首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The concept of a ‘niveo-aeolian influence’ on the genesis of northwest European Pleistocene aeolian sand and loess deposits has been advocated in the past both to explain the presence and the absence of lamination. Field experiments were carried out on artificially deposited alternating layers of sand and snow, and of loess and snow, to investigate the role of a niveo-aeolian mode of deposition on resulting sedimentary structures. Field observations of sand plots revealed minor changes in surface morphology typical of denivation surfaces. The thin sections showed a characteristic porous structure. Deformations of the depositional structure and indications for erosion and redeposition were limited. However, the originally smooth aeolian sedimentary surface of the loess changed considerably. The thin sections showed also a porous, spongy structure. Indications were found for disturbances by frost action, liquefaction during melting of the snow and ice, and redeposition of loess by meltwater. The experimental results strongly suggest that sand and loess deposited as niveo-aeolian material are characterized both by a porous structure, and that the original sedimentary structure of the sand is not affected by snowmelt, whereas loess becomes non-laminated. Thus, the intercalation of snow during sedimentation of sand and loess does not in itself induce a laminated structure.  相似文献   

2.
Lateral migration of linear dunes in the Strzelecki desert,Australia   总被引:1,自引:0,他引:1  
Linear dunes in the Strzelecki Desert trend roughly south-north. Sand transport, which is toward the NNE, has caused the dunes to migrate eastward while they extend or migrate northward. Eastward lateral migration is evidenced by: (1) asymmetrical shape of the dunes; east-facing slopes are several times as steep as west-facing slopes; (2) asymmetrical accumulation of loose recently transported sand (relatively abundant on east-facing slopes); (3) asymmetrical outcropping of older semiconsolidated aeolian sand on the dune surface (more abundant on west-facing slopes); and (4) east-dipping foreset beds that underly the west-facing flanks of some dunes. Dunes in the Strzelecki Desert are still active in the sense that sand is transported along and across many dune crests. However, the dunes are composed primarily of Pleistocene strata, indicating that the trend of the dunes was established before the Holocene. The obliquity of the dunes to the transport direction is not merely an aberration of the wind regime of the last few decades. Preferential accumulation of sand on east-facing flanks indicates that the dunes migrated eastward several metres during the Holocene. Moreover, the west-facing flanks of some dunes have experienced a minimum of tens of metres of erosion. This asymmetric erosion and deposition were caused by dune obliquity and lateral migration that may have begun as early as the Pleistocene. Dunes in the Strzelecki Desert and in the adjacent Simpson Desert display a variety of grossly different internal structures. Computer graphics experiments demonstrate that many of these differences in structure can be explained by different angles of climb of the dunes.  相似文献   

3.
In this technical note we compare silica gel grains and quartz sand as sediment media for vegetation root growth in laboratory experiments for ecohydrology and ecohydraulics. Silica gel grains become quite transparent when saturated with water. This would be useful in order to non-invasively observe the rate of growth of plant roots and plan parallel laboratory experiments made in more typical sand sediments. In this work, we compare the results of preliminary tests conducted using quartz sand with the same grain size distribution of silica gel grains. We show that the complex microstructure of silica gel grains seems to influence the evaporation and, in turn, plant growth dynamics. The potential and limitations of the use of silica grains are accordingly discussed in light of more detailed experiments.  相似文献   

4.
Using the concept of bleaching in optical dating, a new index of sediment sample bleaching percentage (BLP‐2) was developed and applied to evaluate sand grain transport from riverine to deep‐marine environments. As bleached grains in modern sediments have no optically stimulated luminescence (OSL)/infrared stimulated luminescence (IRSL) signal, bleached and unbleached feldspar grains are distinguished by IRSL intensity. The BLP‐2 distribution of present deposits around the Kumano area, on the Pacific coast of central Japan, suggests that sand grains in surface turbidites obtained from the bottom of the Kumano Trough are of flood/storm origin rather than seismogenic origin. The distribution of BLP‐2 tentatively suggests sand grain erosion–transport–depositional processes; for example, origin and transport agencies of shelf sand, and influence of coastal erosion on the beach deposit. Although the present BLP analysis is not yet supported by a rigorous statistical test, it is useful to distinguish recent deposition and remobilization of sand grains. Furthermore, if the depositional age and the luminescence age of sand grains are accurately estimated, sand grain transport processes of old (late Quaternary) sediments may be estimated by the methodology similar to that of the present study.  相似文献   

