首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
The split-window algorithm is the most commonly used method for land surface temperature (LST) retrieval from satellite data. Simplification of the Planck’s function, as an important step in developing the SWA, allows us to directly relate the radiance to the temperature toward solving the radiative transfer equation (RTE) set. In this study, Planck’s radiance relationship between two adjacent thermal infrared channels was modeled to solve the RTE set instead of simplification of the Planck’s function. A radiance-based split-window algorithm (RBSWA) was developed and applied to Moderate Resolution Imaging Spectroradiometer (MODIS) data. The performance of the RBSWA was assessed and compared with three most common brightness temperature-based split-window algorithms (BTBSWAs) by using the simulated data and satellite measurements. Simulation analysis showed that the LST retrieval using RBSWA had a Root Mean Square Error (RMSE) of 0.5 K and achieved an improvement of 0.3 K compared with three BTBSWAs, and the LST retrieval accuracy using RBSWA was better than 1.5 K considering uncertainties in input parameters based on the sensitivity analysis. For application of RBSWA to MODIS data, the results showed that: 1) comparison between LST from MODIS LST product and LST retrieved using RBSWA showed a mean RMSE of 1.33 K for 108 groups of MODIS image covering continental US, which indicates RBSWA is reliable and robust; 2) when using the measurements from US surface radiation budget network as real values the RMSE of the RBSWA algorithm was 2.55 K and was slightly better than MODIS LST product; and 3) through the cross validation using Advanced Spaceborne Thermal Emission and Reflection Radiometer LST product, the RMSE of the RBSWA algorithm was 2.23 K and was 0.28 K less than that of MODIS LST product. We conclude that the RBSWA for LST retrieval from MODIS data can attain a better accuracy than the BTBSWA.  相似文献   

2.
The land surface temperature (LST) is an important parameter when studying the interface between the atmosphere and the Earth's surface. Compared to satellite thermal infrared (TIR) remote sensing, passive microwave (PMW) remote sensing is better able to overcome atmospheric influences and to estimate the LST, especially in cloudy regions. However, methods for estimating PMW LSTs at the country and continental scales are still rare. The necessity of training such methods from a temporally dynamic perspective also needs further investigations. Here, a temporally land cover based look-up table (TL-LUT) method is proposed to estimate the LSTs from AMSR-E data over the Chinese landmass. In this method, the synergies between observations from MODIS (Moderate Resolution Imaging Spectroradiometer) and AMSR-E (Advanced Microwave Scanning Radiometer for EOS), which are onboard the same Aqua satellite, are explored. Validation with the synchronous MODIS LSTs demonstrates that the TL-LUT method has better performances in retrieving LSTs with AMSR-E data than the method that uses a single brightness temperature in 36.5 GHz vertical polarization channel. The accuracy of the TL-LUT method is better than 2.7 K for forest and 3.2 K for cropland. Its accuracy varies according to land cover type, time of day, and season. When compared with the in-situ measured LSTs at four sites without urban warming in the Tibet Plateau, the standard errors of estimation between the estimated AMSR-E LST and in-situ measured LST are from 5.1 K to 6.0 K in the daytime and 3.1 K to 4.5 K in the nighttime. Further comparison with the in-situ measured air temperatures at 24 meteorological stations confirms the good performance of the TL-LUT method. The feasibility of PMW remote sensing in estimating the LST for China can complement the TIR data and can, therefore, aid in the generation of daily LST maps for the entire country. Further study of the penetration of PMW radiation would benefit the LST estimations in barren and other sparsely vegetated environments.  相似文献   

3.
针对Terra/MODIS数据的改进分裂窗地表温度反演算法   总被引:1,自引:0,他引:1  
针对Terra/MODIS数据提出改进的分裂窗地表温度反演算法。充分考虑了传感器观测角度(VZA)的影响,并对地表和有效大气辐射按照不同的亮度温度区间分别进行Planck函数简化。利用TIGR3大气廓线库中的875条晴空大气廓线,ASTER波谱库中的106条地物发射率波谱,结合MODTRAN4大气辐射传输模型模拟得到分裂窗算法系数。利用MODTRAN4模拟数据对算法精度进行验证,结果表明本文的改进算法和原算法的均方根误差RMSE分别为0.34K和0.65K。敏感性分析表明,在中等湿润的大气条件下,算法对大气水汽含量并不敏感。该算法降低了传感器观测角度带来的地表温度反演误差。利用2009年6月美国SURFRAD辐射观测网6个站点的实测数据对改进算法、原算法以及MOD11_L2地表温度产品进行了对比验证,RMSE分别是0.93K、1.49K和1.0K,表明本文算法可以提高反演精度。  相似文献   

