首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The upper part of the Lower Cambrian succession in northeast Kangaroo Island comprises three interbedded facies associations. The fine-grained association is composed of siltstone, mudstone and minor sandstone. It contains flat lamination and abundant ripple cross-lamination which shows bipolar palaeocurrents, and occurs in combinations of flaser bedding, lenticular bedding and wavy lamination. Although body fossils are relatively rare, trilobite traces and desiccation cracks are common, and the association is interpreted as a predominantly subtidal to intertidal deposit. The conglomerate facies association contains horizontally bedded cobble to boulder conglomerate, with subordinate trough cross-stratified coarse sandstone to granule/pebble conglomerate. Fabrics and structures in the coarse conglomerates are consistent with alluvial transport (stream and debris flow), but not beach deposition. The conglomerate association is attributed to tectonic uplift and erosion of a Precambrian-Lower Cambrian succession developed adjacent to the present north coast of Kangaroo Island. Southward progradation of an alluvial fan complex occurred across east-west oriented tidal flats on which limited wave activity reworked sand and fine gravel, but not coarser material. The sandstone facies association mainly comprises trough cross-stratified and plane-laminated sandstone, the latter with current lineation predominantly sub-parallel to the east-west shoreline. Trough cross-stratification is ascribed to onshore waves and longshore currents, and current lineation to predominantly shore-parallel tidal currents, augmented by longshore drift and storm surge. Tectonic movements gave rise to cycles of transgression and regression as tidal and alluvial processes dominated alternately.  相似文献   

2.
措勤盆地是西藏近年来矿产勘查的重要地区之一,其北部川巴地区是目前的煤炭资源调查远景地区。川巴地区下白垩统由下而上可划分为则弄群、多尼组和郎山组。在对川巴地区下白垩统露头剖面沉积特征研究的基础上,结合区域地质资料,共识别出浅海泥质陆棚、碳酸盐岩台地、混积台地、潮坪、辫状河三角洲、扇三角洲和辫状河7种沉积相。则弄群岩性主要为火山碎屑岩、细砾岩、含砾粗砂岩、砂岩,发育扇三角洲相;多尼组岩性主要为细砾岩、含砾粗砂岩、砂岩、泥岩及灰岩,夹炭质泥岩和薄煤层,发育辫状河、辫状河三角洲、混积台地和浅海泥质陆棚相;郎山组岩性主要为灰岩,夹细砂岩、粉砂岩及泥岩,发育潮坪、混积台地和碳酸盐岩台地相。基于沉积相分析的聚煤规律研究,指出川巴地区主要成煤环境为多尼组辫状河三角洲平原分流间湾,阿格桑至川巴一线及其以东一带地区,是本区主要的聚煤作用带。  相似文献   

3.
The depositional facies and environments were unraveling by studying 21 subsurface sections from ten oilfields in the central and southern Iraq and a large number of thin sections of the Nahr Umr (siliciclastic deposit) Formation (Albian). This formation is mainly composed of sandstone interlaminated with minor siltstone and shale, with occurrence of thin limestone beds. Nahr Umr Formation is subdivided into three lithostratigraphic units of variable thicknesses on the basis of lithological variations and log characters. Mineralogically and texturally, mature quartz arenite and sandstones are the common type of the Nahr Umr Formation. The sandstones are cemented by silica and calcite material and have had a complex digenetic history. Compaction, dissolution, and replacements are the main diagenetic processes. Prodelta, distal bar, distributary mouth bar, distributary channel, over bank, and tidal channel are the main depositional environments recognized for the Nahr Umr Formation, within the studied wells. This formation was deposited in shallow marine and fluvial–deltaic environments and exhibit progradational succession of facies. Eight sedimentary facies that have been identified in the Nahr Umr Formation include claystone lithofacies, claystone siltstone lithofacies, lenticular-bedded sandstone–mudstone lithofacies, wavy-bedded sandstone–mudstone lithofacies, flaser-bedded sandstone–mudstone lithofacies, parallel and cross lamination sandstone lithofacies, trough cross-bedded sandstone lithofacies, and planar cross-bedded sandstone lithofacies. The depositional model of the Nahr Umr Formation environment was built based on the lithofacies association concepts.  相似文献   