5.
Wind erosion measurements were carried out in Nellis Dunes Recreation Area, southern Nevada, USA. Gross erosion (the total mass of sediment effectively blown away from a surface), gross deposition (the total mass of sediment effectively depositing on a surface) and net erosion (the difference in sediment mass before and after an event) were measured for 1 year, on 17 different types of surfaces developed on loose dune sand, compacted sand, loose silt, compacted and/or aggregated silt, rock‐covered sands and silts, mixtures of sand, silt and clay, exposed petrocalcic horizons, gravelly substrata and bedrock. Results showed that net erosion, which is the type of erosion measured in field and laboratory experiments, strongly differs from gross erosion. Activity on a surface is much higher than classic net erosion measurements suggest. Future studies on wind erosion should better acknowledge the distinction between the two types of process. Also, a grain diameter of maximum susceptibility to wind erosion (‘optimum deflation diameter’) near 70 µm as proposed by the aeolian literature only exists for net wind erosion. No such optimum diameter was found for gross wind erosion within the particle range 0–100 µm delineating the transport modes of suspension and modified saltation. In addition, desert surfaces predominantly composed of sand did not show an optimum deflation diameter (for net erosion) around 70 µm. Instead, there was a preferential grain size around 15 µm at which particles were most vulnerable to net emission. Desert surfaces poor in sand showed the classic value of 70 µm. This suggests that interactions exist between the type of surface and the susceptibility of particles to wind erosion. This study is solely based on field data. Although results are supported by two previous wind tunnel studies, more wind tunnel experiments documenting the interactions between gross erosion and gross deposition are necessary. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
A conceptual model is described for the prediction of wind erosion rates dependent on the distribution of impact energy delivered to the surface by saltating grains, P[Ei], and the distribution of local surface strength, P[Es]. Methods are presented for the measurement of both distributions and consequent loss of material from the bed. It is concluded that saltating sand grains can rupture weak crusts under even moderate wind conditions, and that the rate of erosion will depend on the shape of the distribution tails. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

7.
The blown sand disaster to the Tarim Desert Highway in Xinjiang, China   总被引:1,自引:0,他引:1  
The Tarim Desert Highway in Xinjiang, China, the longest one in the world, has a lengthof 562 km, about 80% of which runs across, from north to south, the Taklimakan Desert. Obviously,the main problem of the road maintenance is the blown sand disaster. The research resultsshowed: (1) the physical environment along thedesert highway is characterized by strong winds,fine and loose ground materials, different dunes and so on, which provides the dynamical conditionand material source for the formation of blown sand disaster to the road and its shelter system.Meanwhile, the trend and cross-section of the road and the structure of the shelter system, asdamage objects, play important roles in the formation process of blown sand disaster; (2) theblown sand disaster to the shelter system is original from the intrusion of the drift sands and mobiledunes outside the shelter system, and the wind erosion and sand deposit caused by the air streamchanges on the ground in the shelter system. The main damage object in the Tarim Desert High-way is the shelter system presently. The damage forms include wind erosion, sand burying anddune covering; and (3) the damaged length of the blocking sand fences is 83.7%, 88.4%, 72.4%,72.8% and 40.3% and the damaged area of the straw checkerboard belts is 73.1%, 58.2%, 44.5%,35.4% and 36.6%, in turn, in 5 different landform units from north to south, and, the disasters tofences and the straw checkerboard belts are 79.5% and 57.6% in the compound dunes while theyare 64.6% and 37.7% in the interdunes respectively.  相似文献   

8.

