首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A second-order libration solution of theIdeal Resonance Problem is construeted using a Lie-series perturbation technique. The Ideal Resonance Problem is characterized by the equations $$\begin{gathered} - F = B(x) + 2\mu ^2 A(x)sin^2 y, \hfill \\ \dot x = - Fy,\dot y = Fx, \hfill \\ \end{gathered} $$ together with the property thatB x vanishes for some value ofx. Explicit expressions forx andy are given in terms of the mean elements; and it is shown how the initial-value problem is solved. The solution is primarily intended for the libration region, but it is shown how, by means of a substitution device, the solution can be extended to the deep circulation regime. The method does not, however, admit a solution very close to the separatrix. Formulae for the mean value ofx and the period of libration are furnished.  相似文献   

2.
A spherically-symmetric static scalar field in general relativity is considered. The field equations are defined by $$\begin{gathered} R_{ik} = - \mu \varphi _i \varphi _k ,\varphi _i = \frac{{\partial \varphi }}{{\partial x^i }}, \varphi ^i = g^{ik} \varphi _k , \hfill \\ \hfill \\ \end{gathered} $$ where ?=?(r,t) is a scalar field. In the past, the same problem was considered by Bergmann and Leipnik (1957) and Buchdahl (1959) with the assumption that ?=?(r) be independent oft and recently by Wyman (1981) with the assumption ?=?(r, t). The object of this paper is to give explicit results with a different approach and under a more general condition $$\phi _{;i}^i = ( - g)^{ - 1/2} \frac{\partial }{{\partial x^i }}\left[ {( - g)^{1/2} g^{ik} \frac{\partial }{{\partial x^k }}} \right] = - 4\pi ( -g )^{ - 1/2} \rho $$ where ?=?(r, t) is the mass or the charge density of the sources of the field.  相似文献   

3.
The Ideal Resonance Problem, defined by the Hamiltonian $$F = B(y) + 2\mu ^2 A(y)\sin ^2 x,\mu \ll 1,$$ has been solved in Garfinkelet al. (1971). As a perturbed simple pendulum, this solution furnishes a convenient and accurate reference orbit for the study of resonance. In order to preserve the penduloid character of the motion, the solution is subject to thenormality condition, which boundsAB" andB' away from zero indeep and inshallow resonance, respectively. For a first-order solution, the paper derives the normality condition in the form $$pi \leqslant max(|\alpha /\alpha _1 |,|\alpha /\alpha _1 |^{2i} ),i = 1,2.$$ Herep i are known functions of the constant ‘mean element’y', α is the resonance parameter defined by $$\alpha \equiv - {\rm B}'/|4AB\prime \prime |^{1/2} \mu ,$$ and $$\alpha _1 \equiv \mu ^{ - 1/2}$$ defines the conventionaldemarcation point separating the deep and the shallow resonance regions. The results are applied to the problem of the critical inclination of a satellite of an oblate planet. There the normality condition takes the form $$\Lambda _1 (\lambda ) \leqslant e \leqslant \Lambda _2 (\lambda )if|i - tan^{ - 1} 2| \leqslant \lambda e/2(1 + e)$$ withΛ 1, andΛ 2 known functions of λ, defined by $$\begin{gathered} \lambda \equiv |\tfrac{1}{5}(J_2 + J_4 /J_2 )|^{1/4} /q, \hfill \\ q \equiv a(1 - e). \hfill \\ \end{gathered}$$   相似文献   

4.
The development of the post-nova light curve of V1500 Cyg inUBV andHβ, for 15 nights in September and October 1975 are presented. We confirm previous reports that superimposed on the steady decline of the light curve are small amplitude cyclic variations. The times of maxima and minima are determined. These together with other published values yield the following ephemerides from JD 2 442 661 to JD 2 442 674: $$\begin{gathered} {\text{From}} 17 {\text{points:}} {\text{JD}}_{ \odot \min } = 2 442 661.4881 + 0_{^. }^{\text{d}} 140 91{\text{n}} \hfill \\ \pm 0.0027 \pm 0.000 05 \hfill \\ {\text{From}} 15 {\text{points:}} {\text{JD}}_{ \odot \max } = 2 442 661.5480 + 0_{^. }^{\text{d}} 140 89{\text{n}} \hfill \\ \pm 0.0046 \pm 0.0001 \hfill \\ \end{gathered} $$ with standard errors of the fits of ±0 . d 0052 for the minima and ±0 . d 0091 for the maxima. Assuming V1500 Cyg is similar to novae in M31, we foundr=750 pc and a pre-nova absolute photographic magnitude greater than 9.68.  相似文献   

