首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Non dynamite seismic energy sources have shown only limited success in difficult shallow-water or marsh prospect areas, and none have applicability to both environments. Recently, a method has been devised to adapt a marine pneumatic source for operation in abrasive surroundings. A system composed of four of these modified sources together with associated emplacement and retrieval mechanisms has been developed and has proven to be a reliable and efficient seismic energy source for both shallow-water and marsh applications.  相似文献   

2.
The directional effect of shaped charge is a well-known feature used for a long time in military weapons, oil well guns, and steel industry. This charge was successfully applied as a seismic energy source by Petrobrás during the past three years under different surface and geological conditions. Preliminary amplitude measurements taken with fixed gain shallow refraction instruments showed a consistent difference between conventional and shaped charges. Lately, a similar difference has been noted in deep reflection energy recorded with digital binary gain instruments as well as in deep oil well velocity surveys. Direct comparisons along more than 50 km of multiple coverage field reflection shooting are in agreement with these results and have proved the practical advantage of this source as compared to conventional dynamite. This source has been used since 1971 in routine seismic operation in the Amazon jungle with 300 gram unit charges distributed in small and large shot arrays increasing substantially the coverage and halving the cost at a higher record quality. A large amount of production seismic field work has been carried out in several other areas attesting the successful application of the shaped charges.  相似文献   

3.
This paper reports the field setup and preliminary results of experiments utilizing an airgun array in a reservoir in north China for a seismotectonic study. Commonly used in offshore petroleum resource exploration, the airgun source was found to be more useful than a traditional explosive source for large‐scale and long offset land seismic surveys. The airgun array, formed by four 1,500 in3 airguns (a total of 6,000 in3 in volume) was placed at a depth of 6–9 m into the reservoir to generate the pressure impulse. No direct evidence was found that the airgun source adversely affected the fish in the reservoir. The peak ground acceleration recorded on the top of the reservoir dam 100 m away was 17.8 gal in the horizontal direction; this is much less than the designed earthquake‐resistance threshold of 125 gal for this dam. The energy for one shot of this airgun array is about 6.68 MJ, equivalent to firing a 1.7 kg explosive. The seismic waves generated by the airgun source were recorded by receivers of the regional seismic networks and a temporary wide‐angle reflection and refraction profile formed by 100 short‐period seismometers with the maximum source‐receiver offset of 206 km. The seismic wave signature at these long‐offset stations is equivalent to that generated by a traditional blast source in a borehole with a 1,000–2,000 kg explosive. Preliminary results showed clear seismic phases from refractions from the multi‐layer crustal structures in the north China region. Forward modelling using numerical simulation confirms that the seismic arrivals are indeed from lower crustal interfaces. The airgun source is efficient, economical, environmentally friendly and suitable for being used in urbanized areas. It has many advantages over an explosive source for seismotectonic studies such as the high repeatability that is supreme for stacking to improve signal qualities. The disadvantage is that the source is limited to existing lakes or reservoirs, which may restrict experimental geometry.  相似文献   

4.
A commercial marine seismic survey has been completed with the wavefield from the n-element (single guns and clusters) airgun array measured for every shot using an array of n + 2 near-field hydrophones, n of which were required to determine the source wavefield, the remaining two providing a check on the computation. The source wavefield is critical to the determination of the seismic wavelet for the extraction of reflection coefficients from seismic reflection data and for tying the data to wells. The wavefield generated by the full array of interacting airguns can be considered to be the superposition of n spherical pressure waves, or notional source signatures, the n hydrophone measurements providing a set of n simultaneous equations for each shot. The solution of the equations for the notional source signatures requires three ingredients: the geometry of the gun ports and near-field hydrophones; the sensitivity of each hydrophone recording channel; and the relative motion between the near-field hydrophones and the bubbles emitted by the guns. The geometry was measured on the back deck using a tape measure. A calibration data set was obtained at the approach to each line, in which each gun was fired on its own and the resulting wavefield was measured with the near-field hydrophones and recorded. The channel sensitivities, or conversion from pressure at the hydrophones to numbers on the tape, were found for each near-field hydrophone channel using the single gun calibration data, the measured geometry, and the peak pressure from each gun, known from the manufacturer’s calibration. The relative motion between the guns and hydrophones was obtained from the same calibration data set by minimizing the energy in the computed notional source signatures at the guns which did not fire. The full array data were then solved for the notional source signatures, and the pressure was computed at the two spare hydrophones and compared with the actual recordings. The rms errors were 5.3% and 2.8% and would have been smaller if the hydrophone channel sensitivities had been properly calibrated beforehand and if the movement of the guns with respect to the hydrophones had been more restricted. This comparison of the predicted and measured signatures at spare hydrophones can, in principle, be done on every shot and we recommend that this be implemented as a standard quality control procedure whenever it is desired to measure the wavefield of a marine seismic source.  相似文献   