4.
The Lower Cambrian Chilhowee Group of northeastern Tennessee consists of the Unicoi, Hampton and Erwin Formations, and is divided into four facies. The conglomerate facies occurs only within the lower 200 m of measured section (the Unicoi Formation) and consists of fine-grained to pebbly quartz wacke with rare thin beds of laminated siltstone. Low-angle to horizontally laminated, fine-grained sandstone with laminae and lenses of granules and pebbles represents upper flow-regime, overbank deposition within a braided stream system that was close to a coastline. Medium-scale, planar-tabular cross-stratified conglomerate in which megaripple bedforms are preserved is interpreted as representing deposition in interbar pools of braided channels, as flood stage waned and larger bedforms ceased to migrate. Large-scale, planar-tabular cross-stratified conglomerate beds represent migration of large transverse bars within a broad braided stream channel during high flood stage. The sandstone facies occurs throughout the Chilhowee Group, and is therefore interbedded with all other facies. It consists of mainly medium- to very coarse-grained, subarkosic to arkosic arenite. Thinly interbedded, laminated siltstone and sandstone, which may exhibit wavy or lenticular bedding, represents deposition during slack water periods between ebb and flood tides. Large-scale planar-tabular and trough cross-stratification reflects deposition within the deepest areas of subtidal channels, whereas medium-scale cross-stratification represents deposition in shallower water on shoals separating channels. Fining- and thinning-upward sequences most likely resulted from the longshore migration of channels and shoals. The hummocky facies occurs only in the Erwin Formation and consists of horizontally laminated to hummocky stratified, fine-grained arkosic to subarkosic arenite interbedded with equal amounts of bioturbated mudstone. It represents deposition between storm and fairweather wave-base by combined-flow storm currents. The quartz arenite facies is characterized by an absence of fine-grained units and lithologically consists of a super-mature, medium- to coarse-grained quartz arenite. Large-scale planar-tabular cross-stratification and abundant low-angle cross-stratification with rare symmetrical ripples (lower quartz arenite facies) occurs interbedded with the braided fluvial conglomerate facies, and was deposited within either a ridge-and-runnel system or a system of nearshore bars. Large-scale, planar-tabular cross-stratification (upper quartz arenite facies), which forms the top of two 40 m-thick coarsening-upward sequences of the type: hummocky faciessandstone faciesquartz arenite facies, probably represents deposition on sand ridges that formed on a sand-starved shelf as transgression caused the detachment and reworking of shoreface channel-shoal couplets. Palaeocurrent data for the Chilhowee Group are unimodal but widely dispersed from 0° to 180°, and exhibit a minor mode to the west. The data are interpreted to reflect the influence of longshore, tidal and storm currents. The ichnofossil assemblage changes upsection from one characterized only by Paleophycus to a Skolithos ichnofacies and finally to a Cruziana ichnofacies. The facies sequence, biogenic and palaeocurrent data reflect the interaction through time of (I) non-marine and marine processes; and (2) transgression coupled with shoreline progradation. The Chilhowee Group represents an overall deepening from terrestrial deposition to a marine shoreface that experienced both longshore and tidal currents, and finally to a storm shelf environment that periodically shoaled upward.  相似文献   

5.
The Guará and Botucatu formations comprise an 80 to 120 m thick continental succession that crops out on the western portion of the Rio Grande do Sul State (Southernmost Brazil). The Guará Formation (Upper Jurassic) displays a well-defined facies shift along its outcrop belt. On its northern portion it is characterised by coarse-grained to conglomeratic sandstones with trough and planar cross-bedding, as well as low-angle lamination, which are interpreted to represent braided river deposits. Southwards these fluvial facies thin out and interfinger with fine- to medium-grained sandstones with large-scale cross-stratification and horizontal lamination, interpreted as eolian dune and eolian sand sheets deposits, respectively. The Botucatu Formation is characterised by large-scale cross-strata formed by successive climbing of eolian dunes, without interdune and/or fluvial accumulation (dry eolian system). The contact between the Guará and the Botucatu formations is delineated by a basin-wide deflation surface (supersurface). The abrupt change in the depositional conditions that took place across this supersurface suggests a major climate change, from semi-arid (Upper Jurassic) to hyper-arid (Lower Cretaceous) conditions. A rearrangement of the Paraná Basin depocenters is contemporaneous to this climate change, which seems to have changed from a more restrict accumulation area in the Guará Formation to a wider sedimentary context in the Botucatu Formation.  相似文献   