5.
The ratio between the Earth's perihelion advance (Δθ) E and the solar gravitational red shift (GRS) (Δø s e)a 0/c 2 has been rewritten using the assumption that the Newtonian constant of gravitationG varies seasonally and is given by the relationship, first found by Gasanalizade (1992b) for an aphelion-perihelion difference of (ΔG)a?p . It is concluded that $$\begin{gathered} (\Delta \theta )_E = \frac{{3\pi }}{e}\frac{{(\Delta \phi _{sE} )_{A_0 } }}{{c^2 }}\frac{{(\Delta G)_{a - p} }}{{G_0 }} = 0.038388 \sec {\text{onds}} {\text{of}} {\text{arc}} {\text{per}} {\text{revolution,}} \hfill \\ \frac{{(\Delta G)_{a - p} }}{{G_0 }} = \frac{e}{{3\pi }}\frac{{(\Delta \theta )_E }}{{(\Delta \phi _{sE} )_{A_0 } /c^2 }} = 1.56116 \times 10^{ - 4} . \hfill \\ \end{gathered} $$ The results obtained here can be readily understood by using the Parametrized Post-Newtonian (PPN) formalism, which predicts an anisotropy in the “locally measured” value ofG, and without conflicting with the general relativity.  相似文献   

6.
Non-linear stability of the libration point L 4 of the restricted three-body problem is studied when the more massive primary is an oblate spheroid with its equatorial plane coincident with the plane of motion, Moser's conditions are utilised in this study by employing the iterative scheme of Henrard for transforming the Hamiltonian to the Birkhoff's normal form with the help of double D'Alembert's series. It is found that L 4 is stable for all mass ratios in the range of linear stability except for the three mass ratios: $$\begin{gathered} \mu _{c1} = 0.0242{\text{ }}...{\text{ }}{}^{{\text{\_\_}}}0.1790{\text{ }}...{\text{ }}A_1 , \hfill \\ \mu _{c2} = 0.0135{\text{ }}...{\text{ }}{}^{{\text{\_\_}}}0.0993{\text{ }}...{\text{ }}A_1 , \hfill \\ \mu _{c3} = 0.0109{\text{ }}...{\text{ }}{}^{{\text{\_\_}}}0.0294{\text{ }}...{\text{ }}A_1 . \hfill \\ \end{gathered} $$   相似文献   

7.
Dynamical systems with three degrees of freedom can be reduced to the study of a fourdimensional mapping. We consider here, as a model problem, the mapping given by the following equations: $$\left\{ \begin{gathered} x_1 = x_0 + a_1 {\text{ sin (}}x_0 {\text{ + }}y_0 {\text{)}} + b{\text{ sin (}}x_0 {\text{ + }}y_0 {\text{ + }}z_{\text{0}} {\text{ + }}t_{\text{0}} {\text{)}} \hfill \\ y_1 = x_0 {\text{ + }}y_0 \hfill \\ z_1 = z_0 + a_2 {\text{ sin (}}z_0 {\text{ + }}t_0 {\text{)}} + b{\text{ sin (}}x_0 {\text{ + }}y_0 {\text{ + }}z_{\text{0}} {\text{ + }}t_{\text{0}} {\text{) (mod 2}}\pi {\text{)}} \hfill \\ t_1 = z_0 {\text{ + }}t_0 \hfill \\ \end{gathered} \right.$$ We have found that as soon asb≠0, i.e. even for a very weak coupling, a dynamical system with three degrees of freedom has in general either two or zero isolating integrals (besides the usual energy integral).  相似文献   

8.
The McGehee's study of the triple collision of the 3-body problem is here applied for the stability of an equilibrium. Let us consider the homogeneous Lagrangian: $$L = \frac{{\dot x^2 + \dot y^2 }}{2} + U(x,y)$$ whereU is polynomial, with degreek. We establish a necessary and sufficient condition onU for the stability of \(\omega (x = y = \dot x = \dot y = 0)\) .  相似文献   