4.
为了探讨特定城市在热岛效应中的地表温度反演的有效方法,本文分别基于TM与MODIS影像并采用了目前较为成熟的单窗和劈窗算法对泰安市的地表温度进行反演,将泰安市各气象观测站的实测温度数据与两种算法的温度反演结果进行验证,通过反演结果对比分析,证明劈窗算法精度更高。并且,采用10年间的多期MODIS影像对泰安市热岛效应分析的劈窗算法的可行性和优势进行了普适性验证。实验结果证明,针对处于山区且地势起伏较大的泰安地区,劈窗算法能较好地减弱或消除上空大气含水量高对温度反演的影响,同时还能更好地获取地表比辐射率和大气透过率,而且反演温度的分布规律也符合研究区地貌和类型要素特征。最后,本文就分析结果给出了泰安市产生热岛效应的主要原因,并认为该区域城市化过程中的城市热岛效应正在进一步加剧。  相似文献   

5.
The retrieval of land (soil-vegetation complex) surface temperature (LST) was carried out over semi-arid mixed agriculture landscape of Gujarat using thermal bands (channel 4 and 5) and ground emissivity from atmospherically corrected NDVI of NOAA AVHRR LAC images. The atmospheric correction of Visible and NIR band reflectance was done using SMAC model. The LST computed from split-window method and subsequently corrected with fractional vegetation cover were then compared with near synchronous ground observations of soil and air temperatures made during 13–17 January and April, 1997 at five Land Surface Processes Experiment (LASPEX) sites of Anand, Sanand, Derol, Arnej and Khandha covering 100 km x 100 km. The fractional vegetation cover corrected LST at noon hrs. varied from 301.6 – 311.9K in January and from 315.8 – 325.6K in April. The LSTcorr were found to lie in the mid way between AT and ST during January. But in April, LST were found to be more close to ST which may be due to relatively poor vegetation growth as indicated by lower NDVI values in April indicating more contribution to LST from exposed soil surface.  相似文献   

6.
A neural network method was developed with the Moderate-resolution Imaging Spectroradiometer (MODIS) land surface temperature product as training and validation datasets, and it was used to retrieve land surface temperatures (LSTs) from direct-broadcast MODIS data in Northeast China in April and May 2003 before fire events. The result shows that LST increases as the day gets closer to the fire day, and this trend can be observed about three days before the fire day. This is similar to the result of fire potential index, so the LST can also be used to evaluate forest fire risk.  相似文献   

7.
杨虎  杨忠东 《遥感学报》2006,10(4):600-607
地表温度反演的裂窗算法已成功应用于NOAA系列卫星热红外遥感数据。目前,裂窗算法中应用较为广泛的一种是Becker等人于1990年提出的局地裂窗算法,主要是通过辐射传输模型模拟不同地表条件和大气状况下,地表温度和发射率对红外辐射亮温的影响,从而发展出一个利用AVHRR4,5通道亮温数据反演地表温度的线性模型。在晴空无云和地表比辐射率能精确估算的情况下,Becker算法反演地表温度的精度在1K以内。Becker算法用Lowtran程序模拟计算地表辐射量,且模型中参数主要针对NOAA-9传感器特性得到。本文在Becker算法的基础上,针对NOAA-16/17传感器热红外通道光谱响应函数特性,利用最新的、计算光谱分辨率更高的MODTRAN程序模拟不同大气状况下,不同地表温度和发射率对NOAAAVHRR4,5通道辐射亮温响应特性的影响,改进Becker算法中模型参数,使之能适用于NOAA-16/17热红外数据。同时,本文利用植被指数NDVI,在中国陆地区域lkm分辨率最新地表分类数据的基础上,得到模型中需要的地表比辐射率参数,将改进的模型应用于1km分辨率NOAA17数据,得到了旬合成中国陆地区域范围地表温度,通过地面气象台站实测数据对比验证.取得了较好的结果。  相似文献   

