首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
ABSTRACT

A 3D forest monitoring system, called FORSAT (a satellite very high resolution image processing platform for forest assessment), was developed for the extraction of 3D geometric forest information from very high resolution (VHR) satellite imagery and the automatic 3D change detection. FORSAT is composed of two complementary tasks: (1) the geometric and radiometric processing of satellite optical imagery and digital surface model (DSM) reconstruction by using a precise and robust image matching approach specially designed for VHR satellite imagery, (2) 3D surface comparison for change detection. It allows the users to import DSMs, align them using an advanced 3D surface matching approach and calculate the 3D differences and volume changes (together with precision values) between epochs. FORSAT is a single source and flexible forest information solution, allowing expert and non-expert remote sensing users to monitor forests in three and four (time) dimensions. The geometric resolution and thematic content of VHR optical imagery are sufficient for many forest information needs such as deforestation, clear-cut and fire severity mapping. The capacity and benefits of FORSAT, as a forest information system contributing to the sustainable forest management, have been tested and validated in case studies located in Austria, Switzerland and Spain.  相似文献   

2.
宋桔尔  王雪  李培军 《遥感学报》2012,16(6):1233-1245
将两种基于地统计学的纹理特征加入到高分辨率遥感影像的城市建筑物倒塌探测中,考察了多尺度纹理对探测结果的影响.采用基于单类支持向量机的多时相直接分类方法提取建筑物倒塌信息.以伊朗巴姆地区2003 年12 月地震前后的Quickbird 遥感影像为数据源,评价和验证了本文方法的有效性.研究表明,将多尺度的空间和时相纹理信息加入到高分辨率遥感影像的倒塌建筑物探测中,可以有效提高分类精度,该方法得到的结果可应用于灾害救援及评估.  相似文献   

3.
Many municipal activities require updated large-scale maps that include both topographic and thematic information. For this purpose, the efficient use of very high spatial resolution (VHR) satellite imagery suggests the development of approaches that enable a timely discrimination, counting and delineation of urban elements according to legal technical specifications and quality standards. Therefore, the nature of this data source and expanding range of applications calls for objective methods and quantitative metrics to assess the quality of the extracted information which go beyond traditional thematic accuracy alone. The present work concerns the development and testing of a new approach for using technical mapping standards in the quality assessment of buildings automatically extracted from VHR satellite imagery. Feature extraction software was employed to map buildings present in a pansharpened QuickBird image of Lisbon. Quality assessment was exhaustive and involved comparisons of extracted features against a reference data set, introducing cartographic constraints from scales 1:1000, 1:5000, and 1:10,000. The spatial data quality elements subject to evaluation were: thematic (attribute) accuracy, completeness, and geometric quality assessed based on planimetric deviation from the reference map. Tests were developed and metrics analyzed considering thresholds and standards for the large mapping scales most frequently used by municipalities. Results show that values for completeness varied with mapping scales and were only slightly superior for scale 1:10,000. Concerning the geometric quality, a large percentage of extracted features met the strict topographic standards of planimetric deviation for scale 1:10,000, while no buildings were compliant with the specification for scale 1:1000.  相似文献   

4.
5.
Due to the fast development of the urban environment, the need for efficient maintenance and updating of 3D building models is ever increasing. Change detection is an essential step to spot the changed area for data (map/3D models) updating and urban monitoring. Traditional methods based on 2D images are no longer suitable for change detection in building scale, owing to the increased spectral variability of the building roofs and larger perspective distortion of the very high resolution (VHR) imagery. Change detection in 3D is increasingly being investigated using airborne laser scanning data or matched Digital Surface Models (DSM), but rare study has been conducted regarding to change detection on 3D city models with VHR images, which is more informative but meanwhile more complicated. This is due to the fact that the 3D models are abstracted geometric representation of the urban reality, while the VHR images record everything. In this paper, a novel method is proposed to detect changes directly on LOD (Level of Detail) 2 building models with VHR spaceborne stereo images from a different date, with particular focus on addressing the special characteristics of the 3D models. In the first step, the 3D building models are projected onto a raster grid, encoded with building object, terrain object, and planar faces. The DSM is extracted from the stereo imagery by hierarchical semi-global matching (SGM). In the second step, a multi-channel change indicator is extracted between the 3D models and stereo images, considering the inherent geometric consistency (IGC), height difference, and texture similarity for each planar face. Each channel of the indicator is then clustered with the Self-organizing Map (SOM), with “change”, “non-change” and “uncertain change” status labeled through a voting strategy. The “uncertain changes” are then determined with a Markov Random Field (MRF) analysis considering the geometric relationship between faces. In the third step, buildings are extracted combining the multispectral images and the DSM by morphological operators, and the new buildings are determined by excluding the verified unchanged buildings from the second step. Both the synthetic experiment with Worldview-2 stereo imagery and the real experiment with IKONOS stereo imagery are carried out to demonstrate the effectiveness of the proposed method. It is shown that the proposed method can be applied as an effective way to monitoring the building changes, as well as updating 3D models from one epoch to the other.  相似文献   