9.
In this paper, we study the following three-dimensional mappings $$T:\left\{ \begin{gathered} x_{n + 1} = x_n + y_n + B sin z_n , \hfill \\ y_{n + 1} = y_n + A sin x_{n + 1} , \hfill \\ z_{n + 1} = z_n + C sin y_{n + 1} + D, \hfill \\ \end{gathered} \right.\left( {\bmod 2\Pi } \right)$$ where A, B, C, D are parameters. When D>BC and 2π/D is an irrational number, we find numerically-two-dimensional and one-dimensional invariant manifolds, but when DBC and 2π/D is a rational number we find numerically one-dimensional manifolds and the fixed points for some cycles.  相似文献   

10.
From new observational material we made a curve of growth analysis of the penumbra of a large, stable sunspot. The analysis was done relative to the undisturbed photosphere and gave the following results (⊙ denotes photosphere, * denotes penumbra): $$\begin{gathered} (\theta ^ * - \theta ^ \odot )_{exe} = 0.051 \pm 0.007 \hfill \\ {{\xi _t ^ * } \mathord{\left/ {\vphantom {{\xi _t ^ * } {\xi _t }}} \right. \kern-\nulldelimiterspace} {\xi _t }}^ \odot = 1.3 \pm 0.1 \hfill \\ {{P_e ^ * } \mathord{\left/ {\vphantom {{P_e ^ * } {P_e ^ \odot = 0.6 \pm 0.1}}} \right. \kern-\nulldelimiterspace} {P_e ^ \odot = 0.6 \pm 0.1}} \hfill \\ {{P_g ^ * } \mathord{\left/ {\vphantom {{P_g ^ * } {P_g }}} \right. \kern-\nulldelimiterspace} {P_g }}^ \odot = 1.0 \pm 0.2 \hfill \\ \end{gathered} $$ The results of the analysis are in satisfactory agreement with the penumbral model as published by Kjeldseth Moe and Maltby (1969). Additionally we tested this model by computing the equivalent widths of 28 well selected lines and comparing them with our observations.  相似文献   

11.
For the conservative, two degree-of-freedom system with autonomous potential functionV(x,y) in rotating coordinates; $$\dot u - 2n\upsilon = V_x , \dot \upsilon + 2nu = V_y $$ , vorticity (v x -u y ) is constant along the orbit when the relative velocity field is divergence-free such that: $$u(x,y,t) = \psi _y , \upsilon (x,y,t) = - \psi _x $$ . Unlike isoenergetic reduction using the Jacobi, integral and eliminating the time,non-singular reduction from fourth to second-order occurs when (u,v) are determined explicitly as functions of their arguments by solving for ψ (x, y, t). The orbit function ψ satisfies a second-order, non-linear partial differential equation of the Monge Ampere type: $$2(\psi _{xx} \psi _{yy} - \psi _{xy}^2 ) - 2(\psi _{xx} + \psi _{yy} ) + V_{xx} + V_{yy} = 0$$ . Isovortical orbits in the rotating frame arenot level curves of ψ because it contains time explicitly due to coriolis effects. Rather, (x, y) coordinates along the orbit are obtained, from (u, v) either by numerical integration of the kinematic equations, or by partial differentiation of the Legendre transform ? of ψ. In the latter case, ? is shown to satisfy a non-linear, second-order partial differential equation in three independent variables, derived from the Monge-Ampere Equation. Complete reduction to quadrature is possible when space-time symmetries exist, as in the case of central force motion.  相似文献   

12.
The author's previous studies concerning the Ideal Resonance Problem are enlarged upon in this article. The one-degree-of-freedom Hamiltonian system investigated here has the form $$\begin{array}{*{20}c} { - F = B(x) + 2\mu ^2 A(x)\sin ^2 y + \mu ^2 f(x,y),} \\ {\dot x = - F_y ,\dot y = F_x .} \\ \end{array}$$ The canonically conjugate variablesx andy are respectively the momentum and the coordinate, andμ 2 is a small positive constant parameter. The perturbationf is o (A) and is represented by a Fourier series iny. The vanishing of ?B/?xB (1) atx=x 0 characterizes the resonant nature of the problem. With a suitable choice of variables, it is shown how a formal solution to this perturbed form of the Ideal Resonance Problem can be constructed, using the method of ‘parallel’ perturbations. Explicit formulae forx andy are obtained, as functions of time, which include the complete first-order contributions from the perturbing functionf. The solution is restricted to the region of deep resonance, but those motions in the neighbourhood of the separatrix are excluded.  相似文献   