The Tarim Desert Highway in Xinjiang, China, the longest one in the world, has a length of 562 km, about 80% of which runs across, from north to south, the Taklimakan Desert. Obviously, the main problem of the road maintenance is the blown sand disaster. The research results showed: (1) the physical environment along the desert highway is characterized by strong winds, fine and loose ground materials, different dunes and so on, which provides the dynamical condition and material source for the formation of blown sand disaster to the road and its shelter system. Meanwhile, the trend and cross-section of the road and the structure of the shelter system, as damage objects, play important roles in the formation process of blown sand disaster; (2) the blown sand disaster to the shelter system is original from the intrusion of the drift sands and mobile dunes outside the shelter system, and the wind erosion and sand deposit caused by the air stream changes on the ground in the shelter system. The main damage object in the Tarim Desert Highway is the shelter system presently. The damage forms include wind erosion, sand burying and dune covering; and (3) the damaged length of the blocking sand fences is 83.7%, 88.4%, 72.4%, 72.8% and 40.3% and the damaged area of the straw checkerboard belts is 73.1%, 58.2%, 44.5%, 35.4% and 36.6%, in turn, in 5 different landform units from north to south, and, the disasters to fences and the straw checkerboard belts are 79.5% and 57.6% in the compound dunes while they are 64.6% and 37.7% in the interdunes respectively.

  相似文献   

9.
This study provides fundamental examination of mass fluvial erosion along a stream bank by identifying event timing, quantifying retreat lengths, and providing ranges of incipient shear stress for hydraulically driven erosion. Mass fluvial erosion is defined here as the detachment of thin soil layers or conglomerates from the bank face under higher hydraulic shear stresses relative to surface fluvial erosion, or the entrainment of individual grains or aggregates under lower hydraulic shear stresses. We explore the relationship between the two regimes in a representative, US Midwestern stream with semi‐cohesive bank soils, namely Clear Creek, IA. Photo‐Electronic Erosion Pins (PEEPs) provide, for the first time, in situ measurements of mass fluvial erosion retreat lengths during a season. The PEEPs were installed at identical locations where surface fluvial erosion measurements exist for identifying the transition point between the two regimes. This transition is postulated to occur when the applied shear stress surpasses a second threshold, namely the critical shear stress for mass fluvial erosion. We hypothesize that the regimes are intricately related and surface fluvial erosion can facilitate mass fluvial erosion. Selective entrainment of unbound/exposed, mostly silt‐sized particles at low shear stresses over sand‐sized sediment can armor the bank surface, limiting the removal of the underlying soil. The armoring here is enhanced by cementation from the presence of optimal levels of sand and clay. Select studies show that fluvial erosion strength can increase several‐fold when appropriate amounts of sand and clay are mixed and cement together. Hence, soil layers or conglomerates are entrained with higher flows. The critical shear stress for mass fluvial erosion was found to be an order of magnitude higher than that of surface fluvial erosion, and proceeded with higher (approximately 2–4 times) erodibility. The results were well represented by a mechanistic detachment model that captures the two regimes. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

10.
Small scale features resulting from wind erosion are widespread in the Namib Desert. They include selective erosion of lithological variations (etching), flutes and grooves, facetting of clasts and residual boulders, and smoothing and polishing of rock surfaces. Large scale features are tentatively identified and are restricted to the southern Namib, with its high energy, unidirectional wind regime. Wind erosion features are best developed on fine-grained rocks of intermediate hardness. They are oriented towards or parallel to modern strong winds. The turbulent flow of wind armed only with dust particles is probably more important than wind driven sand in creating smooth polished rock surfaces, flutes, and grooves. Wind driven sand appears to be significant only in facetting rock masses.  相似文献   