5.
Use of low frequencies for sub-basalt imaging   总被引:5,自引:1,他引:5  
Many prospective passive ocean margins are covered by large areas of basalts. These basalts are often extremely heterogeneous and scatter the seismic energy of the conventional seismic reflection system so that it becomes difficult to obtain information on deeper reflectors. Since high frequencies are scattered more than low frequencies, we argue that the acquisition system for sub-basalt targets should be modified to emphasize the low frequencies, using much larger airguns, and towing the source and receivers at about 20 m depth. In the summer of 2001 we obtained seismic reflection data over basalt in the northeast Atlantic using a system modified to enhance the low-frequency energy. These new data show deep reflections that are not visible on lines shot in the same places with a conventional system.  相似文献   

6.
Marine seismic vibrators are generally considered to be less intrusive than airguns from an environmental perspective. This is because they emit their energy spread out in time, rather than in a single, high-intensity pulse. There are also significant geophysical benefits associated with marine vibrators, and they stem from the ability to specify in detail the output acoustic waveform. The phase can be specified independently at each frequency. Such detailed control cannot be achieved with conventional airgun sources, where the phase can only be modified using simple overall time delays. The vibrator phase can be employed in several different ways: it can be applied to the overall source phase in a sequence so that it varies from one source point to the next; it can be applied to the individual vibrators within the source array so the source directivity is changed; it can be applied to the overall source phase of each source in a simultaneous source acquisition. Carefully designed phase sequences can attenuate the residual source noise, and this in turn allows extra source points to be interleaved between the conventional ones. For these extra source points, the relative phase of the vibrators within the array can be chosen to create a transverse gradient source, which illuminates the earth predominantly in directions out of the plane of the sail line without left/right ambiguity. If seismic vibrator data are acquired using interleaved conventional and transverse gradient sweeps, more information is collected per kilometre of vessel travel than is the case in conventional acquisition. This richer data acquisition leads to the possibility of acquiring all the necessary seismic data in a shorter time. Three-dimensional reconstruction techniques are used to recover the same image quality that would have been obtained using the conventional, more time-consuming acquisition. For a marine vibrator to be suitable for these techniques it must, in general terms, have ‘high fidelity’. The precise device specifications are defined through realistic end-to-end simulations of the physical systems and the processing. The specifications are somewhat more onerous than for a conventional vibrator, but they are achievable. A prototype vibrator that satisfies these requirements has been built. In a simulated case study of a three-dimensional deep-water ocean bottom node survey, the seismic data could have been acquired using marine vibrators in one third of the time that it would have taken using airguns.  相似文献   

7.
We propose a new method for removing sea-surface multiples from marine seismic reflection data in which, in essence, the reflection response of the earth, referred to a plane just above the sea-floor, is computed as the ratio of the plane-wave components of the upgoing wave and the downgoing wave. Using source measurements of the wavefield made during data acquisition, three problems associated with earlier work are solved: (i) the method accommodates source arrays, rather than point sources; (ii) the incident field is removed without simultaneously removing part of the scattered field; and (iii) the minimum-energy criterion to find a wavelet is eliminated. Pressure measurements are made in a horizontal plane in the water. The source can be a conventional array of airguns, but must have both in-line and cross-line symmetry, and its wavefield must be measured and be repeatable from shot to shot. The problem is formulated for multiple shots in a two-dimensional configuration for each receiver, and for multiple receivers in a two-dimensional configuration for each shot. The scattered field is obtained from the measurements by subtracting the incident field, known from measurements at the source. The scattered field response to a single incident plane wave at a single receiver is obtained by transforming the common-receiver gather to the frequency–wavenumber domain, and a single component of this response is obtained by Fourier transforming over all receiver coordinates. Each scattered field component is separated into an upgoing wave and a downgoing wave using the zero-pressure condition at the water-surface. The upgoing wave may then be expressed as a reflection coefficient multiplied by the incident downgoing wave plus a sum of scattered downgoing plane waves, each multiplied by the corresponding reflection coefficient. Keeping the upgoing scattered wave fixed, and using all possible incident plane waves for a given frequency, yields a set of linear simultaneous equations for the reflection coefficients which are solved for each plane wave and for each frequency. To create the shot records that would have been measured if the sea-surface had been absent, each reflection coefficient is multiplied by complex amplitude and phase factors, for source and receiver terms, before the five-dimensional Fourier transformation back to the space–time domain.  相似文献   