6.
本文在详细描述甜水海-麻扎地块上石炭统恰提尔群B组地层剖面基础上,结合野外沉积构造、室内薄片鉴定、粒度分析成果,讨论了该组的岩石组合特征和沉积环境。其岩性组合为细砂岩、粉砂岩、泥岩、页岩等碎屑岩类,为一套湖陆过渡的三角洲沉积,可进一步划分为三角洲平原、三角洲前缘与前三角洲3个沉积亚相,其物源区为再循环造山带、混合物源区。  相似文献   

7.
塔中地区志留系自下而上包括柯坪塔格组(下沥青砂岩段、灰色泥岩段、上沥青砂岩段)、塔塔埃尔塔格组(红色泥岩段和砂泥岩段)、依木干他乌组。通过对塔中地区志留系钻井岩心观察和盆地西北部阿克苏、柯坪、巴楚等地露头剖面的观察,塔中地区志留系下沥青砂岩段岩石类型主要为绿灰色泥岩、粉砂质泥岩、泥质粉砂岩、粉砂岩、极细砂岩和细砂岩,部分井发育中细砂岩和中砂岩,砂岩层中常见大量撕裂状泥砾和黄铁矿,发育水平纹理、平行层理、低角度交错层理和楔状交错层理,在露头剖面中可见槽状交错层理。发育的主要沉积相类型为前滨-临滨、浅海陆棚、受风暴影响的浅海砂坝或潮汐砂脊等。在部分井的志留系底部还可见砂砾岩沉积,砾石磨圆较好,砾石成分为石英岩、燧石、泥砾、砂岩砾及其它变质岩砾,向上过渡为中粗砂岩和中细砂岩,发育板状和槽状交错层理,具向上变细的粒序结构,具河流相沉积特征,如塔中30、塔中161井的志留系底部。总体认为塔中地区志留系柯坪塔格组下沥青砂岩段为无障壁滨线-陆棚为主的沉积体系,具有海侵背景下受风暴控制的滨线-陆棚沉积模式, 随海侵发展形成宽度几十公里以上的滨线-陆棚砂岩沉积体,垂向上为滨岸砂到陆棚砂的演化序列。上沥青砂岩段以潮坪沉积为主,并有部分前滨和临滨沉积,横向相变,垂向交互叠置,在砂体发育程度和规模上较下沥青砂岩段差。根据岩心物性和测井物性分析,浅海陆棚沙坝和滨岸沙坝砂岩储集性好于潮坪相砂岩。  相似文献   

8.
The Eocene Nanka Formation of the Anambra basin in southern Nigeria consists, in its type area, of four sand subunits each 50–90 m thick, separated by three gypsiferous glauconitic shales each about 2.5 m thick. The sand subunits are unconsolidated, uncemented quartzarenites, planar and trough cross-stratified, flaser and lenticular bedded, and burrowed (Ophiomorpha and Skolithos). Texturally the sands are medium to coarse, moderately sorted, positively skewed and leptokurtic. Two parallel belts, each with a distinctive paleocurrent pattern, are identified: one lying along the present eastern and northern margin of the formation, characterised by a shore-normal paleocurrent pattern; and the other lying on the west, distinguished by a shore-parallel orientation.An integrated analysis of stratigraphic, petrographic, textural, and structural data of the formation enabled reconstruction of an environmental model for the sand body. The model depicts sedimentation in a tidally influenced marine shoreline environment in which an intertidal and a subtidal zone can be delineated. Each zone is characterised by an assemblage of several sedimentary features. Interlaminations of shale and thin sand lenses, gypsiferous and glauconitic shale beds, flaser and lenticular bedding, herringbone structures, and shore-normal paleocurrent pattern are among the features that delineate the intertidal facies. The abundantly cross-stratified, coarse elastic sand-bars with rapid fining-upward sequences, burrowed pebbly horizons overlain by fine sand, and shoreparallel paleocurrent are the distinguishing features of the subtidal facies. The sandflat facies of the intertidal zone and the sandbar facies of the subtidal zone are, however, inseparable in most cases.  相似文献   

