves were revealed in the Alax and Ordos blocks, Qaidam, Tarim, Qinghai Lake, and Gonghe basins, which can be explained by the tectonically stable properties and ancient composition of geological elements. These results indicate that the path between the highly attenuated lower crust of the Bayan Har Block and the Qilian Orogenic Belt is obstructed by three adjacent low attenuated areas (i.e., the Qilian, Qinghai Lake, and Gonghe basins); thus, it appears unlikely that a crustal flow channel from the interior of the Tibetan Plateau to the Qilian Orogenic Belt will form.  相似文献   

8.
The production of anomalously differentiated lava compositions at several mid-ocean spreading centers can be attributed to magmatic processes associated with propagating rifts. The degree of differentiation attained by magmas beneath oceanic spreading ridges depends mainly on the balance between cooling rate and the supply rate of new magma to shallow chambers. Low supply rates and moderate cooling rates allow advanced degrees of closed-system fractionation to occur. High supply rates result in open systems in which magma compositions are buffered by frequent replenishment with new hot magma. Propagating rift tips are a special class of ridge-transform intersection in which the balance between cooling and supply rates is conducive to the development of advanced degrees of differentiation over an expanded length of ridge. This balance is affected by the spreading rate, the propagation rate of the rift, the length of the bounding transform and proximity to hotspots. Maximum compositional variability and maximum degree of differentiation occur within 50 km of propagating rift tips and subsequently diminish with increasing distance. Rifts that propagate through plates in directions approximating their absolute motion relative to the lower mantle are characterized by the presence of anomalously differentiated lavas over longer ridge segments than are rifts that propagate against their absolute motion. Geochemical anomalies may persist, though changing in degree and extent, for several million years on ridge segments that stop propagating. The concept of “magnetic telechemistry” is generally supported by our study, but in the vicinity of hotspots, magnetic anomaly amplitude may be controlled more by bathymetric and/or thickened magnetic layer effects than by geochemistry.  相似文献   

9.
云南地区地壳磁异常与地质构造   总被引:3,自引:1,他引:2       下载免费PDF全文
根据美国地球物理数据中心的地磁场模型(NGDC-720),研究云南地区地壳磁异常的空间变化,包括磁异常及其梯度的分布、磁异常随高度的衰减、不同波长成分对总体磁异常的贡献.比较磁异常与重力异常、大地热流、地震活动等地球物理信息的异同特征,探讨地壳磁异常与地质构造的关系.研究结果表明:丽江—小金河、红河断裂带以西的三江、滇西造山带的异常较弱,菱形地块的异常相对较强.研究区域的地壳磁异常主要是弱磁性基底背景下叠加的浅源磁性体产生.卫星磁异常显示滇中坳陷区具有清晰的偶极场特征.沿红河断裂带分布的正负磁异常带与断裂构造走向一致.围限菱形地块的丽江—小金河断裂、红河断裂、康定—奕良—水城断裂和弥勒—师宗—水城断裂带是磁异常的强弱过渡带.强烈地震发生的地点、大地热流值高的地区,地壳磁异常为负值或相对较弱.  相似文献   

10.
The hydrothermal vent in Area A(37.78°S,49.65°E)is the first active hydrothermal vent discovered on the Southwest Indian Ridge(SWIR).Heat source and adequate bulk permeability are two necessary factors for the formation of a hydrothermal vent.Along the SWIR 49.3°E to 51.2°E,the gravity-derived crustal thickness is up to 9.0 km,much thicker than the average thickness of the global oceanic crust.This characteristic indicates that the magma supply in this area is robust,which is possibly affected by a hotspot.The large-scale residual mantle Bouguer anomalies(RMBA)reveal prominent negative-gravity anomalies between the first-order ridge segment(from Indomed to Gallieni,46.0°E to 52.0°E)and the Marion-Del Cano-Crozet region.These anomalies indicate the channel of the hotspot-ridge interaction.The tomography data corrected with theoretical thermal model indicate that the low-velocity anomalies corresponding to this channel can reach the base of the lithosphere.Near the hydrothermal vent area,the topography and crustal thickness at the off-axis area are extremely asymmetrical.South of the SWIR,the high topography corresponds to the thinning crustal thickness.The residual isostatic topography anomalies indicate that Area A is a deviation from the local isostatic equilibrium,similar to the characteristics of the transform fault inside corner.The forward profiles of the magnetic data indicate that the thinning magnetic layer at the south side of Area A corresponds to the shallow,high-velocity area revealed by the OBS,which is the result of tectonic extension of a detachment fault.The active tectonic processes in Area A can provide sufficient crustal permeability to the hydrothermal circulation and may form massive sulfide deposits.  相似文献   

