首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The 30 to 155 m thick Early Permian (Artinskian) Warchha Sandstone of the Salt Range, Pakistan is a conglomerate, sandstone and claystone succession within which seven lithofacies types (Gt, St, Sp, Sr, Sh, Fl and Fm) occur in a predictable order as repeated fining-upward cycles. Common sedimentary structures in the conglomerates and sandstones include planar and trough cross-bedding, planar lamination, soft sediment-deformed bedding, compound cosets of strata with low-angle inclined bounding surfaces and lags of imbricated pebbles. Structures in the finer-grained facies include desiccation cracks, raindrop imprints, caliche nodules and bioturbation. Groups of associated facies are arranged into nine distinct architectural elements (channels, gravel bars, sandy bedforms, downstream and laterally accreting barforms, sand sheets, crevasse splays, levees, floodplain units and shallow lakes), which is consistent with a fluvial origin for the succession. The types of architectural elements present and their relationship to each other demonstrate that the Warchha Sandstone preserves a record of a meandering river system that drained the northern margin of Gondwanaland. The dominance of fine-grained (floodplain) facies over gravel-grade (channel-base) facies and the widespread occurrence of large-scale lateral accretion elements supports the interpretation of a high-sinuosity, meandering fluvial system in which channel bodies accumulated via the lateral accretion of point bars but in which the active channels covered only a small part of a broad floodplain at any time instant. Although the regional and temporal distribution of these deposits is complex, in broad terms the lower part is dominated by stacked, multistorey channel bodies, whereas single-storey channel elements isolated in abundant fine-grained floodplain deposits dominate the middle and upper parts of the formation.  相似文献   

2.
The Toe Head Formation of southwest Cork occurs in a thick, conformable sequence of Upper Devonian and Lower Carboniferous sedimentary rocks. It occupies a position between typical terrestrial “red-beds” and tidal flat and marine shelf sediments. The rocks are predominantly arenaceous and grey-green in colour. The formation is described in terms of five major lithofacies which are: (1) large-scale bedded sandstone facies, (2) rippled sandstone facies; (3) interbedded facies; (4) mudrock facies; and (5) mudcrack association facies. Simple statistical analysis of sequential organisation shows a crude pattern of fining-upwards sequences. The facies are interpreted to represent a spectrum of fluvial channel and flood plain environments, this interpretation being supported by the unidirectional palaeocurrent pattern. In view of the overall stratigraphical succession, a near-coastal fluvial plain is suggested. The formation is shown to be roughly equivalent to the Upper Old Red Sandstone of the Geological Survey (1860–1864) and to extend at least from Seven Heads to Dunmanus Bay.  相似文献   

3.
Distinct styles of fluvial deposition in a Cambrian rift basin   总被引:1,自引:0,他引:1  
Process‐based and facies models to account for the origin of pre‐vegetation (i.e. pre‐Silurian) preserved fluvial sedimentary architectures remain poorly defined in terms of their ability to account for the nature of the fluvial conditions required to accumulate and preserve architectural elements in the absence of the stabilizing influence of vegetation. In pre‐vegetation fluvial successions, the repeated reworking of bars and minor channels that resulted in the generation and preservation of broad, tabular, stacked sandstone‐sheets has been previously regarded as the dominant sedimentary mechanism. This situation is closely analogous to modern‐day poorly vegetated systems developed in arid climatic settings. However, this study demonstrates the widespread presence of substantially more complex stratigraphic architectures. The Guarda Velha Formation of Southern Brazil is a >500 m‐thick synrift fluvial succession of Cambrian age that records the deposits and sedimentary architecture of three distinct fluvial successions: (i) an early rift‐stage system characterized by coarse‐grained channel elements indicative of a distributive pattern with flow transverse to the basin axis; and two coeval systems from the early‐ to climax‐rift stages that represent (ii) an axially directed, trunk fluvial system characterized by large‐scale amalgamated sandy braid‐bar elements, and (iii) a distributive fluvial system characterized by multi‐storey, sandy braided‐channel elements that flowed transverse to the basin axis. Integration of facies and architectural‐element analysis with regional stratigraphic basin analysis, palaeocurrent and pebble‐provenance analysis demonstrates the mechanisms responsible for preserving the varied range of fluvial architectures present in this pre‐vegetation, rift‐basin setting. Identified major controls that influenced pre‐vegetation fluvial sedimentary style include: (i) spatial and temporal variation in discharge regime; (ii) the varying sedimentological characteristics of distinct catchment areas; (iii) the role of tectonic basin configuration and its direct role in influencing palaeoflow direction and fluvial style, whereby both the axial and transverse fluvial systems undertook a distinctive response to syn‐depositional movement on basin‐bounding faults. Detailed architectural analyses of these deposits reveal significant variations in geometry, with characteristics considerably more complex than that of simple, laterally extensive, stacked sandstone‐sheets predicted by most existing depositional models for pre‐vegetation fluvial systems. These results suggest that the sheet‐braided style actually encompasses a varied number of different pre‐vegetation fluvial styles. Moreover, this study demonstrates that contemporaneous axial and transverse fluvial systems with distinctive architectural expressions can be preserved in the same overall tectonic and climatic setting.  相似文献   