8.
利用固定台站分析长江激发气枪信号特征   总被引:1,自引:1,他引:0  
“地学长江计划”安徽实验是以气枪震源为核心的大型主动源探测实验。通过在长江安徽段20个固定点定点激发气枪震源,结合109个固定台站、11条流动测线组成的观测网络,首次利用主动源实现了对长江流域安徽段约6万km2面积的三维地下结构探测。本文利用固定台站对长江激发气枪信号进行了分析,结果表明,长江中气枪信号激发效果良好,固定台记录中气枪信号可识别的最远距离达300km。对气枪信号绝对振幅的研究结果表明:① 50km处的气枪信号约为10nm量级,200km处的气枪信号小于1 nm;② 气枪信号强度的空间分布存在一定的方位各向异性,可能与长江的几何形状有关;③ 台站背景噪声对于提取气枪信号至关重要,高质量的固定台网为识别nm量级气枪信号提供了可能。  相似文献   

9.
Microearthquake digital data collected at Campi Flegrei during the recent (1982–1985) ground uplift episode have been analyzed in order to infer source and medium seismic properties. The main results obtained from these analyses are:
  1. Hypocenter distribution and the size of the seismic zone do not change with time and do not depend on the ground uplift rate. Events occurred clustered in time with no simple causal relations between the cluster occurrences and their energy.
  2. Anelastic attenuation does not depend strongly on frequency, showing a constant pattern at high frequencies. The observed values of low and high frequency attenuation, due to the short source receiver distances, do not seriously affect the spectral content of signals radiated by the sources.
  3. A constant Brune stress drop pattern (~4–5 bars) as a function of seismic moment is observed. This indicates that the manner of fracturing is almost independent on magnitude of earthquakes (hypothesis of self-similarity (Aki, 1967)). Seismic processes in a prefractured medium can explain the observed small stress drop values.
  4. Focal mechanisms from moment tensor estimates show that radiation patterns are mostly well interpreted in terms of double couple source models.
  5. The scaling of peak ground motion parameters (A max andV max vs seismic moment) can be explained by an ω2 source model (constant stress drop) multiplied by an exponential function with a small decay parameter, which takes into account the measured attenuation.
These results support the hypothesis of earthquakes generated by simple shear fractures along prefractured structures as a response to changes in the stress field due to the ground deformation.  相似文献   

10.
In 2004 three seismic surface sources (VIBSIST, accelerated weight drop and MiniVib) were tested in a pilot study at the Ketzin test site, Germany, a study site for geological storage of CO2 (EU project CO2SINK). The main objectives of this pilot study were to 1) evaluate the response of the Ketzin site to reflection seismics, especially at the planned injection depth, 2) test different acquisition parameters and 3) use the results to guide the planning of the 3D survey. As part of these objectives, we emphasize the source performance comparison in this study. The sources were tested along two perpendicular lines of 2.4 km length each. Data were acquired by shooting at all stations (source and receiver spacing of 20 m) on both lines, allowing common‐midpoint stacked sections to be produced. The sources' signal characteristics based on signal‐to‐noise ratio, signal penetration and frequency content of raw shot records were analysed and stacked sections were compared. The results show that all three surface sources are suitable for reflection seismic studies down to a depth of about 1 km and provide enough bandwidth for resolving the geological targets at the site, i.e., the Weser and Stuttgart Formations. Near surface conditions, especially a thick weathering layer present in this particular area, strongly influence the data quality, as indicated by the difference in reflectivity and signal‐to‐noise ratio of the two common‐midpoint lines. The stacked sections of the MiniVib source show the highest frequency signals down to about 500 ms traveltime (approximately 500 m depth) but also the shallowest signal penetration depth. The VIBSIST source generates signals with the highest signal‐to‐noise ratio and greatest signal penetration depth of the tested sources. In particular, reflections below 900 ms (approximately 1 km depth) are best imaged by the VIBSIST source. The weight drop performance lies in between these two sources and might be recommended as an appropriate source for a 3D survey at this site because of the shorter production time compared to the VIBSIST and MiniVib sources.  相似文献   