11.
Cavitation,a phenomenon produced by a moving fluid,is ubiquitous in the water environment of the Earth's surface and its related mechanical action in the process of cavitation leads to the widespread erosion of rock in nature.Although the mechanical action of flowing water body that accelerates the rock mass loss and fragmentation of rock(abrasion,erosion,and etching)and other phenomena have been much studied,its acceleration of mineral crystal dissolution is rarely reported.The physical mechanism of effect is not yet clear.The cavitation bubble produced in the cavitation process is at the micron level,and its related mechanical action leading to the accumulation of rock mineral dissolution is manifested in time and space in the process of the chemical element's migration between water and rock minerals.Cavitation erosion may be one of the important driving forces for the migration of geochemical elements within the lithosphere and hydrosphere.In this paper,based on the crystal dissolution stepwave dynamic theory and the theoretical derivation and calculation of Gibbs free energy change of the mineral crystals plastic deformation which caused by the mechanical action of cavitation erosion,we give the possible mechanism of accelerating the transient dissolution of mineral crystals by cavitation erosion—the cavitation bubbles on the surface of the near crystal release the high speed micro-jet and shock wave perpendicular to the surface during the collapsing,in which the water hammer pressure produced by micro-jet at the solid–liquid interface causes instantaneous plastic deformation on the crystal surface under the condition that it is larger than the yield stress of the crystal.Under the influence of the thermal effect of the plastic deformation process and the change of Gibbs free energy(the dislocation elastic strain energy of plastic deformation on the crystal surface may be included),the local instantaneous dissolution rate of the mineral surface is accelerated.The continuous cavitation erosion eventually causes fracture and breaking of the mineral crystal,meanwhile,the Gibbs–Thomson effect may enhance the dissolution of mineral crystals more prominently.At the same time,the correctness of the mechanism is verified qualitatively by the acoustic cavitation experiment with the same erosion mechanism.  相似文献   

12.
The Badain Jaran Desert exhibits the greatest difference in altitude of all of the world’s deserts. On the slopes of megadunes in the desert, there are physical and chemical deposits produced by surface runoff. In addition, we have observed rarely-seen infiltration-excess surface runoff in the megadune depressions as well as spring streams at the base of megadunes. We used electron microscopy, energy spectrum analysis, infiltration experiments, moisture content determinations and grain-size analysis to study the mineral and chemical composition of the runoff precipitates, and grain-size of the deposits associated with the runoff, together with the hydrological balance in the megadune area, and the atmospheric precipitation mechanism responsible for groundwater recharge and for supplying water to lakes. The observations of shallow runoff and infiltration-excess surface runoff indicate the occurrence of strong and effective precipitation in summer, which would provide an important source for groundwater recharge. Several lines of evidence, such as the physical and chemical deposits resulting from shallow subsurface runoff, spring streams, infiltration-excess runoff, and gravity capillary water with a moisture content of 3–6%, demonstrate that precipitation reaches the base of the megadunes through infiltration and subsequently becomes groundwater. The chemical deposits, such as newly-formed calcite and gypsum, and gray-black physical deposits, as well as different stages in the development of fan-shaped landforms resulting from shallow subsurface runoff, indicate that groundwater recharge in the area is the result of long-term precipitation, rather than intermittent individual major rainfall events. Fine sand layers with a low infiltration capacity lead to subsurface runoff emerging at the ground surface. Five factors play an important role in maintaining a positive water balance and in replenishing groundwater via rainfall: effective rainfall as a water source, the high infiltration capacity of the sands enabling rainfall to rapidly become capillary water in the dunes, low evapotranspiration rates due to the sparse vegetation, the fact that the depth of the sand layer influenced by evaporation is shallow enough to maximize the deep infiltration of rainfall, and rapidly-moving gravity capillary water in the sandy dunes. These five factors together constitute a mechanism for groundwater recharge from rainfall, and explain the origin of the groundwater and lakes in the area. Our findings represent a significant advance in research on the hydrological cycle, including groundwater recharge conditions and recharge mechanisms, in this desert region.  相似文献   