13.
If a dynamical problem ofN degress of freedom is reduced to the Ideal Resonance Problem, the Hamiltonian takes the form 1 $$\begin{array}{*{20}c} {F = B(y) + 2\mu ^2 A(y)\sin ^2 x_1 ,} & {\mu \ll 1.} \\ \end{array} $$ Herey is the momentum-vectory k withk=1,2?N, x 1 is thecritical argument, andx k fork>1 are theignorable co-ordinates, which have been eliminated from the Hamiltonian. The purpose of this Note is to summarize the first-order solution of the problem defined by (1) as described in a sequence of five recent papers by the author. A basic is the resonance parameter α, defined by 1 $$\alpha \equiv - B'/\left| {4AB''} \right|^{1/2} \mu .$$ The solution isglobal in the sense that it is valid for all values of α2 in the range 1 $$0 \leqslant \alpha ^2 \leqslant \infty ,$$ which embrances thelibration and thecirculation regimes of the co-ordinatex 1, associated with α2 < 1 and α2 > 1, respectively. The solution includes asymptotically the limit α2 → ∞, which corresponds to theclassical solution of the problem, expanded in powers of ε ≡ μ2, and carrying α as a divisor. The classical singularity at α=0, corresponding to an exact commensurability of two frequencies of the motion, has been removed from the global solution by means of the Bohlin expansion in powers of μ = ε1/2. The singularities that commonly arise within the libration region α2 < 1 and on the separatrix α2 = 1 of the phase-plane have been suppressed by means of aregularizing function 1 $$\begin{array}{*{20}c} {\phi \equiv \tfrac{1}{2}(1 + \operatorname{sgn} z)\exp ( - z^{ - 3} ),} & {z \equiv \alpha ^2 } \\ \end{array} - 1,$$ introduced into the new Hamiltonian. The global solution is subject to thenormality condition, which boundsAB″ away from zero indeep resonance, α2 < 1/μ, where the classical solution fails, and which boundsB′ away from zero inshallow resonance, α2 > 1/μ, where the classical solution is valid. Thedemarcation point 1 $$\alpha _ * ^2 \equiv {1 \mathord{\left/ {\vphantom {1 \mu }} \right. \kern-\nulldelimiterspace} \mu }$$ conventionally separates the deep and the shallow resonance regions. The solution appears in parametric form 1 $$\begin{array}{*{20}c} {x_\kappa = x_\kappa (u)} \\ {y_1 = y_1 (u)} \\ {\begin{array}{*{20}c} {y_\kappa = conts,} & {k > 1,} \\ \end{array} } \\ {u = u(t).} \\ \end{array} $$ It involves the standard elliptic integralsu andE((u) of the first and the second kinds, respectively, the Jacobian elliptic functionssn, cn, dn, am, and the Zeta functionZ (u).  相似文献   

14.
RecentR-matrix calculations of electron impact excitation rates in Ov are used to derive the emission line intensity ratios (in energy units) $$\begin{gathered} R_1 = I(2s2p^{ 3} P - 2p^{2 3} P)/I(2s^{2 1} S_0 - 2s2p^{ 1} P_1 ) = I(761.1\mathop A\limits^ \circ )/I(629.7\mathop A\limits^ \circ ), \hfill \\ R_2 = I(2s^{2 1} S_0 - 2s2p^{ 3} P_1 )/I(2s^{2 1} S_0 - 2s2p^{ 1} P_1 ) = I(1218.4\mathop A\limits^ \circ )/I(629.7\mathop A\limits^ \circ ), \hfill \\ \end{gathered} $$ and $$R_3 = I(2s2p^{ 1} P_1 - 2p^{2 1} S_0 )/I(2s^{2 1} S_0 - 2s2p^{ 1} P_1 ) = I(774.5\mathop A\limits^ \circ )/I(629.7\mathop A\limits^ \circ )$$ as a function of electron temperature (T e) and density (N e). These results are presented as plots ofR 1 vsR 2, andR 1 vsR 3, which should allowboth N e andT e to be deduced for the Ov line emitting region of a plasma. Electron densities derived from the (R 1,R 2) and (R 1,R 3) diagrams in conjunction with observational data for several solar features obtained with the Harvard S-055 spectrometer on boardSkylab are found to be compatible, and in good agreement with values ofN e estimated from line ratios in species formed at similar electron temperatures to Ov. In addition, values ofT e determined from (R 1,R 2) and (R 1,R 3) are generally close to that expected theoretically. These results provide experimental support for the accuracy of the diagnostic calculations presented in this paper, and hence the atomic data used in their derivation.  相似文献   