9.
The Cretaceous Uhangri Formation, SW Korea: lacustrine margin facies   总被引:1,自引:0,他引:1  
The Uhangri Formation forms part of the Cretaceous sedimentary sequence deposited in a series of inland basins in the south-western Korean Peninsula. It comprises an approximately 400-m-thick epiclastic sequence of conglomerate, (gravelly) sandstone, cherty mudstone and black shale. The entire sequence can be represented by 16 distinctive sedimentary facies organized into four facies associations. Facies association I is characterized by thick homogeneous brownish siltstone, wedge-shaped disorganized conglomerate and thinly interlayered gravelly sandstone units. The siltstone units were formed by large floods submerging the alluvial fan fringe (floodplain), whereas the conglomerate and gravelly sandstone units were deposited by sheetfloods and debris flows. Facies association II consists of stratified conglomerate — gravelly sandstone, laminated sandstone and sandstone/siltstone couplets which form fining-upward cycles. Some facies units are low-angle trough cross-bedded and show broad channel geometries. This association represents subaqueous delta lobes fed by high- and low-concentration turbidity currents in the distal delta realm. Facies association III is characterized, by wedged conglomerate and gravelly sandstone facies with interfingered massive sandstone bounded by scoured bases. It represents a delta front where distributary channels and mouth bars are dominant. Facies association IV consists of laterally continuous sequence of laminated black shale, crudely stratified sandstone and convoluted sandstone/cherty mudstone. This facies association is suggestive of depositional processes controlled by chemical equilibrium resulting from an interaction between density inflows and lake water. The cherty mudstone resulted from inorganic precipitation from siliceous solution provided by acidic volcanism. The Uhangri sequence generally shows a fining-upward trend with a transition from alluvial fan fringe, coarse-grained subaqueous delta, to shallow lake. The retrogradation was probably due to continuous subsidence related to continental rifting in the oblique-slip mobile zone.  相似文献   

10.
The Dupi Tila Formation is composed of yellow to light brown medium to very fine moderately hard to loose sandstone, siltstone, silty clay, mudstone and shale with some conglomerates with clasts of petrified wood. The lithofacies of matrix supported conglomerate, trough cross bedded conglomerate, massive sandstone, trough cross bedded sandstone, planar cross bedded sandstone, ripple cross laminated sandstone-siltstone, flaser laminated sandstone-shale, lenticular laminated sandstone-siltstone-shale, parallel laminated sandstone-siltstone, wavy laminated shale, parallel laminated blue shale, and mudstone are delineated within this formation. Based on the grain size, sedimentary structures, water depth and genesis of individual facies, facies are grouped into three types of facies associations like (i) coarse-grained conglomerate facies association in relation to tractive current deposits of alluvial fan set up at the base of litho-succession (FAC), (ii) medium to fine-grained sandstone-siltstone-mudstone facies association or facies association in relation to strong tide (FAT) characterizing the middle part of litho-succession, (iii) very fine-grained sandstone-siltstone-mudstone facies association in relation to less frequent weak tide or heterolithic facies association (FAHL) characterizing upper part of litho-succession and shallow marine facies association (FASM) composing the uppermost litho-succession. Presence of gluconite indicates that the depositional environment was shallow to deep marine. The dominant paleoflow direction during the deposition of Dupi Tila Formation was toward southeast to southwestern direction. The rivers were of braided type at the piedmont alluvial depositional set up at the lower part, which later changed to estuarine-tidal flat type environmental set up in the middle part to upper part and paleo-environment was shallow marine in the uppermost part.  相似文献   