11.
Active seismic sources are critical for obtaining high resolution images of the subsurface. For active imaging in urban areas, environment friendly and green seismic sources are required. In present work, we introduce a new type of green active source based on the gaseous detonation of methane and oxygen. When fired in a closed container, the chemical reaction, i.e. gaseous detonation, will produce high pressure air over 150MPa. Seismic waves are produced when high pressure air is quickly released to impact the surroundings. The first field experiment of this active source was carried out in December, 2017 in Jingdezhen, Jiangxi Province, where a series of active sources were excited to explore their potential in mine exploration. In current work, we analyzed the seismic waves recorded by near-field accelerators and a dense short-period seismic array and compared them with those from a mobile airgun source, another kind of active source by releasing high pressure air into water. The results demonstrate that it can be used for high resolution near surface imaging. Firstly, the gaseous detonation productions are harmless CO2 and water, making it a green explosive source. Secondly, the dominant seismic frequencies are 10-80Hz and a single shot can be recorded up to 15km, making it suitable for local structure investigations. Thirdly, it can be excited in vertical wells, similar to traditional powder explosive sources. It can also act as an additional on-land active source to airgun sources, which requires a suitable water body as intermediate media to generate repeating signals. Moreover, the short duration and high frequency signature of the source signals make it safe with no damage to nearby buildings. These make it convenient to excite in urban areas. As a new explosive source, the excitation equipment and conditions, such as gas ratio, sink depth and air-releasing directions, need further investigation to improve seismic wave generation efficiency.  相似文献   

12.
不同激发环境下井中气枪震源特征研究   总被引:2,自引:2,他引:0  
基于单枪容量为250in3的BHS-2200LL井中气枪,在内径0.2、5.0m不同激发井中开展了气枪震源特征对比分析,研究表明:①5.0m井中气枪激发产生的信号优势频率集中在10~40Hz,比在0.2m井中的低,这主要是由于较大水体利于气泡的震荡;②在能量方面,5.0m井中激发信号的能量强于0.2m井中的,幅度上相差1个数量级,单次激发的传播距离可达9km;③2种激发环境下产生的气枪信号都具有较好的重复性。  相似文献   

13.
珠江口地区位于南海北部大陆的边缘,具有洋陆过渡型地壳特征,且NE向滨海断裂带从其中穿过,强震风险不可忽视.文中基于2015年珠江口海陆联合三维人工地震探测数据,人工进行初至P波震相拾取,并使用VELEST程序分别反演了陆域和海域的最小一维P波速度模型(走时残差均方根最小)和台站校正结果.台站校正结果的空间分布与区域地形...  相似文献   

14.
The use of arrays to separate primary reflections from unwanted coherent seismic events is common practice in land seismic surveys. Very long source and receiver arrays have been used recently to reduce the effects of waterbottom multiples on marine seismic data. The source array consists of five uniformly spaced identical subarrays, each with five different airguns, where the distance between the subarrays may vary from 20 m56 m. The volume of each subarray is 10.3 1 (630 cu.in.) which gives a total volume of the array of 51.5 1 (3150 cu.in.) operated at a pressure of 14 MPa (2000 psi). In order to have a flexible receiver system it was decided to implement the extended receiver array in data processing by computing a weighted sum of two to five traces. The hydrophone cable consists of fifty-four channels with a group length of 50 m. Data shot with the superlong airgun array are processed by a combination of standard techniques and special procedures. In particular, the quality of the stack section is improved by using a weighted stack. The stack weights are computed by a program which takes into account the primary-to-multiple ratio. Comparisons with conventional data show significant improvements in data quality obtained by using the superlong airgun array. Examples show that the waterbottom multiples have been strongly attenuated and the deep seismic events have been enhanced. The combined array response function for dipping events is given in an appendix.  相似文献   

15.
Seismicity and Seismic Hazard in Alexandria (Egypt) and its Surroundings   总被引:3,自引:0,他引:3  
— Alexandria City has suffered great damage due to earthquakes from near and distant sources, both in historical and recent times. Sometimes the source of such damages is not well known. Seismogenic zones such as the Red Sea, Gulf of Aqaba-Dead Sea Hellenic Arc, Suez-Cairo-Alexandria, Eastern-Mediterranean-Cairo-Faiyoum and the Egyptian costal area are located in the vicinity of this city. The Egyptian coastal zone has the lowest seismicity, and therefore, its tectonic setting is not well known. The 1998 Egyptian costal zone earthquake is a moderate complex source. It is composed of two subevents separated by 4 sec. The first subevent initiated at a depth of 28 km and caused a rupture of strike (347°), dip (29°) and slip (125°). The second subevent occurred at a shallower depth (24 km) and has a relatively different focal parameter (strike 334°, dip 60° and slip 60°). The available focal mechanisms strongly support the manifestation of a complex stress regime from the Hellenic Arc into the Alexandria offshore area. In the present study a numerical modeling technique is applied to estimate quantitative seismic hazard in Alexandria. In terms of seismic hazard, both local and remote earthquakes have a tremendous affect on this city. A local earthquake with magnitude Ms = 6.7 at the offshore area gives peak ground acceleration up to 300 cm/sec2. The total duration of shaking expected from such an earthquake is about three seconds. The Fourier amplitude spectra of the ground acceleration reveals that the maximum energy is carried by the low frequency (1–3 Hz), part of the seismic waves. The largest response spectra at Alexandria city is within this frequency band. The computed ground accelerations due to strong earthquakes in the Hellenic Arc, Red Sea and Gulf of Aqaba are very small (less than 10 cm/sec2) although with long duration (up to 3 minutes).  相似文献   