6.
This study uses high-resolution (HR) satellite imagery to quantify the stock of buildings, referred herein as building stock. The risk assessment requires information on the natural hazards and on the element at risk, that is the building stock in this article. This study combines (1) texture-based image processing to map built-up areas, (2) statistical sampling that allows locating the building samples and (3) photo-interpretation to encoding building footprints. Statistical inference is then used to quantify the building stock per class of building size. Legaspi in the Philippines is used as a case study. The results show that texture-based computer algorithms provide accurate area estimations of the built-up, that the detail of HR imagery allows the mapping of single buildings using photo-interpretation, and that a systematic sampling approach that uses building encoding and built-up maps can be used to quantify the building stock.  相似文献   

7.
ABSTRACT

While impressive direct geolocation accuracies better than 5.0?m CE90 (90% of circular error) can be achieved from the last DigitalGlobe’s Very High Resolution (VHR) satellites (i.e. GeoEye-1 and WorldView-1/2/3/4), it is insufficient for many precise geodetic applications. For these sensors, the best horizontal geopositioning accuracies (around 0.55?m CE90) can be attained by using third-order 3D rational functions with vendor’s rational polynomial coefficients data refined by a zero-order polynomial adjustment obtained from a small number of very accurate ground control points (GCPs). However, these high-quality GCPs are not always available. In this work, two different approaches for improving the initial direct geolocation accuracy of VHR satellite imagery are proposed. Both of them are based on the extraction of three-dimensional GCPs from freely available ancillary data at global coverage such as multi-temporal information of Google Earth and the Shuttle Radar Topography Mission 30?m digital elevation model. The application of these approaches on WorldView-2 and GeoEye-1 stereo pairs over two different study sites proved to improve the horizontal direct geolocation accuracy values around of 75%.  相似文献   

8.
利用多尺度Hough变换提取高分辨率SAR图像建筑物L型结构   总被引:2,自引:0,他引:2  
提出了一种利用多尺度Hough变换从高分辨率SAR图像提取建筑物L型结构的方法。针对高分辨率SAR图像建筑物L型结构的特点,建立了建筑物L型结构简化几何模型,并采用从粗到精的思路利用多尺度Hough变换提取建筑物L型结构方向线。并提出了一种L型结构组合度函数对提取直线进行编组,确定建筑物L型结构的方向和拐点。最后,采用基于扫描线的方法计算L型结构线宽,得到完整规则的建筑物L型结构。多幅真实机载高分辨率SAR图像实验结果表明,本方法可以有效地提取高分辨率SAR图像建筑物L型结构,提取结果与实际位置吻合较好。  相似文献   

9.
针对近年来城市大建设背景下的基坑施工建设日益增多,对周边一定范围内的建筑物等目标产生影响的现象,该文提出面向单体建筑物的InSAR监测与应用方法。该方法基于时间序列的SAR影像进行面向对象的InSAR分析,在区分地面沉降与建筑物沉降的基础上,提取建筑物的沉降信息并结合基坑、建筑物特征等背景资料开展建筑物的灾害评估分析。以天津市和平区某基坑周边的渤海大楼为例,进行高分辨率的InSAR监测与应用分析,并以同步实测的水准数据为参考进行有效性评估。实验结果验证了该算法的有效性,适用于建筑物InSAR监测应用。  相似文献   

10.
Abstract

Space shuttle photographs and satellite radar (SAR) images provide an excellent view of high‐contrast ocean features such as internal waves, fronts, eddies, oil slicks, and cloud patterns which contain the signatures of atmospheric processes. Since ocean internal waves generate local currents which modulate surface wavelets and slicks, we have been able to detect packets of internal waves in space shuttle photographs and radar imagery of the Atlantic, Pacific, and Indian Oceans. A global database on internal waves has been developed at our center with support from ONR and NASA, and is accessible on the Internet. The database includes visible and radar imagery. To test the database, digitally orthorectified images were used for dynamic and statistical analysis of internal waves. In the deep ocean we found the wavelength distribution to be Gaussian while in the coastal ocean it is Rayleigh. Results have also been applied to non‐linear evolution studies of ocean internal waves, atmospheric solitary waves and to estimate ocean currents.  相似文献   