4.
Although facies models of braided, meandering and anastomosing rivers have provided the cornerstones of fluvial sedimentology for several decades, the depositional processes and external controls on sheetflow fluvial systems remain poorly understood. Sheetflow fluvial systems represent a volumetrically significant part of the non‐marine sedimentary record and documented here are the lithofacies, depositional processes and possible roles of rapid subsidence and arid climate in generating a sheetflow‐dominated fluvial system in the Cenozoic hinterland of the central Andes. A 6500 m thick succession comprising the Late Eocene–Oligocene Potoco Formation is exposed continuously for >100 km along the eastern limb of the Corque syncline in the high Altiplano plateau of Bolivia. Fluvial sandstone and mudstone units were deposited over an extensive region (>10 000 km2) with remarkably few incised channels or stacked‐channel complexes. The Potoco succession provides an exceptional example of rapid production of accommodation sustained over a prolonged period of time in a non‐marine setting (>0·45 mm year−1 for 14 Myr). The lower ≈4000 m of the succession coarsens upward and consists of fine‐grained to medium‐grained sandstone, mudstone and gypsum deposits with palaeocurrent indicators demonstrating eastward transport. The upper 2500 m also coarsens upward, but contains mostly fine‐grained to medium‐grained sandstone that exhibits westward palaeoflow. Three facies associations were identified from the Potoco Formation and are interpreted to represent different depositional environments in a sheetflow‐dominated system. (i) Playa lake deposits confined to the lower 750 m are composed of interbedded gypsum, gypsiferous mudstone and sandstone. (ii) Floodplain deposits occur throughout the succession and include laterally extensive (>200 m) laminated to massive mudstone and horizontally stratified and ripple cross‐stratified sandstone. Pedogenic alteration and root casts are common. (iii) Poorly confined channel and unconfined sheet sandstone deposits include laterally continuous beds (50 to >200 m) that are defined primarily by horizontally stratified and ripple cross‐stratified sandstone encased in mudstone‐rich floodplain deposits. The ubiquitous thin‐sheet geometry and spatial distribution of individual facies within channel sandstone and floodplain deposits suggest that confined to unconfined, episodic (flash) flood events were the primary mode of deposition. The laterally extensive deposition and possible distributary nature of this sheetflow‐dominated system are attributed to fluvial fan conditions in an arid to semi‐arid, possibly seasonal, environment. High rates of sediment accumulation and tectonic subsidence during early Andean orogenesis may have favoured the development and long‐term maintenance of a sheetflow system rather than a braided, meandering or anastomosing fluvial style. It is suggested here that rapidly produced accommodation space and a relatively arid, seasonal climate are critical conditions promoting the generation of sheetflow‐dominated fluvial systems.  相似文献   

5.
《Sedimentary Geology》2001,139(3-4):229-260
Early- to middle-Miocene fluvial sandstones of the Rio Vero Formation were studied, in an area around the town of Barbastro, south central Pyrenees Spain. The outstanding quality of outcrops in this area allows a three-dimensional study of architectural elements.Six architectural elements are recognised, described in detail, and interpreted from three key localities. Seven main lithofacies were identified and sub-divided into gravelly, sandy and fine-grained lithofacies. The architectural elements and lithofacies have been combined with a hierarchy of depositional bounding surfaces to fully interpret the evolution of the depositional system at the meso- and macro-scale. Not only the different architectural elements and lithofacies of the complete braided fluvial system, but also the lateral variation of the architectural elements were emphasised in this study. Differential tectonic movements, seasonal climate change, and their effect on vertical and lateral evolution of the area were the main control on basin sedimentation, channel interconnection, palaeocurrent patterns, and consequently the fluvial architecture.The presence of lateral ramp anticlines caused the fluvial system to be laterally restricted, with the main channel-belts being located in the areas of highest subsidence and lowest topography. Intervening topographic highs acted as both flood plains and lateral barriers between the main channel systems. The proposed depositional model comprises broad, low-sinuosity, perennial, but seasonal moderate-energy streams. The sandstone architecture is dominated by channel-fill and sheet sands, and associated simple and more complex bars. Adjacent to the main channel-belts fine-grained sandstones, siltstones and immature paleosols occur.The along-strike relationship between major fluvial systems and their outlets into a foreland basin has important implications for the infill of the basin and the modelling of fluvial systems along mountain belt fronts.  相似文献   