15.
The Ideal Resonance Problem is defined by the Hamiltonian $$F = B(y) + 2\varepsilon A(y) \sin ^2 x,\varepsilon \ll 1.$$ The classical solution of the Problem, expanded in powers of ε, carries the derivativeB′ as a divisor and is, therefore, singular at the zero ofB′, associated with resonance. With α denoting theresonance parameter, defined by $$\alpha \equiv - B'/|4AB''|^{1/2} \mu ,\mu = \varepsilon ^{1/2} ,$$ it is shown here that the classical solution is valid only for $$\alpha ^2 \geqslant 0(1/\mu ).$$ In contrast, the global solution (Garfinkelet al., 1971), expanded in powers ofμ1/2, removes the classical singularity atB′=0, and is valid for all α. It is also shown here that the classical solution is an asymptotic approximation, for largeα 2, of the global solution expanded in powers ofα ?2. This result leads to simplified expressions for resonancewidth and resonantamplification. The two solutions are compared with regard to their general behavior and their accuracy. It is noted that the global solution represents a perturbed simple pendulum, while the classical solution is the limiting case of a pendulum in a state offast circulation.  相似文献   

16.
The non-linear stability of L 4 in the restricted three-body problem has been studied when the bigger primary is a triaxial rigid body with its equatorial plane coincident with the plane of motion. It is found that L 4 is stable in the range of linear stability except for three mass ratios:
where A1, A2 depend upon the lengths of the semi axes of the triaxial rigid body. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
If a satellite orbit is described by means of osculating Jacobi α's and β's of a separable problem, the paper shows that a perturbing forceF makes them vary according to $$\dot \alpha _\kappa = {\text{F}} \cdot \partial {\text{r/}}\partial \beta _k {\text{ }}\dot \beta _k = {\text{ - F}} \cdot \partial {\text{r/}}\partial \alpha _k ,{\text{ (}}k = 1,2,3).{\text{ (A1)}}$$ Herer is the position vector of the satellite andF is any perturbing force, conservative or non-conservative. There are two special cases of (A1) that have been previously derived rigorously. If the reference orbit is Keplerian, equations equivalent to (A1), withF arbitrary, were derived by Brouwer and Clemence (1961), by Danby (1962), and by Battin (1964). IfF=?gradV 1(t), whereV 1 may or may not depend explicitly on the time, Equations (A1) reduce to the well known forms (e.g. Garfinkel, 1966) $$\dot \alpha _\kappa = {\text{ - }}\partial V_1 {\text{/}}\partial \beta _k {\text{ }}\dot \beta _k = \partial V_1 {\text{/}}\partial \alpha _k ,{\text{ (}}k = 1,2,3).{\text{ (A2)}}$$ holding for all separable reference orbits. Equations (A1) can of course be guessed from Equations (A2), if one assumes that \(\dot \alpha _k (t)\) and \(\dot \beta _k (t)\) depend only onF(t) and thatF(t) can always be modeled instantaneously as a potential gradient. The main point of the present paper is the rigorous derivation of (A1), without resort to any such modeling procedure. Applications to the Keplerian and spheroidal reference orbits are indicated.  相似文献   