8.
Beijing has experienced rapid urbanization and associated urban heat island effects and air pollution. In this study, a contribution index was proposed to explore the effect of urbanization on land surface temperature (LST) using Moderate-Resolution Imaging Spectroradiometer (MODIS)-derived data with high temporal resolution. The analysis indicated that different zones and landscapes make diurnally and seasonally different contributions to the regional thermal environment. The differences in contributions by the three main functional zones resulted from differences in their landscape compositions. The roles of landscapes in this process varied diurnally and seasonally. Urban land was the most important contributor to increases in regional LSTs. The contributions of cropland and forest varied distinctly between daytime and nighttime owing to differences in their thermal inertias. Vegetation had a notable cooling effect as the normalized vegetation difference index (NDVI) increased during summer. However, when the NDVI reached a certain value, the nighttime LST shifted markedly in other seasons. The results suggest that urban design based on vegetation partitions would be effective for regulating the thermal environment.  相似文献   

9.
用MODIS数据和分裂窗算法反演内蒙古地区的地表温度   总被引:3,自引:0,他引:3  
地表温度是气象、水文、生态等研究中一个重要参数。大气透过率和比辐射率是分裂窗算法的两个重要输入参数,本文利用MODIS数据的可见光波段(band1)和近红外波段(band2、19)计算该两个参数;再利用MODIS数据的两个热红外波段(band31、32)和分裂窗算法对内蒙古地区地表温度进行了反演;结果表明,遥感反演出来的地表温度的空间分布与内蒙古气候区地空间分布具有高度的一致性,能直观地反应内蒙古地区地表温度的空间分布特征。  相似文献   

10.
用被动微波AMSR数据反演地表温度及发射率的方法研究   总被引:8,自引:1,他引:8  
 针对对地观测卫星多传感器的特点,提出了借助MODIS地表温度产品从被动微波数据中反演地表温度的方法。即利用MODIS地表温度产品和AMSR不同通道之间的亮度温度,建立地表温度的反演方程。该方法克服了以往需要测量同步数据的困难,为不同传感器之间的参数反演相互校正和综合利用多传感器的数据提供实际应用和理论依据。文中以MODIS地表温度产品作为评价标准,对方法进行检验,其平均误差为2~3℃。另外,微波的发射率是土壤水分反演的关键参数,在对微波地表温度反演的基础上,进一步对发射率进行了研究。  相似文献   

11.
针对MODIS影像的劈窗算法研究   总被引:27,自引:3,他引:27  
在分析热红外遥感和现有的劈窗算法的理论基础上,针对MODIS数据对劈窗算法进行了推导。通过对热辐射强度和温度之间的关系计算,对Planck函数进行了线性简化,同时分析了MODIS的波段设置特点。MODIS的近红外波段适宜于反演大气水汽含量,而大气透过率主要从MODIS的近红外波段数据反演得到大气水汽含量,并进而根据水汽含量与大气透过率的关系来进行估算。通过MODIS的可见光波段、近红外和中红外波段数据,完全可以获得地表温度反演所需要的基本参数,从而形成了针对MODIS数据的地表温度反演的劈窗算法。最后以环渤海地区为实验区,对本文提出的方法进行了实际应用分析。  相似文献   