6.
Lake margin sedimentary systems have been the subject of only limited study. The cyclic Middle Devonian lacustrine succession of Northern Scotland contains repeated developments of shore zone sandstones and thus provides an ideal location for the study of these units. The cycles comprise deep lake, shallow lake, playa and shore zone facies. Detailed field observations are presented alongside ground penetrating radar data which has aided large‐scale and three‐dimensional characterization of the shore zone sand bodies. Loading and discrete channel forms are recognized in thin‐bedded sandstones within the lower portion of the lake shore zone successions. Up‐section, the sandstone beds appear to become amalgamated, forming subtle low angle accretionary bar complexes. Where imaged on the radar profiles, the repeated development of shoreward migrating features succeeded by more shallow angled lakeward accreting surfaces is recognized; these are ascribed to washover and swash–backwash processes, respectively. The orientation of these features is similar to palaeocurrent measurements from oscillation ripples, suggesting an alignment of the shore zone bars perpendicular to the prevailing wind direction. Further loaded sandstone beds and sand‐filled shallow channel features overlie the bar forms. The context of the shore zone facies allows the controls on its formation to be examined. The shore zone sandstones overlie playa facies which contain abundant desiccation horizons, reflecting the most arid phase in the climatically controlled lacustrine cycle. As climatic conditions ameliorated, the rejuvenation of fluvial systems resulted in the transport of sand out into the basin. Initial deposition was limited to intermittent events where sediment was laid down on a water‐saturated substrate. High resolution fluctuations in lake level resulted in periodic short‐lived reworking events along the lake margins which produced amalgamated sands, forming low relief bars. Shore zone reworking is likely to have occurred over a wide  area as the lake margin migrated back and forth, and gradually transgressed.  相似文献   

7.

The mid‐Silurian Major Mitchell Sandstone of the Grampians Group outcrops at Mt Bepcha, western Victoria, represent a prograding fluviodeltaic sequence comprising four lithofacies and five ichnofacies. The stratigraphically lowest Interbedded Sandstone/Siltstone Facies is characterised by thin sandstone and siltstone beds with soft‐sediment deformation and scours with gravelly lag deposits. This lithofacies contains Thalassinoides, Palaeophycus, Rhizocorallium and intrastratal burrows, together indicative of the Cruziana Ichnofacies, and is interpreted as a shallow‐marine depositional environment on a low‐energy delta front with minor tidal influences. The overlying Massive Sandstone Facies lacks silt, and consists of predominantly massive and some plane‐laminated sandstone, abundant Skolithos linearis , rare Palaeophycus and a single small Cruziana problematica ; the trace‐fossil assemblage is assigned to the Skolithos Ichnofacies. This facies is believed to have been deposited in a marine high‐energy shoreface environment with continuously shifting sands, affected by periodic flooding events from the mouth of a nearby river. Above this is the Trough Cross‐bedded Facies, which contains trough cross‐bedding with gravelly lag deposits, a northwest palaeocurrent direction and large Taenidium barretti burrows (Burrowed Ichnofacies). This facies also contains abundant plane‐laminated sandstone with a northeast‐southwest palaeocurrent direction and ichnofossils of Scoyenia and Daedalus , representing the Scoyenia Ichnofacies. The Trough Cross‐bedded Facies is interpreted to have been deposited in shallow low‐sinuosity channels by overbank‐flooding events, most likely on a delta plain. The uppermost facies, the Plane‐laminated Facies, contains thin beds of current‐lineated, plane‐laminated graded coarse to fine sandstone that preserve arthropod trackways (Arthropod Ichnofacies). This facies was deposited on a periodically sheet‐flooded, subaerially exposed delta plain.  相似文献   