11.
The 600 m thick prograding sedimentary succession of Wagad ranging in age from Callovian to Early Kimmeridgian has been divided into three formations namely, Washtawa, Kanthkot and Gamdau. Present study is confined to younger part of the Washtawa Formation and early part of the Kanthkot Formation exposed around Kanthkot, Washtawa, Chitrod and Rapar. The depositional architecture and sedimentation processes of these deposits have been studied applying sequence stratigraphic context. Facies studies have led to identification of five upward stacking facies associations (A, B, C, D, and E) which reflect that deposition was controlled by one single transgressive — regressive cycle. The transgressive deposit is characterized by fining and thinning upward succession of facies consisting of two facies associations: (1) Association A: medium — to coarse-grained calcareous sandstone — mudrocks alternations (2) Association B: fine-grained calcareous sandstone — mudrocks alternations. The top of this association marks maximum flooding surface as identified by bioturbational fabrics and abundance of deep marine fauna (ammonites). Association A is interpreted as high energy transgressive deposit deposited during relative sea level rise. Whereas, facies association B indicates its deposition in low energy marine environment deposited during stand-still period with low supply of sediments. Regressive sedimentary package has been divided into three facies associations consisting of: (1) Association C: gypsiferous mudstone-siltstone/fine sandstone (2) Association D: laminated, medium-grained sandstone — siltstone (3) Association E: well laminated (coarse and fine mode) sandstone interbedded with coarse grained sandstone with trough cross stratification. Regressive succession of facies association C, D and E is interpreted as wave dominated shoreface, foreshore to backshore and dune environment respectively. Sequence stratigraphic concepts have been applied to subdivide these deposits into two genetic sequences: (i) the lower carbonate dominated (25 m) transgressive deposits (TST) include facies association A and B and the upper thick (75m) regressive deposits (HST) include facies association C, D and E. The two sequences are separated by maximum flooding surface (MFS) identified by sudden shift in facies association from B to C. The transgressive facies association A and B represent the sediments deposited during the syn-rift climax followed by regressive sediments comprising association C, D and E deposited during late syn-rift stage.  相似文献   

12.
“Coarsening upward” successions typical of subtidal sand bars have been recognised in the NE-trending linear sandstone bodies which occur within marine shale in the Eze-Aku Formation (Upper Cretaceous) of southeastern Nigeria.The ideal succession, 15–20 m thick, consists of the following units from bottom to top: (1) bioturbated grey siltstone (offshore mud); (2) wave-ripple-laminated, fine-grained well-sorted sandstone (offshore sands); (3) trough and tabular, cross-bedded medium-grained sandstone with channelled base (subtidal channel complex); (4) trough cross-bedded, medium-grained sandstone with bimodal-bipolar paleocurrent pattern (subtidal bar); (5) coarse, pebbly trough cross-bedded sandstone with wave-rippled top, rare burrows and a bimodal-bipolar paleocurrent pattern (subtidal bar). A sixth facies, not a part of the normal sequence, consists of coarse, carbonate-cemented pebbly sandstone grading into pure shell-limestone (bar margin).The sand bars seem to have grown on a shallow mud-bottomed, wave-worked inland sea inhabited by burrowers. A model for the stages of the vertical growth of the bar is presented.  相似文献   

13.
通过沉积岩石学、岩相学、粒度分析等研究方法,对维美组沉积特征、沉积环境及演化提出新的认识和探讨。晚侏罗世维美组主要为一套陆源碎屑物质沉积,沉积期共经历4个沉积旋回,每个沉积旋回的岩石组合大致为含砾石英砂岩-中、粗粒石英砂岩-细粒石英砂岩(长石石英砂岩)-粉砂岩(泥岩、页岩),由底到顶粒度变细,层厚减薄。识别出6种岩相类别:含砾石英砂岩、石英砂岩、长石石英砂岩、泥质粉砂岩、薄层页岩-泥岩互层;发现平行层理、水平层理、粒序层理和重荷模等沉积构造;识别出陆棚、滨岸和陆棚下切河道3类沉积相,其中陆棚相包括内陆棚和外陆棚亚相,滨岸相包括近滨上部和近滨下部亚相;陆棚下切河道充填结构大致为:下部河道砂砾岩层,中部不等粒长石砂岩、杂砂岩层,上部细粒石英砂岩、泥岩层。综合来看,维美组沉积环境为位于克拉通边缘上浅海环境,沉积物质及沉积序列受海平面升降变化影响显著,主要形成于全球海平面下降之后上升的阶段。  相似文献   

14.
以鄂尔多斯盆地东缘大宁—吉县地区二叠系山西组为研究对象,综合应用岩心、薄片及测井资料,开展山32亚段岩相类型、岩相组合和沉积相研究,研究结果表明:山32亚段包括粉砂质泥岩/页岩相、纹层状层理含粉砂泥岩/页岩相、透镜状层理粉砂质泥岩/页岩相、钙质页岩相、煤层、碳质页岩相、黑色页岩相、波状层理泥质粉砂岩相、交错层理中—细砂...  相似文献   