16.
常规陆上VSP(Vertical Seismic Profiling)勘探普遍采用纵波震源激发,三分量检波器接收,主要利用的是纵波和转换横波信息。已有的研究表明,炸药震源在井下激发、可控震源在地面垂向振动,均会产生较强的纯纵波和一定强度的纯横波;泊松比差别较大的分界面有利于形成较强的透射转换横波。本文通过对激发形成的纯横波和下行转换形成的横波进行对比分析,认为纯横波的主频往往低于纯纵波的主频,而下行转换横波的主频通常接近纵波的主频。本文分别对两个陆上纵波源零偏和非零偏VSP资料进行分析,结果表明这些资料中普遍存在纯横波,只是横波的强弱存在不同程度的变化。利用纵波源零偏VSP资料,可以获得横波速度信。最后对VSP纵波和横波联合应用前景进行了分析,应该充分利用纵波源VSP资料中的横波信息。  相似文献   

17.
大井间距井间地震观测试验   总被引:5,自引:1,他引:4       下载免费PDF全文
介绍了井间地震数据采集方面取得的最新进展.为了使我国井间地震技术实用化,开展了大井间距井间地震数据采集试验.通过地面浅井激发深井接收、深井激发深井接收、不同炸药量、不同传播距离试验,确定了井间地震观测参数.应用改进后的井中安全炸药震源、一个三分量井中检波器和常规数据记录系统,在陕北顺宁油田的顺3井、顺4井和顺5井3口生产井中成功采集到两对大井间距、深井、油井中的井间地震资料,两对井的井距分别为307.92m和470.36m,采集井段为904.31-1272.32m.共设计了4种观测方式,采集到800多炮井间地震记录,对油井无损害.改进型井中安全炸药震源在使用效率和寿命方面有显著提高,可用于商业性并间地震数据采集.  相似文献   

18.
A standard seismic reflection profile was shot along a disused railway track at Onley, near Rugby, U. K. Four different seismic sources including explosives, the propane/oxygen gas-gun, the Bolt airgun, and the borehole sparker were used and compared with each other in terms of output energy, penetration and resolution. The results indicated that the resolution of the borehole airgun and the gas-gun was slightly higher than that possible with gelignite. Both these sources had an output energy which was equivalent to 30 g of gelignite. The borehole sparker was only useful for obtaining seismic information on the nearsurface weathered layer, since its output power (1 kJ) was very limited. However, McCann and McCann (1982) used a high-power sparker source (14 kJ) on the nearby Grand Union Canal for a wide angle seismic reflection survey and achieved a maximum penetration of 250 m, which is comparable with the results obtained on land with the seismic sources mentioned above. The seismic reflection profile, which was interpreted in the light of borehole information in the area and the results of McCann and McCann (1982), successfully identified the surface of the Palaeozoic rocks. The problem of detecting the presence of thin, high-velocity layers in a seismic refraction survey without the availability of other information to calibrate the seismic section is also highlighted.  相似文献   

19.
20.
Pneumatic seismic sources, commonly known as airguns, have been serving us well for decades, but there is an increasing need for sources with improved low-frequency signal and reduced environmental impact. In this paper, we present a new pneumatic source that is designed to achieve these goals by operating with lower pressures and larger volumes. The new source will release more air creating larger bubbles with longer bubble periods than airguns. The release of the air will be tuned so that the rise time will be longer and the sound pressure level and its slope will be lower. Certain engineering features will eliminate cavitation. Larger bubbles increase low-frequency content of the signal, longer rise times decrease mid-frequency content and the elimination of cavitation reduces high-frequency content. We have not yet built a full-scale version of the new source. However, we have manufactured a small-scale low-pressure source incorporating most of the engineering features, and tested it in a lake. Here, we present the lake data that, as expected, show a significant reduction in the sound pressure level, increase in rise time, decrease in slope and decrease in high-frequency content while maintaining the same low-frequency content when the source prototype is operated at low pressure compared with high pressure. Synthetic data produced by numerical modelling of the full-scale proposed pneumatic source suggest that the new source will improve the low-frequency content and can produce geophysically useful signal down to 1 Hz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号