8.
ABSTRACT The Upper Carboniferous deep‐water rocks of the Shannon Group were deposited in the extensional Shannon Basin of County Clare in western Ireland and are superbly exposed in sea cliffs along the Shannon estuary. Carboniferous limestone floors the basin, and the basin‐fill succession begins with the deep‐water Clare Shales. These shales are overlain by various turbidite facies of the Ross Formation (460 m thick). The type of turbidite system, scale of turbidite sandstone bodies and the overall character of the stratigraphic succession make the Ross Formation well suited as an analogue for sand‐rich turbidite plays in passive margin basins around the world. The lower 170 m of the Ross Formation contains tabular turbidites with no channels, with an overall tendency to become sandier upwards, although there are no small‐scale thickening‐ or thinning‐upward successions. The upper 290 m of the Ross Formation consists of turbidites, commonly arranged in thickening‐upward packages, and amalgamated turbidites that form channel fills that are individually up to 10 m thick. A few of the upper Ross channels have an initial lateral accretion phase with interbedded sandstone and mudstone deposits and a subsequent vertical aggradation phase with thick‐bedded amalgamated turbidites. This paper proposes that, as the channels filled, more and more turbidites spilled further and further overbank. Superb outcrops show that thickening‐upward packages developed when channels initially spilled muds and thin‐bedded turbidites up to 1 km overbank, followed by thick‐bedded amalgamated turbidites that spilled close to the channel margins. The palaeocurrent directions associated with the amalgamated channel fills suggest a low channel sinuosity. Stacks of channels and spillover packages 25–40 m thick may show significant palaeocurrent variability at the same stratigraphic interval but at different locations. This suggests that individual channels and spillover packages were stacked into channel‐spillover belts, and that the belts also followed a sinuous pattern. Reservoir elements of the Ross system include tabular turbidites, channel‐fill deposits, thickening‐upward packages that formed as spillover lobes and, on a larger scale, sinuous channel belts 2·5–5 km wide. The edges of the belts can be roughly defined where well‐packaged spillover deposits pass laterally into muddier, poorly packaged tabular turbidites. The low‐sinuosity channel belts are interpreted to pass downstream into unchannellized tabular turbidites, equivalent to lower Ross Formation facies.  相似文献   

9.
Electrical borehole image logs yield high-resolution information about variations in micro-resistivity along the borehole wall. To interpret these variations in terms of sedimentary structures and lithofacies types, calibration with real rock is needed. Normally, the only real rock available is core, and this only provides one-dimensional information. In this paper, the interpretation of fluvial facies types from borehole image logs was established by direct comparison with outcrops. Four fluvial facies associations were established in an outcrop study of a low net-to-gross fluvial succession: (i) meandering rivers, (ii) braided rivers, (iii) crevasse deltas, and (iv) crevasse splays. The lithofacies characteristics and palaeocurrent distributions of each fluvial facies association were established. Two 200 m deep wells were drilled behind the cliff face outcrops. One well was cored to a depth of 150 m and borehole image logs were recorded in both wells. The wells were correlated with the outcrop. The borehole image logs were analysed by their vertical colour succession and the dipmeter pattern. Image log facies were established, and these were interpreted in terms of the fluvial facies associations encountered in the corresponding outcrops. The study of borehole image logs yields a set of diagnostic criteria for a detailed fluvial facies interpretation and the establishment of depositional trends, and thus provides a powerful tool for the direct interpretation of fluvial facies in a reservoir setting.  相似文献   

10.
The depositional facies and environments were unraveling by studying 21 subsurface sections from ten oilfields in the central and southern Iraq and a large number of thin sections of the Nahr Umr (siliciclastic deposit) Formation (Albian). This formation is mainly composed of sandstone interlaminated with minor siltstone and shale, with occurrence of thin limestone beds. Nahr Umr Formation is subdivided into three lithostratigraphic units of variable thicknesses on the basis of lithological variations and log characters. Mineralogically and texturally, mature quartz arenite and sandstones are the common type of the Nahr Umr Formation. The sandstones are cemented by silica and calcite material and have had a complex digenetic history. Compaction, dissolution, and replacements are the main diagenetic processes. Prodelta, distal bar, distributary mouth bar, distributary channel, over bank, and tidal channel are the main depositional environments recognized for the Nahr Umr Formation, within the studied wells. This formation was deposited in shallow marine and fluvial–deltaic environments and exhibit progradational succession of facies. Eight sedimentary facies that have been identified in the Nahr Umr Formation include claystone lithofacies, claystone siltstone lithofacies, lenticular-bedded sandstone–mudstone lithofacies, wavy-bedded sandstone–mudstone lithofacies, flaser-bedded sandstone–mudstone lithofacies, parallel and cross lamination sandstone lithofacies, trough cross-bedded sandstone lithofacies, and planar cross-bedded sandstone lithofacies. The depositional model of the Nahr Umr Formation environment was built based on the lithofacies association concepts.  相似文献   