11.
This study examines best image fusion approaches for generating pansharpened very high resolution (VHR) multispectral images to be utilized for monitoring coastal barrier island development. Selected fusion techniques assessed in this research come from the three categories of spectral substitution (e.g., Brovey transform and multiplicative merging), arithmetic merging (e.g., modified intensity-hue-saturation and principal component analysis), and spatial domain (e.g., high-pass filter, and subtractive resolution merge). The image fusion methods selected for this study were capable of producing pansharpened VHR images with more than three bands. Comparisons of fusion techniques were applied to images from three satellite sensors: United States commercial satellites IKONOS and QuickBird, and the Korean KOMPSAT II. Pansharpened VHR multispectral images were assessed by spectral and spatial quality measurements. Results satisfying both spectral and spatial quality revealed optimum pansharpened techniques necessary for regular coastal mapping of barrier islands. These techniques may also be used to assess the quality of recently available VHR imagery acquired by numerous international, government, and commercial VHR satellite programs.  相似文献   

12.
ABSTRACT

This study mainly focuses on revealing an ancient water landscape at the Longcheng site in the northern Chaohu Lake Basin using very high-resolution (VHR) GeoEye-1 imagery. First, prior to classification, the GeoEye-1 image was processed following atmospheric and geometric correction. The supervised classification was carried out in order to show the land-cover situation in the Longcheng area. The overall classification accuracy was 89.98%, with a kappa coefficient of 0.87. The moat system around the city walls was discovered by using rule-based object-oriented segmentation of the postclassified image, and the other walls of ancient Longcheng were manually identified from the pansharpened VHR GeoEye-1 image. Finally, a map of the ancient water landscape containing the ancient city, wall and moat at the Longcheng site was produced. This paper demonstrates that VHR remote sensing has the ability to uncover an ancient water landscape and provide new insights for archaeological and paleoenvironmental studies.  相似文献   

13.
Accurately obtaining the structures and damage types of buildings in earthquake stricken areas is fundamental to supporting rescue forces and estimating economic losses and casualties. As the stricken areas are often much larger than the areas covered by very high resolution (VHR) images, the information obtained from VHR images cannot satisfy practical needs. This study developed a method for estimating the structures and types of damaged buildings by combining VHR images, statistics and ground survey data. First, the rates of damaged buildings with different structures and damage types were manually interpreted from VHR images covering a small part of the stricken area, and further corrected by ground survey data. Second, the corrected rates were reallocated to the seismic intensity zones. Third, the rates in the seismic intensity zones and the statistical data were combined to estimate the numbers and areas of damaged buildings in villages, towns and counties. The presented method was applied to estimate the damages caused by the Lushan earthquake in China. The results indicated that our method can efficiently estimate the amount of the damages and complement existing work on only automatic extracting damaged buildings from VHR images.  相似文献   

14.
Abstract

The goal of this research was to explore the utility of very high spatial resolution, digital remotely sensed imagery for monitoring land‐cover changes in habitat preserves within southern California coastal shrublands. Changes were assessed for Los Penasquitos Canyon Preserve, a large open space in San Diego County, over the 1996 to 1999 period for which imagery was available.

Multispectral, digital camera imagery from two summer dates, three years apart, was acquired using the Airborne Data Acquisition and Registration (ADAR) digital‐camera system. These very high resolution (VHR) image data (1m), composed of three visible and one near‐infrared wavebands (V/NIR), were the primary image input for assessing land cover change. Image‐derived datasets generated from georeferenced and registered ADAR imagery included multitemporal overlays and multitemporal band differencing with threshold selection. Two different multitemporal image classifications were generated from these datasets and compared. Single‐date imagery was analyzed interactively with image‐derived datasets and with information from field observations in an effort to discern change types. A ground sampling survey conducted soon after the 1999 image acquisition provided concurrent ground reference data.

Most changes occurring within the three‐year interval were associated with transitional phenological states and differential precipitation effects on herbaceous cover. Variations in air temperatures and timing of rainfall contributed to differences that the seven‐week image acquisition offset may have caused. Disturbance factors of mechanical clearing, erosion, potentially invasive plants, and fire were evident and their influence on the presence, absence, and type of vegetation cover were likely sources of change signals.

The multitemporal VHR, V/NIR image data enabled relatively fine‐scale land cover changes to be detected and identified. Band differencing followed by multitemporal classification provided an effective means for detecting vegetation increase or decrease. Detailed information on short‐term disturbance effects and long‐term vegetation type conversions can be extracted if image acquisitions are carefully planned and geometric and radiometric processing steps are implemented.  相似文献   

15.
Abstract

Information on the number and type of new building structures is required by urban and transportation planners and the real estate industry. The goal of this paper is to explore the potential of high resolution imagery for meeting public and private sector demands for information on new buildings. The value of 1 m, 5 m, and 10 m panchromatic and 1 m color scanned aerial photography images acquired in 1997 and 1998 for a study area within the City of San Diego, California is assessed for general change detection and building enumeration. Both semi‐automated and interactive change‐detection approaches are evaluated. We demonstrate that interactive, visual‐based approaches appear to be the most accurate (within 1% of actual count) and efficient approach for generating information on the number of new buildings associated with single family residential land use. More automated approaches to detecting and enumerating image microfeatures may be useful as enhancements for visual‐based assessments and may be practical in areas composed mostly of large buildings associated with commercial and industrial land use. The highest accuracy for automated approaches was an undercounting of 11% for residential buildings and overcounting of 20% for those associated with commercial and industrial land use.  相似文献   