15.
The Lower Permian Wasp Head Formation (early to middle Sakmarian) is a ~95 m thick unit that was deposited during the transition to a non‐glacial period following the late Asselian to early Sakmarian glacial event in eastern Australia. This shallow marine, sandstone‐dominated unit can be subdivided into six facies associations. (i) The marine sediment gravity flow facies association consists of breccias and conglomerates deposited in upper shoreface water depths. (ii) Upper shoreface deposits consist of cross‐stratified, conglomeratic sandstones with an impoverished expression of the Skolithos Ichnofacies. (iii) Middle shoreface deposits consist of hummocky cross‐stratified sandstones with a trace fossil assemblage that represents the Skolithos Ichnofacies. (iv) Lower shoreface deposits are similar to middle shoreface deposits, but contain more pervasive bioturbation and a distal expression of the Skolithos Ichnofacies to a proximal expression of the Cruziana Ichnofacies. (v) Delta‐influenced, lower shoreface‐offshore transition deposits are distinguished by sparsely bioturbated carbonaceous mudstone drapes within a variety of shoreface and offshore deposits. Trace fossil assemblages represent distal expressions of the Skolithos Ichnofacies to stressed, proximal expressions of the Cruziana Ichnofacies. Impoverished trace fossil assemblages record variable and episodic environmental stresses possibly caused by fluctuations in sedimentation rates, substrate consistencies, salinity, oxygen levels, turbidity and other physio‐chemical stresses characteristic of deltaic conditions. (vi) The offshore transition‐offshore facies association consists of mudstone and admixed sandstone and mudstone with pervasive bioturbation and an archetypal to distal expression of the Cruziana Ichnofacies. The lowermost ~50 m of the formation consists of a single deepening upward cycle formed as the basin transitioned from glacioisostatic rebound following the Asselian to early Sakmarian glacial to a regime dominated by regional extensional subsidence without significant glacial influence. The upper ~45 m of the formation can be subdivided into three shallowing upward cycles (parasequences) that formed in the aftermath of rapid, possibly glacioeustatic, rises in relative sea‐level or due to autocyclic progradation patterns. The shift to a parasequence‐dominated architecture and progressive decrease in ice‐rafted debris upwards through the succession records the release from glacioisostatic rebound and amelioration of climate that accompanied the transition to broadly non‐glacial conditions.  相似文献   

16.
Uplift of the Tibetan Plateau during the late Cainozoic resulted in a thick apron of molassic sediments along the northern piedmonts of the Kunlun and Altyn Mountains in the southern Tarim Basin. Early Neogene sediments are characterised by sandstone, siltstone and red mudstone, representing floodplain to distal alluvial fan environments. The Early Pliocene Artux Formation consists of medium-grained sandstone and sandy mudstone with thin layers of fine pebbly gritstone. The Late Pliocene to Early Pleistocene Xiyu Formation is dominated by pebble to boulder conglomerate typical of alluvial fan debris flow deposits. Sedimentological investigation, together with grain size and chemical analyses of siltstone bands intercalated with sandstone and conglomerate in the Xiyu and Artux Formations, point to an aeolian origin, suggesting desertic conditions in the Tarim Basin by the Early Pliocene. The onset of aeolian sedimentation in the southern Tarim Basin coincided with uplift of the northern Tibetan Plateau inferred from the lithofacies change from fine-grained mudstone and sandstone to coarse clasts. Tibetan Plateau uplift resulted in the shift of sedimentary environments northwards into the southern Tarim Basin, and could well have triggered the onset of full aridity in the Taklimakan region as a whole.  相似文献   