11.
The rift succession of the Araripe Basin can be subdivided into four depositional sequences, bounded by regional unconformities, which record different palaeogeographic and palaeoenvironmental contexts. Sequence I, equivalent to the Brejo Santo Formation, is composed of fluvial sheetflood and floodplain facies association, while Sequence II, correspondent to the lower portion of the Missão Velha Formation, is characterised by braided fluvial channel belt deposits. The fluvial deposits of Sequences I and II show palaeocurrents toward SE. The Sequence III, correspondent to the upper portion of Missão Velha Formation, is composed of fluvial sheetflood deposits, which are overlain by braided fluvial channel deposits displaying a palaeocurrent pattern predominantly toward SW to NW. Sequence IV, equivalent to the Abaiara Formation, is composed of fluvio–deltaic–lacustrine strata with polimodal paleocurrent pattern. The type of depositional systems, the palaeocurrent pattern and the comparison with general tectono-stratigraphic rift models led to the identification of different evolutionary stages of the Araripe Basin. Sequences I, II and III represent the record of a larger basin associated to an early rift stage. However, the difference of the fluvial palaeocurrent between sequences II and III marks a regional rearrangement of the drainage system related to tectonic activity that compartmentalised the large endorheic basin, defining more localised drainage basins separated by internal highs. Sequence IV is associated with the renewal of the landscape and implantation of half-graben systems. The high dispersion of palaeocurrents trends indicate that sedimentary influx occurs from different sectors of the half-grabens.  相似文献   

12.
Westphalian B (Duckmantian) alluvial Coal Measures along the Northumberland coast, NE England, comprise coal-capped coarsening-upward crevasse-splay sequences of shale, siltstone and sandstone, interbedded with a number of major distributary channel sandbodies, including the Table Rocks Sandstone. Lithofacies, architectural analysis and outcrop geometries divide the Table Rocks Sandstone into flaggy sandstone, massive sandstone, heterolithic, and mudstone facies associations, each comprising up to 7 lithofacies types. The three sandy facies associations are characterised by lenticular bed geometries on different scales producing a hierarchy of lensoid packages and associated bounding surfaces, all showing typical offset stacking patterns: (1) lenses, represent individual lenticular cross-bed sets, bounded by 1st order surfaces; (2) packages of lenses, called lens clusters are bounded by 2nd order surfaces, and are the basic architectural building block of the sandy facies associations; and (3) vertically stacked lens clusters called amalgamated lens clusters, bounded by 3rd order surfaces. The Table Rocks sandbody has a laterally extensive, irregular, lobate subsurface plan geometry, it displays a radial palaeocurrent pattern with 180° dispersion, and it forms part of a 14-m thick coarsening-upward regressive sequence. It is interpreted as a composite, lobate crevasse-splay delta system that prograded into a shallow interdistributary fresh to brackish water lake up to 14 m deep. The shallow lake water, fluvial input, and extensive development of traction structures such as cross-bedding and ripple cross-lamination suggests a friction-dominated delta, in which the four facies associations can be interpreted in terms of discrete elements of the mouth bar environment. The flaggy sandstone facies association represents the main, axial part of the mouth bar system, the erosively based massive sandstone facies association major subaqeous distributary channels, the lithologically more variable heterolithic facies association the medial mouth bar, and the mudstone facies association the distal mouth bar fringe and prodelta. Within this environmental setting amalgamated lens clusters are interpreted as small, discrete mouth bar sand lobes, whose offset, imbricate stacking pattern reflects channel spacing and bifurcation, the rate of channel shifting, or shallow depths and lack of accommodation space. Thus, lens clusters are interpreted as discrete growth elements of the mouth bar sand lobes, and lenses as individual bedforms making up these growth elements. Because of the high rate of channel shifting, lack of extensive erosion of the mouth bar lobes, and deposition of low discharge fines, the lobes retained much of their original depositional geometry, thereby providing advantageous gradients for offset deposition and stacking of adjacent sand lobes. Although the delta complex was maintained by frequent crevassing from the feeder channel, and by subsidence due to contemporaneous compaction and/or local tectonism, it was deeply incised on two occasions by subaqeous channels in response to high magnitude floods or falling lake level.  相似文献   