11.
Low-field anisotropy of magnetic susceptibility (AMS) has been determined for a total of 248 basaltic specimens taken from cross sections between the cooling interfaces of 6 subaerial lavas, 6 deep-sea lavas, and 6 intrusives (5 dikes and 1 sill). Statistically significant AMS clusters are exhibited by all the dikes examined and, based upon these clusters, derivation of emplacement direction becomes possible. Two lavas are observed to have statistically significant AMS clusters which can be used for flow direction determinations. The methods of emplacement and flow direction analysis are discussed as well as the statistics used. It is concluded that most of the dikes examined have low angle emplacement directions. A classification scheme for AMS data distributions is presented.The AMS analysis shows that intrusives and deep-sea lavas can be distinguished from subaerial lavas approximately 80% of the time by the random AMS ellipsoid orientations exhibited in subaerial lavas. Contrasts in the fluid properties, degassing, wall effects with subsequent distortion of the fluid, and grain interaction during the extrusion of subaerial lavas can be expected to distort magnetic grain alignment. Further effects such as convection and secondary processes contribute to yield the random distributions observed for most of these bodies.  相似文献   

12.
Gravity and bathymetric results from the 1983 Canadian Expedition to Study the Alpha Ridge (CESAR) have outlined positive free-air anomalies centred on the continental break off Ellesmere Island characteristic of normal Atlantic-type passive margins. These data confirm implications derived from depth-to-magnetic basement calculations that the ridge may not be structurally connected to the continent. Across the Alpha Ridge magnetic and gravity anomalies mimic the bathymetry. The magnetic anomalies apparently are not caused, to any great extent, by internal structures or magnetic reversals, but rather seem to result simply from variations in depths to a homogenous magnetic structure. The gravity anomalies across a 500 km wide section of the Alpha Ridge can be almost completely accounted for by topography, shallow sedimentary fill and a simple two-tier crustal model. This implies an extraordinary lateral density homogeneity unknown in continental structures of comparable size. Gravity models show the crustal thickness to increase gradually from 20 km at the Marvin Spur to 38 km at the ridge crest. A comparison of this model with a gravity model of the continental-type Lomonosov Ridge, which has a thickness of about 25 km, indicates that, at the same thickness of 25 km, the average crustal density of the Alpha Ridge is 0.08 Mg/m3 greater. These gravity constraints, the unusually homogenous seismic velocity structure revealed by the CESAR studies, the homogeneous magnetic structure, and the extraordinary high intensity satellite magnetic anomaly associated with the Alpha Ridge, indicate that the ridge may be composed of a large pile of mafic rock, possibly unique on this planet.  相似文献   

13.
We present the initial results of a quantitative investigation of the volatile geochemistry of Deception Island, an active volcano situated near the spreading axis of a Quaternary ensialic marginal basin (Bransfield Strait, northern Antarctic Peninsula). Fluorine contents in Deception Island magmas (112–461 ppm) are comparable with lavas from a range of tectonic environments but F-K2O relationships most closely compare with continental flood basalts and lavas from island arcs and some marginal basins. Boron contents are high (4.3–16.3 ppm) and the values overlap with those of arc lavas; they provide strong support for the presence of a mantle source component derived from the slab subducted at the coeval trench (by melting at the slab/wedge interface and/or during slab dehydration). Both F and B acted incompatibly in Deception Island magmas but there is significant variation in incompatible-element ratios such as K/F, K/B, P/F, P/B, which strongly suggests that the magmatic system was open to some or all of these elements during differentation. The variations in these ratios also provide evidence for the presence of at least two stages in the magmatic evolution of the volcano. During pre-caldera times, mafic magma was emplaced into the upper crust where it evolved and may have reacted with the crustal envelope, thus changing the contents of some or all of the elements F, B, K and P and their inter-element ratios. A later, large influx of hot, mafic magma into the chamber may have been responsible for a major eruption that ultimately led to the formation of the caldera. K/F, K/B, etc, ratios in the magma chamber were “reset” and subsequently continued to change, possibly by further crustal interaction during melt evolution in post-caldera times.  相似文献   