12.
Indian geostationary satellite Kalpana-1 (K1) offers a potential to capture the diurnal cycle of land surface temperature (LST) through thermal infrared channel (10.5–12.5 μm) observations of the Very High Resolution Radiometer (VHRR) sensor. A study was carried out to retrieve LST by adapting a generalized single-channel (SC) algorithm (Jiménez-Muñoz and Sobrino, 2003) for the VHRR sensor over India. The basis of SC algorithm depends on the concept of Atmospheric Functions (AFs) that are dependent on transmissivity, upwelling and downwelling radiances of the atmosphere. In the present study AFs were computed for the VHRR sensor through the MODTRAN simulations based upon varying atmospheric and surface inputs. The AFs were fitted with the atmospheric columnar water vapour content and a set of coefficients was derived for LST retrieval. The K1-LST derived with the SC algorithm was validated with (a) in situ measurements at two sites located in western parts of India and (b) the MODIS LST products. Comparison of K1-LST with the in situ measurements demonstrated that SC algorithm was successful in capturing the prominent diurnal variations of 283–332 K in the LST at desert and agriculture experimental sites with a rmse of 1.6 K and 2.7 K, respectively. Inter comparison of K1-LST and MODIS LST showed a reasonable agreement between these two retrievals up to LST of 300 K, however a cold bias up to 7.9 K was observed in MODIS LST for higher LST values (310–330 K) over the hot desert region.  相似文献   

13.
方红亮 《遥感学报》2021,25(1):109-125
地表参数定量遥感反演是遥感科学研究的重要环节.21世纪以来,地球静止气象卫星数据在地表参数遥感反演中受到越来越多的重视.本文对利用地球静止气象卫星进行地表参数遥感反演研究的进展进行了综述.文章首先简单介绍了当前正在运行的欧盟Meteosat、美国GOES-R、日本葵花和中国风云静止卫星系统,随后详细总结了不同卫星系统估...  相似文献   

14.
刘向阳  唐伯惠  李召良 《遥感学报》2021,25(8):1700-1709
与混合像元的地表温度相比,植被和土壤的组分温度具有更明确的物理意义。因此,本文提出了一种从具有广泛应用的极轨卫星地表温度产品中分离出植被和土壤组分温度的算法。该算法使用温度日变化模型作为桥梁连接极轨卫星一日内的两次观测,利用多像元数据进行模型求解,从而得到过境时刻的地表植被和土壤组分温度。论文针对MODIS数据开展了地表组分温度的反演,并利用实测站点数据和高分辨率卫星数据对反演结果进行了验证。结果表明,该算法可以提供合理的植被和土壤组分温度信息,反演温度的误差变化范围为1.4 K到2.5 K。此外,对观测时刻组合方式的分析表明该算法只需要一次白天观测和一次夜晚观测就可以得到精度较好的分离结果,并且两次观测可以来自于不同传感器,进一步表明了算法具有良好的可操作性。  相似文献   

15.
The angular effects of emissivity are ignored in current land surface temperature (LST) products. As a result, the directionality of these LST products limits their further application in many fields. Accurate correction of the angular problem of LST products requires explicit understanding of the angular effects of emissivity at the pixel scale. Currently, nearly ten years of global emissivity products of MODIS are available. However, the pixel-scale directionality of emissivity has never been analyzed. By performing a statistical analysis of 5-year MODIS emissivity products over most of East Asia, we generated the empirical relationships between the directional emissivity, land cover, and seasonal variations. Two look-up tables (LUTs) of directional emissivity were created for typical land cover types and applied to the generalized split-window algorithm to modify the MODIS LST. The results showed that the angular effect of emissivity could introduce a significant bias of −1-3 K to the 1 km resolution LST. Finally, the spatial scale effects of emissivity were analyzed, and it was found that the temperature differences caused by scale effects fell within +/−0.5 K for most pixels if 5 km emissivity was used in 1 km LST retrieval. Therefore, wide use of the LUTs can be expected.  相似文献   

16.
作为驱动地表与大气之间能量交换的关键物理量,地表温度在众多领域中都发挥着重要作用,包括气候变化、环境监测、蒸散发估算以及地热异常勘探等。Landsat热红外数据因其时间连续性和高空间分辨率等特点被广泛应用于地表温度反演中。本文详细地介绍了Landsat热红外传感器及其可用的数据与产品的现状,梳理了2001年—2020年20年间基于Landsat热红外数据的地表温度遥感反演与应用的相关文献发表及互引情况,系统地综述了基于Landsat热红外数据的地表温度反演算法,包括基于辐射传输方程的算法、单窗算法、普适性单通道算法、实用单通道算法和分裂窗算法等。在此基础上,进一步介绍了每种算法的参数化方案,包括地表比辐射率和大气参数的估算方法。最后针对Landsat热红外数据地表温度遥感反演提出了未来可能的发展趋势与研究方向。  相似文献   