13.
A Pleistocene valley-fill alluvial succession deposited in the Kleszczów Graben, central Poland, has been studied in the Belchatów openpit mine. The succession, palynologically documented to represent the Drenthe/Warthe interstadial, consists of three alluvial complexes whose component lithofacies associations indicate a fluvial system evolving from temperate-climate meandering river to transitional-type shallow braided network, to periglacial well-developed braided river influenced by aeolian sand supply. The study suggests that the abundance of fine-grained overbank deposits, occurrence of peats/palaeosols and fining-upward cyclothems are diagnostic attributes of perennial meandering river alluvium, which may indicate temperate climatic conditions. Periglacial braided river alluvium is recognizable by an admixture of wind-derived sand grains with aeolian surface textures and by the occurrence of ice-wedge features, indicative of cold climatic conditions. The distinction between the two basic types of alluvium is aided by the analysis of architectural elements and palaeocurrent directional data. The study demonstrates that sedimentological facies analysis can be a useful tool for the recognition of palaeoclimatic changes in Pleistocene alluvial successions.  相似文献   

14.
The meander-belt deposit comprises a sandstone resting on an erosion surface and bounded above and below by massive varicoloured mudstones with rootlet traces. The sandstone unit is composed of six bodies separated from one another, horizontally, by erosion surfaces; together the bodies form a single multilateral sand body. Internally each body is composed of lateral accretion units inclined at up to 6° from the horizontal. Vertical sequences of facies show significant variations but the grain size generally fines upwards. The principal lithofacies within the sandstones are, in common ascending order, intraformational conglomerate, large-scale cross-bedded, horizontal bedded and small-scale cross-laminated sandstone, and alternate sandstones and mudstones. Current directions are normal to the true slope of accretion surfaces and show insignificant scatter within individual bodies but are very diverse overall. Five of the sand bodies are believed to represent individual point bars, and one body an abandoned channel. Together they comprise the meander belt. The river was subject to very variable discharges and carried high suspended loads. Analysis of vertical profiles indicates that grain size segregation along the length of the point bars caused differentiation of the bars into coarse-grained heads and sandy tails.  相似文献   

15.
Existing facies models of tide‐dominated deltas largely omit fine‐grained, mud‐rich successions. Sedimentary facies and sequence stratigraphic analysis of the exceptionally well‐preserved Late Eocene Dir Abu Lifa Member (Western Desert, Egypt) aims to bridge this gap. The succession was deposited in a structurally controlled, shallow, macrotidal embayment and deposition was supplemented by fluvial processes but lacked wave influence. The succession contains two stacked, progradational parasequence sets bounded by regionally extensive flooding surfaces. Within this succession two main genetic elements are identified: non‐channelized tidal bars and tidal channels. Non‐channelized tidal bars comprise coarsening‐upward sandbodies, including large, downcurrent‐dipping accretion surfaces, sometimes capped by palaeosols indicating emergence. Tidal channels are preserved as single‐storey and multilateral bodies filled by: (i) laterally migrating, elongate tidal bars (inclined heterolithic strata, 5 to 25 m thick); (ii) forward‐facing lobate bars (sigmoidal heterolithic strata, up to 10 m thick); (iii) side bars displaying oblique to vertical accretion (4 to 7 m thick); or (iv) vertically‐accreting mud (1 to 4 m thick). Palaeocurrent data show that channels were swept by bidirectional tidal currents and typically were mutually evasive. Along‐strike variability defines a similar large‐scale architecture in both parasequence sets: a deeply scoured channel belt characterized by widespread inclined heterolithic strata is eroded from the parasequence‐set top, and flanked by stacked, non‐channelized tidal bars and smaller channelized bodies. The tide‐dominated delta is characterized by: (i) the regressive stratigraphic context; (ii) net‐progradational stratigraphic architecture within the succession; (iii) the absence of upward deepening trends and tidal ravinement surfaces; and (iv) architectural relations that demonstrate contemporaneous tidal distributary channel infill and tidal bar accretion at the delta front. The detailed facies analysis of this fine‐grained, tide‐dominated deltaic succession expands the range of depositional models available for the evaluation of ancient tidal successions, which are currently biased towards transgressive, valley‐confined estuarine and coarser grained deltaic depositional systems.  相似文献   