13.
The entrainment and subsequent transport of PM10 (particulate matter <10 µm) has become an important and challenging focus of research for both scientific and practical applications. Arid and semi‐arid environments are important sources for the atmospheric loading of PM10, although the emission of this material is often limited by surface crusts. It has been suggested that the primary mechanisms through which PM10 is released from a crusted surface are abrasion by saltating grains or disturbance by agricultural and recreational activities. To examine the importance of saltation abrasion in the emission of PM10, a series of field wind tunnel tests were conducted on a clay‐crusted surface near Desert Wells, Arizona. In a previous part of this study it was found that the emission rate varies linearly with the saltation transport rate, although there can be considerable variation in this relationship. This paper more closely examines the source of the variability in the abrasion efficiency, the amount of PM10 emitted by a given quantity of saltating grains. The abrasion efficiency was found to vary with the susceptibility of the surface to abrasion, the ability of the sand to abrade that surface and the availability of material with a caliper size <10 µm within the crust. Specifically, the results of the study show that the abrasion efficiency is related to the crust strength, the amount of surface disturbance and the velocity of the saltating grains. It is concluded that the spatial and temporal variability of these controls on the abrasion efficiency imposes severe contextual limitations on experimentally derived models, and can make theoretical models too complex and impractical to be of use. Copyright­© 2001 John Wiley & Sons, Ltd.  相似文献   

14.
Stress distribution in the vicinity of a permeable cylindrical cavity surface (borehole wall) arising due to modal vibrations of an internal cylindrical radiator of infinite extent is studied. Biot phenomenological model is used to represent the behavior of sound in the fluid-saturated elastic porous medium and closed-form solution in the form of an infinite series is developed. A numerical example for the infinite cylindrical surface excited in vibrational modes of zeroth and first order while immersed in a water-filled cavity embedded within a water-saturated Ridgefield Sandstone environment is presented and several limiting cases are examined. Effects of axial and radial vibration frequencies, porosity, frame stiffness, and interface permeability condition on stress distribution at the borehole surface are presented and discussed.  相似文献   

15.
With both sides of the Taklimakan Desert highway line as the study area, three typical aeolian sand landforms, i.e. complex dune ridge, barchan dune and flat sand land, were selected as sand beds for the observation, analysis and research of the characteristics of aeolian sand movement such as aeolian sand stream structure, sand transport intensity, etc. in the Taklimakan Desert. The results show that there is a linear relation between the height and the log of sand transport rate over transverse dune chain, longitudinal dune ridge and flat sand land, i.e. the sand transport percentage decreases exponentially with increasing height. Sand transport rate within the 10 cm height above the bed surface accounts for 80%-95% of the total sand transport rate of the observed height (40 cm), while the sand transport rate in 20 cm occupies 98% of the total amount. Sand transport rate (g·cm-1·min-1) differs greatly with respect to different landform types and different topographic positions. Based on the investig  相似文献   

16.
Quartz and quartzite are thought to be resistant as a mineral and a rock respectively; however, we have shown that the presence of small amounts of pyrite in the quartzites makes them vulnerable to weathering. We observe that weathering of Proterozoic quartzite in the semi‐arid conditions around Delhi proceeded from fractures towards the inside and produced weathering rinds. The chemical index of alteration (CIA), which is actually a measure of weathering of aluminosilicate minerals, increases from the core outwards, through the rinds. Although aluminosilicate minerals occur only as minor phases (<2 per cent), their weathering indicates a movement of the weathering front from the periphery towards the core. We have suggested a coupled mechanism in which the dissolution of pyrites by moving water produced a sulphate‐bearing acidic solution and ferrous iron, which reacted with aluminosilicate minerals and quartz, respectively. This initially makes the Delhi quartzite porous and subsequently friable. The total disintegration of grain to grain contacts imparted friability to this quartzite to produce silica sand. Subsequent physical erosion of loose sand, produced during rind development in the outermost zones, has given rise to features like tors, spheroids, gullies, cavities and small‐scale caves on these quartzites. Thus, the terrain has acquired ruggedness in semi‐arid conditions. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