16.
Multiresolution segmentation (MRS) algorithm has been widely used to handle very-high-resolution (VHR) remote sensing images in the past decades. Unfortunately, segmentation quality is limited by the dependency of parameter selection on users’ experience and diverse images. Contrarily, the segmentation by weighted aggregation (SWA) can partly overcome the above limitations and produce an optimal segmentation for maximizing the homogeneity within segments and the heterogeneity across segments. However, SWA is solely tested and justified with digital photos in computer vision field instead of VHR images. This study aims at evaluating SWA performance on VHR imagery. First, multiscale spectral, shape, and texture features are defined to measure homogeneity of image objects for segmentation. Second, SWA is implemented to handle QuickBird, unmanned aerial vehicle (UAV), and GF-1 VHR images and further compared with MRS in eCognition software to demonstrate the applicability of SWA to diverse images in building, vegetation and water, forest stands, farmland, and mountain areas. Third, the results are fully evaluated with quantitative measurements on segmented objects and classification-based accuracy assessment on geographic information system vector data. The results indicate that SWA can produce higher quality segmentations, need fewer parameters and manual interventions, create fewer segmentation levels, incorporate more features, and obtain larger classification accuracy than MRS.  相似文献   

17.
Russian specialists in the application of radar imagery to the study of geographical problems survey its use in the study of urban settlements. More specifically, they are concerned with the types of patterns and tonal signatures (optical densities) manifest on centimeter-band radar imagery, corresponding to buildings and other structures of various heights, dimensions, and construction materials. Cities and smaller urban and rural settlements in Vitebsk Oblast of Belarus and Voronezh Oblast of Russia are compared with respect to such information derived from radar images. Translated by Edward Torrey, Alexandria, Virginia from: Geografiya i prirodnyye resursy, 2002, No. 4, pp. 138-140.  相似文献   

18.
2022年1月14日—15日南太平洋汤加Hunga Tonga-Hunga Ha'apai(HTHH)海底火山发生剧烈喷发并造成海啸,引起了国际广泛关注.对此次"千年一遇"的汤加HTHH火山喷发事件进行应急响应,首先综合利用国内外多时相卫星光学影像、雷达影像、全球导航卫星系统(global navigation sat...  相似文献   

19.
Abstract

According to the features of high-resolution panchromatic imagery of Beijing-1 small satellite, an approach to extracting information of residential areas is proposed in this paper based on Gabor texture segmentation. The algorithm extracts the features in different directions and different scales by building the Gabor filter, uses cluster analysis of multiple features to segment the image, and performs the fusion processing based on morphological scale space. It solves the problems in image processing resulting from low contrast between remote sensing objects and background, the blurring of image edges and high noise. It has the benefits of direction selection and frequency selection with strong self-adaptive ability. Our experiments prove the effectiveness of the approach for extracting information of residential areas from Beijing-1 high-resolution imagery.  相似文献   

20.
Abstract

An innovative and practical satellite image product is described that is ideal for applications in Northern Canada because of its wide area coverage and mapping-quality features. This product is generated from a new procedure developed at the Canada Centre for Remote Sensing (CCRS) for processing Landsat 7 imagery, and by extension, imagery from other Earth Observation satellites. By working with multiple satellite passes, each containing the equivalent of multiple scenes, the new procedure could dramatically reduce the turn-around time for generating georeferenced image products, and also increase their geometric and radiometric accuracy compared to those produced by the current methods. The objective of the process has been to generate satellite image mosaics covering large areas (e.g. >500 000 km2) with uniformly distributed errors at sub-pixel resolution. The paper discusses the theoretical basis of a photogrammetric adjustment for satellite imagery and the results obtained from several tests. The process is generic, involving a sensor model, a satellite orbit model and ground control information; thus it may be easily adapted to any satellite that allows for repeat coverage with overlapping paths. By performing an adjustment to correct the satellite position and attitude data prior to the production of orthoimage products, it is possible to create a mosaic with a single resampling process which minimises both the radiometric and geometric resampling artifacts. The results from three separate tests are presented, along with a discussion of the procedures that were followed in each case. All three tests have successfully demonstrated that sub-pixel sample size errors may be consistently obtained over large areas. A by-product process developed to support the measurement of ground control point coordinates for the satellite adjustment was the automatic matching of geographic features such as lakes and islands in vector data format. This has been a significant development in that it has eliminated manual intervention in the measurement of these features in the imagery, allowing the ground control for entire passes containing several scenes to be obtained in minutes instead of hours.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号