16.
The early Pleistocene clastic succession of the Peri‐Adriatic basin, eastern central Italy, records the filling of a series of piggyback sub‐basins that formed in response to the development of the eastward‐verging Apennine fold‐thrust belt. During the Gelasian (2·588 to 1·806 Ma), large volumes of Apennine‐derived sediments were routed to these basins through a number of slope turbidite systems. Using a comprehensive outcrop‐based dataset, the current study documents the depositional processes, stratigraphic organization, foraminiferal age and palaeodepth, and stratigraphic evolution of one of these systems exposed in the surroundings of the Castignano village. Analysis of foraminiferal assemblages consistently indicates Gelasian deposition in upper bathyal water depths. Sediments exposed in the study area can be broken into seven main lithofacies, reflecting specific gravity‐induced depositional elements and slope background deposition: (i) clast‐supported conglomerates (conglomerate channel‐fill); (ii) amalgamated sandstones (late stage sandstone channel‐fill); (iii) medium to thick‐bedded tabular sandstones (frontal splay sandstones); (iv) thin to thick‐bedded channelized sandstones (sandy channel‐fill); (v) medium to very thin‐bedded sandstones and mudstones (levée‐overbank deposits); (vi) pebbly mudstones and chaotic beds (mudstone‐rich mass‐transport deposits); and (vii) massive mudstones (hemipelagic deposits). Individual lithofacies combine vertically and laterally to form decametre‐scale, disconformably bounded, fining‐upward lithofacies successions that, in turn, stack to form slope valley fills bounded by deeply incised erosion surfaces. A hierarchical approach to the physical stratigraphy of the slope system indicates that it has evolved through multiple cycles of waxing then waning flow energy at multiple scales and that its packaging can be described in terms of a six‐fold hierarchy of architectural elements and bounding surfaces. In this scheme, the whole system (sixth‐order element) is comprised of three distinct fifth‐order stratigraphic cycles (valley fills), which define sixth‐order initiation, growth and retreat phases of slope deposition, respectively; they are separated by discrete periods of entrenchment that generated erosional valleys interpreted to record fifth‐order initiation phases. Backfilling of individual valleys progressed through deposition of two vertically stacked lithofacies successions (fourth‐order elements), which record fifth‐order growth and retreat phases. Fourth‐order initiation phases are represented by erosional surfaces bounding lithofacies successions. The component lithofacies (third‐order element) record fourth‐order growth and retreat phases. Map trends of erosional valleys and palaeocurrent indicators converge to indicate that the sea floor bathymetric expression of a developing thrust‐related anticline markedly influenced the downslope transport direction of gravity currents and was sufficient to cause a major diversion of the turbidite system around the growing structure. This field‐based study permits the development of a sedimentological model that predicts the evolutionary style of mixed coarse‐grained and fine‐grained turbidite slope systems, the internal distribution of reservoir and non‐reservoir lithofacies within them, and has the potential to serve as an analogue for seismic or outcrop‐based studies of slope valley fills developed in actively deforming structural settings and under severe icehouse regimes.  相似文献   

17.
Sedimentological outcrop analysis and sub‐surface ground‐penetrating radar (GPR) surveys are combined to characterize the three‐dimensional sedimentary architecture of Quaternary coarse‐grained fluvial deposits in the Neckar Valley (SW Germany). Two units characterized by different architectural styles are distinguished within the upper part of the gravel body, separated by an erosional unconformity: (i) a lower unit dominated by trough‐shaped depositional elements with erosional, concave‐up bounding surfaces that are filled by cross‐bedded sets of mainly openwork and filled framework gravel; and (ii) an upper unit characterized by gently inclined sheets of massive and openwork gravels with thin, sandy interlayers that show lateral accretion on a lower erosional unconformity. The former is interpreted as confluence scour pool elements formed in a multi‐channel, possibly braided river system, the latter as extensive point bar deposits formed by the lateral migration of a meandering river channel. The lateral accretion elements are locally cut by chute channels mainly filled by gravels rich in fines, and by fine‐grained abandoned channel fills. The lateral accretion elements are associated with gravel dune deposits characterized by steeply inclined cross‐beds of alternating open and filled framework gravel. Floodplain fines with a cutbank and point bar morphology cover the gravel deposits. The GPR images, revealing the three‐dimensional geometries of the depositional elements and their stacking patterns, confirm a change in sedimentary style between the two stratigraphic units. The change occurred at the onset of the Holocene, as indicated by 14C‐dating of wood fragments, and is related to a re‐organization of the fluvial system that probably was driven by climatic changes. The integration of sedimentological and GPR results highlights the heterogeneity of the fluvial deposits, a factor that is important for modelling groundwater flow in valley‐fill aquifers.  相似文献   