18.
Stars are gravitationally stabilized fusion reactors changing their chemical composition while transforming light atomic nuclei into heavy ones. The atomic nuclei are supposed to be in thermal equilibrium with the ambient plasma. The majority of reactions among nuclei leading to a nuclear transformation are inhibited by the necessity for the charged participants to tunnel through their mutual Coulomb barrier. As theoretical knowledge and experimental verification of nuclear cross sections increases it becomes possible to refine analytic representations for nuclear reaction rates. Over the years various approaches have been made to derive closed-form representations of thermonuclear reaction rates (Critchfield, 1972; Haubold and John, 1978; Haubold, Mathai and Anderson, 1987). They show that the reaction rate contains the astrophysical cross section factor and its derivatives which has to be determined experimentally, and an integral part of the thermonuclear reaction rate independent from experimental results which can be treated by closed-form representation techniques in terms of generalized hypergeometric functions. In this paper mathematical/statistical techniques for deriving closed-form representations of thermonuclear functions, particularly the four integrals $$\begin{gathered} I_1 (z,v)\mathop = \limits^{def} \int\limits_0^\infty {y^v e^{ - y} e^{ - zy^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} } dy,} \hfill \\ I_2 (z,d,v)\mathop = \limits^{def} \int\limits_0^\infty {y^v e^{ - y} e^{ - zy^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} } dy,} \hfill \\ I_3 (z,t,v)\mathop = \limits^{def} \int\limits_0^\infty {y^v e^{ - y} e^{ - z(y + 1)^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} } dy,} \hfill \\ I_4 (z,\delta ,b,v)\mathop = \limits^{def} \int\limits_0^\infty {y^v e^{ - y} e^{ - by^\delta } e^{ - zy^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} } dy,} \hfill \\ \end{gathered} $$ will be summarized and numerical results for them will be given. The separation of thermonuclear functions from thermonuclear reaction rates is our preferred result. The purpose of the paper is also to compare numerical results for approximate and closed-form representations of thermonuclear functions. This paper completes the work of Haubold, Mathai, and Anderson (1987).  相似文献   

19.
The Ideal Resonance Problem in its normal form is defined by the Hamiltonian (1) $$F = A (y) + 2B (y) sin^2 x$$ with (2) $$A = 0(1),B = 0(\varepsilon )$$ where ? is a small parameter, andx andy a pair of canonically conjugate variables. A solution to 0(?1/2) has been obtained by Garfinkel (1966) and Jupp (1969). An extension of the solution to 0(?) is now in progress in two papers ([Garfinkel and Williams] and [Hori and Garfinkel]), using the von Zeipel and the Hori-Lie perturbation methods, respectively. In the latter method, the unperturbed motion is that of a simple pendulum. The character of the motion depends on the value of theresonance parameter α, defined by (3) $$\alpha = - A\prime /|4A\prime \prime B\prime |^{1/2} $$ forx=0. We are concerned here withdeep resonance, (4) $$\alpha< \varepsilon ^{ - 1/4} ,$$ where the classical solution with a critical divisor is not admissible. The solution of the perturbed problem would provide a theoretical framework for an attack on a problem of resonance in celestial mechanics, if the latter is reducible to the Ideal form: The process of reduction involves the following steps: (1) the ration 1/n2 of the natural frequencies of the motion generates a sequence. (5) $$n_1 /n_2 \sim \left\{ {Pi/qi} \right\},i = 1, 2 ...$$ of theconvergents of the correspondingcontinued fraction, (2) for a giveni, the class ofresonant terms is defined, and all non-resonant periodic terms are eliminated from the Hamiltonian by a canonical transformation, (3) thedominant resonant term and itscritical argument are calculated, (4) the number of degrees of freedom is reduced by unity by means of a canonical transformation that converts the critical argument into an angular variable of the new Hamiltonian, (5) the resonance parameter α (i) corresponding to the dominant term is then calculated, (6) a search for deep resonant terms is carried out by testing the condition (4) for the function α(i), (7) if there is only one deep resonant term, and if it strongly dominates the remaining periodic terms of the Hamiltonian, the problem is reducible to the Ideal form.  相似文献   

20.
A two degree-of-freedom, conservative system is reduced to a single degree-of-freedom, kinematic system with Hamiltonian integral under the change of independent variable: $$dt = \zeta dt (\zeta = \upsilon _x - \upsilon _y )$$ where ζ is the curl (or vorticity) of the velocity field with cartesian inertial componentsu(x, y, t) andv(x, y, t). In the autonomous case whenu t=v t=0, orbits are globally represented by the level curves of an autonomous Hamiltonian functionH(x,y) satisfying a second-order quasilinear partial differential equation (Szebehely's Equation): $$2(H + U)\left( {H_{xx} H_y^2 - 2H_{xy} H_x H_y + H_{yy} H_x^2 } \right) + (H_x U_x + H_y U_y )\left( {H_x^2 + H_y^2 } \right) = 0$$ whereU(x, y) is the autonomous potential function. An inversion of dependent and independent variables reduces this equation to a second-order, ordinary differential equation for a function specifying the orbital curve. The true time variable is recovered by evaluating a quadrature. Fundamental differences exist between this approach and Hamilton-Jacobi theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号