14.
The extinct Pleistocene volcano Muriah, situated behind the main Pleistocene—Recent Sunda magmatic arc in north-central Java, has erupted at least two contrasted groups of lavas. One group forms a well-defined compositional series (Anhydrous Series) from leucite basanite to tephritic phonolite, with olivine and tschermakitic clinopyroxene the main phenocrysts. The other group, the “Hydrous Series”, includes compositionally variable tephrites and high-K andesites with common plagioclase, biotite and amphibole. Lavas of the Anhydrous Series are much richer in LIL trace elements than the most potassic lavas of neighbouring active volcanoes, but relative HFS element enrichment is less pronounced. REE patterns have almost constant slopes from La (250–600 times chondrites) to Yb (5–10 times chondrites), while those of lavas of active centres are less light-enriched, and show flattening in the heavy REE. Anhydrous Series initial 87Sr/86Sr ratios (0.7043–0.7046) are lower than those of active centres (0.7047–0.7053). Hydrous Series lavas are intermediate in all these geochemical characteristics.The most mafic A-series leucite basanite, with Mg/(Mg + Fe2+) 0.69, 140 ppm Ni and 620 ppm Cr was probably derived from the primary magma for the series by fractionation of only 5 wt.% olivine. Its REE pattern suggests derivation from a garnet-bearing source. Experiments on this basanite, with up to 10% olivine and 20% orthopyroxene added, and in the presence of H2O and H2O/CO2 mixtures, have shown that for all but very high magma water contents, the olivine and garnet liquidus fields are widely separated by fields of phlogopite and clinopyroxene. There is no liquidus field of orthopyroxene. Hence, if magma production involved an equilibrium melting process alone, the most probable sources are of garnet-bearing phlogopite clinopyroxenite type. Alternatively, this magma may represent the end-product of interaction between a low-K basanite magma from a garnet lherzolite source in the asthenosphere and a phlogopite-bearing lherzolite zone in the lower lithosphere. Its production was probably related to crustal doming and extension superimposed on the dominant subduction regime. Hydrous Series magmas may have resulted from mixing between Anhydrous Series magmas and high-K calc-alkaline basaltic to andesitic magmas more directly related to subduction processes.  相似文献   

15.
The Cappadocia region, located in Central Turkey, is characterized by widespread lava flows and volcanoclastic deposits dating from Miocene to Quaternary. Gravity and aeromagnetic anomalies of the region appear to present similar high and low amplitude regions, although the aeromagnetic anomalies exhibit a rather complex pattern which is thought to be caused by remanent magnetization. The low-pass filtered aeromagnetic map shows a deep-seated magnetic anomaly which may be linked to the widespread volcanic activity at the surface. The pseudogravity transformation of the upward continued anomaly has been constructed. The pseudogravity anomaly demonstrates some form of clockwise rotation. This anomaly was modelled by means of a three-dimensional method. The top and bottom of the body are at 6.3km and 11km (including the flight height) from the ground surface, respectively. This deep body is ellipsoidal and extends along an E-W direction, which is in line with the regional stress direction deduced from GPS measurements. A new mobilistic dynamo-tectonic system appears to explain the body’s E-W elongation. The modelled body may be the source for the inferred geothermal energy of the region. Magnetic measurements were carried out on oriented rock samples collected from outcrops of ignimbrites and basalts, providing directions and intensities of remanent magnetization, susceptibilities and Koeningsberger (Q) ratios. Standard deviations of remanent directions of the Natural Remanent Magnetization (NRM) display a wide scatter implying unreliability of the surface data. Reduction to pole (RTP) transformation of magnetic anomalies was successful with the induced magnetization angle despite the complex pattern of magnetic anomalies.  相似文献   

16.
 Oxygen-isotope analyses of lavas from Medicine Lake volcano (MLV), in the southern Cascade Range, indicate a significant change in δ18O in Holocene time. In the Pleistocene, basaltic lavas with <52% SiO2 averaged +5.9‰, intermediate lavas averaged +5.7‰, and silicic lavas (≥63.0% SiO2) averaged +5.6‰. No analyzed Pleistocene rhyolites or dacites have values greater than +6.3‰. In post-glacial time, basalts were similar at +5.7‰ to those erupted in the Pleistocene, but intermediate lavas average +6.8‰ and silicic lavas +7.4‰ with some values as high as +8.5‰. The results indicate a change in the magmatic system supplying the volcano. During the Pleistocene, silicic lavas resulted either from melting of low-18O crust or from fractionation combined with assimilation of very-low-18O crustal material such as hydrothermally altered rocks similar to those found in drill holes under the center of the volcano. By contrast, Holocene silicic lavas were produced by assimilation and/or wholesale melting of high-18O crustal material such as that represented by inclusions of granite in lavas on the upper flanks of MLV. This sudden shift in assimilant indicates a fundamental change in the magmatic system. Magmas are apparently ponding in the crust at a very different level than in Pleistocene time. Received: 6 March 1997 / Accepted: 12 January 1998  相似文献   