18.
The Pennsylvanian to Permian lower Cutler beds comprise a 200 m thick mixed continental and shallow marine succession that forms part of the Paradox foreland basin fill exposed in and around the Canyonlands region of south‐east Utah. Aeolian facies comprise: (i) sets and compound cosets of trough cross‐bedded dune sandstone dominated by grain flow and translatent wind‐ripple strata; (ii) interdune strata characterized by sandstone, siltstone and mudstone interbeds with wind‐ripple, wavy and horizontal planar‐laminated strata resulting from accumulation on a range of dry, damp or wet substrate‐types in the flats and hollows between migrating dunes; and (iii) extensive, near‐flat lying wind‐rippled sandsheet strata. Fluvial facies comprise channel‐fill sandstones, lag conglomerates and finer‐grained overbank sheet‐flood deposits. Shallow marine facies comprise carbonate ramp limestones, tidal sand ridges and bioturbated marine mudstones. During episodes of sand sea construction and accumulation, compound transverse dunes migrated primarily to the south and south‐east, whereas south‐westerly flowing fluvial systems periodically punctuated the dune fields from the north‐east. Several vertically stacked aeolian sequences are each truncated at their top by regionally extensive surfaces that are associated with abundant calcified rhizoliths and bleaching of the underlying beds. These surfaces record the periodic shutdown and deflation of the dune fields to the level of the palaeo‐water‐table. During episodes of aeolian quiescence, fluvial systems became more widespread, forming unconfined braid‐plains that fed sediment to a coastline that lay to the south‐west and which ran approximately north‐west to south‐east for at least 200 km. Shallow marine systems repeatedly transgressed across the broad, low‐relief coastal plain on at least 10 separate occasions, resulting in the systematic preservation of units of marine limestone and calcarenite between units of non‐marine aeolian and fluvial strata, to form a series of depositional cycles. The top of the lower Cutler beds is defined by a prominent and laterally extensive marine limestone that represents the last major north‐eastward directed marine transgression into the basin prior to the onset of exclusively non‐marine sedimentation of the overlying Cedar Mesa Sandstone. Styles of interaction between aeolian, fluvial and marine facies associations occur on two distinct scales and represent the preserved expression of both small‐scale autocyclic behaviour of competing, coeval depositional systems and larger‐scale allocyclic changes that record system response to longer‐term interdependent variations in climatic and eustatic controlling mechanisms. The architectural relationships and system interactions observed in the lower Cutler beds demonstrate that the succession was generated by several cyclical changes in both climate and relative sea‐level, and that these two external controls probably underwent cyclical change in harmony with each other in the Paradox Basin during late Pennsylvanian and Permian times. This observation supports the hypothesis that both climate and eustasy were interdependent at this time and were probably responding to a glacio‐eustatic driving mechanism.  相似文献   

19.
嫩江现代河流沉积体岩相及内部构形要素分析   总被引:10,自引:0,他引:10       下载免费PDF全文
王俊玲  任纪舜 《地质科学》2001,36(4):385-394
嫩江是松辽盆地北部一条多河型河流。本文以黑龙江省富裕县塔哈乡大马岗嫩江现代河流沉积露头为例,运用Miall结构要素分析法对嫩江现代河流沉积体岩相类型、层次界面及内部构形要素进行了系统研究,表明大马岗沉积体主要由块状层理细砾相、大型及小型低角度槽状交错层理细砂相、同沉积变形层理细砂相、波状交错层理细砂相、薄层状粉砂质泥与细砂互层相、微波状层理粉砂相、块状层理泥质粉砂相、水平层理泥相、块状层理粉砂质泥相等16种岩相构成,不同岩相空间分布变化差异较大。在大马岗沉积体内部识别出1~5级层次界面,划分出具有成因意义的7种构形要素:河道、砾质坝、侧向加积沉积体、单一侧积砂层、纹层砂席、砂底形及越岸细粒沉积,这种构形要素的划分丰富了Miall的分类方案。  相似文献   

20.
The Upper Cretaceous Juniper Ridge Conglomerate (JRC) near Coalinga, California, provides a rare, high-quality exposure of a submarine channel to overbank transition. The facies architecture of the JRC comprises a thick, predominantly mudstone sequence overlain by a channellized conglomerate package. Conglomeratic bounding surfaces truncate successions of interbedded turbiditic sandstones and mudstones both vertically and laterally. Thick-bedded, massive sandstones are interbedded with conglomerates. Facies architecture, palaeocurrent indicators, slump features, sandstone percentages and sandstone bed thickness trends lead to the interpretation that these elements comprise channel and overbank facies. A vertical sequence with conglomerate at the base, followed by thick-bedded sandstone, and capped by interbedded turbiditic sandstone and mudstone form a fining-upward lithofacies association that is interpreted as a single channel-fill/overbank system. Three similar lithofacies associations can be related to autocyclic processes of thalweg migration and submarine fan aggradation or to allocyclically driven changes in sediment calibre.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号