17.
柴北缘石炭系克鲁克组发育了一套厚层富有机质细粒沉积岩,是研究区页岩气勘探的主力层系。克鲁克组泥页岩形成于陆表海沉积环境,与深海富硅质泥页岩和湖相富碳酸盐泥页岩具有显著差异,目前研究程度相对较低,因此对其开展岩相与沉积环境研究具有十分重要的沉积学与油气地质学意义。通过野外露头和岩心观察,薄片鉴定、X射线衍射分析等技术,以区分标志明显、易于识别为主要原则,综合矿物组成、沉积构造、化石组合及其他混入物等因素,将柴北缘石炭系克鲁克组泥页岩划分出10种主要岩相类型,分别指示不同的沉积微环境。其中,煤岩、水平层理碳质黏土岩、透镜状层理粉砂质黏土岩、波状层理黏土质粉砂岩、脉状层理粉砂岩均属于潮坪沉积;富含菱铁矿结核的块状黏土岩为潟湖沉积;块状泥灰岩和块状生屑灰岩属碳酸盐台地沉积;而含介壳粉砂型泥岩和介壳型泥岩则属于潟湖与局限台地之间的过渡沉积,具有原地混积的特点。由于陆表海平缓的古坡脚,致使区内沉积体系受短期海平面升降变化影响显著,随滨线快速迁移,不同沉积环境的泥页岩在垂向上频繁叠置,交互出现,可总结出3种主要的岩相组合类型,分别形成于局限台地相潟湖相潮坪相组合,局限台地相潟湖相组合和局限台地相生物碎屑浅滩相组合。在泥页岩的岩相类型、特征、沉积环境及垂向演化序列研究的基础上,最终建立了陆表海泥页岩沉积模式。  相似文献   

18.
山西静乐舍科勘查区主要含煤地层为上石炭统太原组和下二叠统山西组,通过对区内地质成果分析,本区太原组沉积环境由河控三角洲到潟湖、潮坪交替出现,期间发育两次碳酸盐台地,岩性主要以灰岩、泥岩、中粗砂岩和粉、细砂岩为主,含主要可采煤层9煤层;山西组主要为三角洲平原分流河道相、泛滥盆地相和泥炭沼泽相,以砂岩、粉砂岩、砂质泥岩为主,含主要可采煤层4-1、4煤层;4-1号煤层属大部可采的较稳定煤层,4和9号煤层属全区可采的较稳定煤层;本区主要煤类均为焦煤,资源量丰富,煤质较好,具有较高的开发价值。  相似文献   

19.
黑龙江省东部七星河盆地是一新生代聚煤盆地,其含煤地层为古近系宝泉岭组、新近系富锦组。宝泉岭组由各级砂岩、泥岩、炭质泥岩以及褐煤组成,发育滨浅湖相、深-半深湖相、三角洲平原相,属于湖泊沉积体系、三角洲沉积体系。富锦组主要由泥岩、粉砂岩、中砂岩、含砾粗砂岩及煤层、炭质泥岩、硅藻岩组成,发育滨浅湖相、扇三角洲平原相,分别属于湖泊沉积体系和扇三角洲沉积体系。层序SI相当于宝泉岭组,发育低位体系域、湖侵体系域和高位体系域,煤层主要发育高位体系域中后期,成煤环境以滨浅湖淤积沼泽为主。层序SII相当于富锦组,主要发育湖侵体系域、高位体系域,局部地区发育低位体系域,煤层亦主要发育高位体系域中后期,成煤环境以扇三角洲淤积沼泽和滨浅湖淤积沼泽为主。层序SI、SII的高位体系域中后期,盆地基底沉降速率和物源供给处于相对平衡状态,主要发育了扇三角洲淤积沼泽、滨浅湖和滨浅湖淤积沼泽环境,发育可采煤层。  相似文献   

20.
N. L. BANKS 《Sedimentology》1973,20(2):213-228
The Duolbasgaissa Formation, Lower Cambrian, of northern Norway consists of 550 m of mineralogically and texturally mature sandstones with subordinate siltstones, mudstones and conglomerates. Four facies are defined on the basis of grain size, bed thickness and sedimentary structures. Facies 1–3 consist of a variety of erosively-based, cross-stratified and parallel-stratified sandstones interbedded with siltstone and mudstone. Many of these sandstones show evidence of deposition from waning currents. Facies 4 consists of trough cross-bedded sandstones with sets up to 4 m thick. Symmetrical ripples and bioturbation are ubiquitous. Bipolar palaeocurrent distributions are common to all facies and one mode is usually strongly dominant. Lateral facies variations and sedimentary structures suggest that deposition took place in a tide-dominated, offshore, shallow marine environment in which maximum sediment transport probably occurred when storm generated waves enhanced tidal currents. The four facies are thought to represent the deposits of various parts of tidal sediment transport paths such as exist in modern seas around Great Britain. Small scale coarsening upward sequences may represent the superposition of facies independently of changing water depth. Lack of information prevents a detailed palaeogeographic reconstruction. It is suggested that sand body shape is not accurately predictable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号