17.
The western part of Anatolia is one of the most seismically and tectonically active continental regions in the world, and much of it has been undergoing NS-directed extensional deformation since the Early Miocene. In this study, we determine 3-D tomographic images of the crust under the southwestern part of the North Anatolian Fault Zone by inverting a large number of arrival time data of P and S waves. From the obtained P- and S-wave velocity models, we estimated the Poisson’s ratio structures for a more reliable interpretation of the obtained anomalies. Our tomographic results confirmed the major tectonic features detected by previous studies and revealed new structural heterogeneities related to the active seismotectonics of the studied area. High P-wave velocity anomalies are recognized near the surface, while at deeper crustal layers, low P-wave velocities are widely distributed. The crustal S-wave velocity and Poisson’s ratio exhibit more structural heterogeneities compared to the P-wave velocity structure. Microearthquake activity is intense along highly heterogeneous zones in the southwestern part, which is characterized by low to high P-wave velocity, low S-wave velocity, and high Poisson’s ratio anomalies. Large earthquakes are also concentrated in zones dominated by low velocities and low to high Poisson’s ratios. Results of the checkerboard and synthetic tests indicate that the imaged anomalies are reliable features down to a depth of 25 km. Moreover, they are consistent with many geological and geophysical results obtained by other researchers along the southwestern part of the North Anatolian Fault Zone. An erratum to this article can be found at  相似文献   

18.
The Pannonian Basin is a deep intra-continental basin that formed as part of the Alpine orogeny. In order to study the nature of the crustal basement we used the long-wavelength magnetic anomalies acquired by the CHAMP satellite. The anomalies were distributed in a spherical shell, some 107,927 data recorded between January 1 and December 31 of 2008. They covered the Pannonian Basin and its vicinity. These anomaly data were interpolated into a spherical grid of 0.5° × 0.5°, at the elevation of 324 km by the Gaussian weight function. The vertical gradient of these total magnetic anomalies was also computed and mapped to the surface of a sphere at 324 km elevation. The former spherical anomaly data at 425 km altitude continued downward to 324 km. To interpret these data at the elevation of 324 km we used an inversion method. A polygonal prism forward model was used for the inversion. The minimum problem was solved numerically by the Simplex and Simulated annealing methods; a L2 norm in the case of Gaussian distribution parameters and a L1 norm was used in the case of Laplace distribution parameters. We interpret that the magnetic anomaly was produced by several sources and the effect of the sable magnetization of the exsolution of hemo-ilmenite minerals in the upper crustal metamorphic rocks.  相似文献   

19.
Purico-Chascon is an acid igneous complex less than 1.5 Ma old rising to 5800 m in the North Chilean Andes, and consisting of andesite-dacite cones and dacite domes on an ignimbrite shield. The rocks are subdivided into two groups: those from Chascon appear to exhibit evidence for magma mixing with more basic material now preserved as xenoliths, whereas among those at Purico no xenoliths have been found.87Sr/86Sr=0.7095?0.7081 at Purico, 0.7079?0.7069 at Chascon, and 0.7061-0.7057 in the xenoliths from the Chascon lavas:143Nd/144Nd=0.51222?0.51236 overall. The Purico lavas are characterised by higher SiO2, Rb/Sr,87Sr/86Sr, and REE abundances, and lower Sr/Nd, Sr/Ba and143Nd/144Nd than most Andean igneous suites. There is no indication ofselective crustal contamination of Sr, or any systematic change in isotope ratios during differentiation. Nonetheless the trend of, for example, high Sr/Nd and Sr contents in rocks with low87Sr/86Sr (0.704, Ecuador) to low Sr/Nd and Sr and high SiO2 in rocks with87Sr/86Sr=0.7081?0.7095 at Purico is interpreted as a shift from subduction zone related magmatism to one with greater crustal affinity. The formation of the least evolved Purico lavas (~60%SiO2) is discussed in terms of bulk assimilation of crustal material, mixing between crustal- and mantle-derived magmas, and partial melting of pre-existing crust. Although such models are still extremely primitive, the simplest explanation of the observed chemical variations is that the Purico rocks evolved from parental magmas derived by crustal anatexies. Thermal considerations suggest that such late-stage crustal anatexis is a predictable response to crustal thickening which in the Andes is thought to have taken place during the Cenozoic.  相似文献   

20.
根据波茨坦地磁场模型(POMME6.2),研究喜马拉雅东构造结周围地区地壳磁异常的空间分布、磁异常随高度的衰减特征.利用二维小波变换方法对地表磁异常进行分解,分析小波细节组合和逼近信号的异常特点.讨论磁异常与地质构造的联系.结果表明,研究区内地壳磁异常分布相当不均匀.喜马拉雅—东构造结—龙门山—大巴山地区分布着较强的负磁异常;四川盆地为正磁异常,其他地区磁异常较弱.东构造结对周围地区磁异常有重要影响,它及其周围地区的地壳磁异常都是在负磁或弱磁异常背景上,叠加着中短波长的正负磁异常.这些中小尺度磁异常由中、上层地壳磁性物质产生,走向与地质构造基本一致.沿金沙江、红河断裂带分布着清晰的弱磁异常带.龙门山断裂带、丽江—小金河断裂带和红河断裂带是磁异常强弱过渡带.青蒇高原中部东西向的磁异常,在东构造结弧顶地区呈弧形分布.青藏高原中部和滇中地块带状、团状磁异常具有相同的衰减规律.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号