17.
Eight-day composite Terra-MODIS cumulative LST and NDVI timeseries data were used to analyze the responses of crop and grassland cover types to drought in Nebraska. Four hundred ninety 1 km pixels that included irrigated and non-irrigated corn and soybeans and three grassland cover types were selected across the state of Nebraska. Statistical analyses revealed that the majority of the land cover pixels experienced significantly higher daytime and nighttime LSTs and lower NDVI during the drought-year growing season (p < 0.01). Among the land cover types analyzed, grassland experienced the highest increase in daytime LST and decrease in NDVI.  相似文献   

18.
陈峰  赵小锋  全元  柳林 《遥感学报》2014,18(3):657-672
地表温度被认为是影响生态系统的关键因子之一,它与许多地表过程有关。目前,热红外卫星遥感技术是获取有关区域和全球尺度地表温度信息的一个有效、可行的手段。针对不同卫星上搭载的热红外传感器,许多学者开展了大量的研究,其中针对单波段热红外的特点(如Landsat TM/ETM+,CBERS和HJ-1B)提出了单通道(或单窗)算法。该类算法需要准确的地表比辐射率和大气参数(如大气水分含量)。这些参数在现实中又很难轻易获得,从而在一定程度上限制了现有算法的应用。针对HJ-1B高回访频率的特点,本文提出了利用多时相影像的时空信息来直接反演地表温度的Multi-Temporal and Spatial Information-Based Single Channel(MTSC),以解决现有算法对地表比辐射率和大气参数的过度依赖性。实例分析结果显示,基于MTSC法由HJ-1B反演得到的地表温度结果与MODIS地表(陆表和海表)温度产品具有很好的空间一致性;HJ-1B的陆表温度结果总体上被高估了约1 K,而海表温度结果总体上被高估了0.5 K;同时,MTSC法得到的HJ-1B地表温度结果具有更好的细节和空间完整性。最后,通过分析和讨论指出了一些可能的完善途径,如相似像元的确定、修改优化求解中的目标函数、参数的自适应初始化等,以便提高MTSC法的反演精度和实用性。  相似文献   

19.
Waterlogging due to rising ground watertable, being a sub-surface phenomenon, is not amenable to detection by optical remote sensing. Microwave and thermal sensor data have, however, shown some promise in the detection of sub-surface waterlogging. The present study was taken up to evaluate the potential of near-IR, short-wave IR (SWIR) and thermal-IR data from Moderate Resolution Imaging Spectrometer (MODIS) aboard Terra-1 acquired during day-and-night time postmonsoon data for detection of sub-surface waterlogging. The approach involves retrieval of day-and-night land surface temperature (LST), generation of normalized difference of channel-2 and 6 (ND26); 2 and 7 (ND27); ground truth collection involving concurrent ground water table observations to satellite date of pass, thresholding of normalized differences (NDs) and correlating the NDs with depth of ground water table. Amongst various spectral indices, day and night-time LST difference (DLST) and night-time LST have been found to correlate well with the incidence of waterlogging (water table depth < 2m), followed by normalized difference of band-2 (841–876 nm) and band-7 (2105–2155 nm). The sensitivity of threshold limits for these indices was maximum for DLST followed by ND26 and ND27. Poor accuracy of detecting sub-surface waterlogging with thermal bands during day time is attributed to the non-corresponding of the time of Terra MODIS data acquisitions with thermal maxima of the terrain. Though the ND27 gave better accuracy to detect subsurface waterlogging, it is very sensitive to threshold limits.  相似文献   

20.
单窗算法和单通道算法对参数估计误差的敏感性分析   总被引:4,自引:1,他引:3  
丁凤  徐涵秋 《测绘科学》2007,32(1):87-90,95
单窗算法和单通道算法的提出为应用LandsatTM热波段反演地表温度开辟了新途径。由于进行地面像元尺度同步温度测量难度较大,目前尚无法对这两种算法进行直接评判。通过对算法所需参数分别取一定变动区间并进行渐变取值测算,分析了算法对其参数估计误差的敏感性,以此作为对这两种算法适用性的一个间接评判依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号