17.
A wind tunnel study examined the effect of distributions of saltating particles on sediment surfaces which were characterized by distributions of their tensile strength. The sediments consisted of varying proportions of large sand‐sized particles with a fine particle cement. The energies of the impacting particles and the surface strengths were compared with the mass of material lost from the surface. It is important to consider distributions of parameters rather than mean values only, since abrasion and erosion may occur from surfaces not predicted from average strength and saltation velocities. At the impact velocities used in this study (mean velocity 4·4 m s?1, with standard deviation of 0·51), surfaces containing less than 12 per cent fine material were easily eroded, but insignificant erosion occurred when the fine particle content exceeded 60 per cent. Small amounts of cementing material were easily ruptured, allowing the large sand grains to be moved (largely in creep) by the bombarding particles. A significant amount of energy was lost to the bed. As the percentage of fine material increased, the surface became more difficult to break up and less energy was lost to the bed. The probability that erosion will occur for known energy distributions of impacting particles and surface strength can be calculated and the mass loss increases exponentially with a decrease in the percentage of fine cementing particles. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

18.
Electrical, seismic, and electromagnetic methods can be used for noninvasive determination of subsurface physical and chemical properties. In particular, we consider the evaluation of water salinity and the detection of surface contaminants. Most of the relevant properties are represented by electric conductivity, P-wave velocity, and dielectric permittivity. Hence, it is important to obtain relationships between these measurable physical quantities and soil composition, saturation, and frequency. Conductivity in the geoelectric frequency range is obtained with Pride's model for a porous rock. (The model considers salinity and permeability.) White's model of patchy saturation is used to calculate the P-wave velocity and attenuation. Four cases are considered: light nonaqueous phase liquid (LNAPL) pockets in water, dense nonaqueous phase liquid (DNAPL) pockets in water, LNAPL pockets in air, and DNAPL pockets in air. The size of the pockets (or pools), with respect to the signal wavelength, is modeled by the theory. The electromagnetic properties in the GPR frequency range are obtained by using the Hanai–Bruggeman equation for two solids (sand and clay grains) and two fluids (LNAPL or DNAPL in water or air). The Hanai–Bruggeman exponent (1/3 for spherical particles) is used as a fitting parameter and evaluated for a sand/clay mixture saturated with water.Pride's model predicts increasing conductivity for increasing salinity and decreasing permeability. The best-fit exponent of the Hanai–Bruggeman equation for a sand/clay mixture saturated with water is 0.61, indicating that the shape of the grains has a significant influence on the electromagnetic properties. At radar frequencies, it is possible to distinguish between a water-saturated medium and a NAPL-saturated medium, but LNAPL- and DNAPL-saturated media have very similar electromagnetic properties. The type of contaminant can be better distinguished from the acoustic properties. P-wave velocity increases with frequency, and has dissimilar behaviour for wet and dry soils.  相似文献   

19.
A method of analysis for predicting the time development of hillslope profiles is presented. The technique is based upon the assumption of weathering limited erosion and assumes that the local surface normal erosion rate is dependent upon the local flux of erosional agent and a function of the local slope gradient. This technique has been previously applied with success to analogous erosional processes in the sand blasting, chemical and energetic atom bombardment induced ablation of solids. The analysis shows how linearly segmented profiles can develop from initially curved surfaces and indicates the progress of profiles to stable end forms. Actual application to geomorphological situations is limited by lack of knowledge of micro-environmental erosion fluxes and the gradient dependence of erosion and it is suggested that field observations and laboratory simulations could be helpful in determining the utility of the analysis technique outlined here.  相似文献   

20.
Longitudinal dunes are the most widespread dune types in the world sand seas but comprehensive study on the sand surface stability is scarce. The southern part of Gürbantünggüt Desert is mainly covered by longitudinal dune in which fixed and semi-fixed dunes occupy over 80% of the total area. Systematic analysis on the climatic conditions, the soil moisture and vegetation distributions, and the sand surface activities showed that the fixed and semi-fixed dunes are in a comprehensive low-energy wind environment. Snow cover and frozen soil provide a good protection to the ground surface in winter. The temporal distribution of precipitation and corresponding variation of temperature create a favorable condition for the desert plants growth, especially for the ephemeral plants. The occurrence of effective winds for sand moving in April to June coincides with the stage of relatively wet sand surface and good vegetation cover, which effectively keep the sand surface stable at the interdune and the plinth of the dunes. Activity sand surface appears only at the crest and the upper part of the sand dunes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号